Abschlussbericht zum Forschungsvorhaben

Erforschung des Dreistoffgemisches Klinker, Hüttensand und Kalksteinmehl mit dem Ziel der Absenkung des Klinkeranteils im Zement zur Verminderung der CO₂-Emissionen in der Zementproduktion

mit dem Aktenzeichen 28790/02

gefördert von der Deutschen Bundesstiftung Umwelt

Spenner Zement GmbH & Co. KG

Winfried Neufert, Ines Reuken, Georg Weber

VDZ gGmbH - Abteilung Betontechnik

Christoph Müller, Sebastian Palm, Katrin Severins

TU Darmstadt - Fachgebiet Massivbau

Carl-Alexander Graubner, Tilo Proske, Moien Rezvani

vom 31.8.2016

Abschlussber	richt "Reduzierung der Umweltwirkung der Betonbauweise"	Seite 2 von 106
<u>Inhaltsverz</u>	<u>eichnis</u>	
1	Verzeichnis von Bildern und Tabellen	4
1.1	Bilder	4
1.2	Tabellen	6
2	Abkürzungsverzeichnis	8
3	Zusammenfassung	9
4	Einleitung	10
5	Versuche und Ergebnisse - Allgemein	12
5.1	Ausgangsstoffe	12
5.1.1	Zemente und Zementhauptbestandteile	12
5.1.2	Gesteinskörnung	12
5.1.3	Chemisch mineralogische Zusammensetzung	13
5.1.4	Granulometrie	13
6	Versuche und Ergebnisse – VDZ gGmbH	13
6.1	Mörteleigenschaften	13
6.2	Betonversuche	16
6.2.1	Allgemeines	16
6.2.2	Frischbetoneigenschaften	17
6.2.3	Betondruckfestigkeit	17
6.2.4	Chlorideindringwiderstand	19
6.2.5	Karbonatisierung	20
6.2.6	Frostwiderstand	22
0.2.7	Frost-Tausaizwiderstand	20
7	Versuche und Ergebnisse – TU Darmstadt	27
7.1	Allgemeines	27
7.2	Vorversuche an Feinbetonen und Betonen aus Laborzementen	27
7.2.1	Versuche an Petrop	21
7.2.2	Diskussion der Ergebnisse	30
7.2.5	Prüfungen an Betonen mit Werkszementen	34
7.3.1	Allgemeines	34
7.3.2	Frischbetoneigenschaften	34
7.3.3	Druckfestiakeitsentwicklung und Arbeitslinie	35
7.3.4	Spaltzugfestigkeit und Elastizitätsmodul	36
7.3.5	Kriechen und Schwinden	37
7.3.6	Karbonatisierungswiderstand	38
7.3.7	Robustheit	39
7.4	Traglastversuche an Bauteilen	41
8	Vergleich der Ergebnisse	42
8.1	Vergleich zwischen den Forschungsstellen	42
8.2	Vergleich zwischen Labor- und Werkszementen	43
9	Ökobilanzierung	44

Abschlussbe	ericht "Reduzierung der Umweltwirkung der Betonbauweise"	Seite 3 von 106		
9.1	Grundlagen Nachhaltigkeitsbewertung			
9.1.1	Die Methodik der Ökobilanzierung			
9.1.2	2 Phasen einer Ökobilanz			
9.2	0.2 Durchgeführte Ökobilanzierung			
9.2.1	Allgemein	46		
9.2.2	Bilanzierung der Zemente	47		
9.2.3	Bilanzierung der Betone	48		
10	Technische Bewertung der Ergebnisse	50		
11	Ökobilanzielle Bewertung der Ergebnisse	51		
12	Ökonomische Bewertung der Ergebnisse	52		
13	Bisherige Umsetzung der Ergebnisse bei der Firma Spenner Ze	ment 53		
14	Literatur	54		
15	Unterschriften	56		
16	Anhang	57		

Abschlussber	richt "Reduzierung der Umweltwirkung der Betonbauweise" S	eite 4 von 106
1	Verzeichnis von Bildern und Tabellen	
1.1	Bilder	
Bild 1	Verfügbarkeit von Hüttensand in Deutschland [2], [3]	10
Bild 2	Verfügbarkeit von Steinkohlen-flugasche in Deutschland [4], [5]	10
Bild 3	Untersuchungsrahmen, dargestellt im Dreistoffsystem des Zemente	es,
	zusammengesetzt aus Portlandzementklinker (K), Hüttensand (S)	und
	Kalkstein (LL)	11
Bild 4	Sieblinien (ist-Werte)	12
Bild 5	Festigkeitsentwicklung von Mörteln mit w/z = 0,50	15
Bild 6	Festigkeitsentwicklung von Mörteln mit w/z = 0,40 (Referenzen mit	w/z =
	0,50)	15
Bild 7	Festigkeitsentwicklung von Mörteln mit w/z = 0,35 (Referenzen mit	w/z =
	0,50)	16
Bild 8	Ausbreitmaße	17
Bild 9	Luftgehalte	17
Bild 10	Druckfestigkeitsentwicklung der Betone B1 bis B3	18
Bild 11	Druckfestigkeit der Betone B4	18
Bild 12	Chlorideindringwiderstand der Betone B1 bis B3	19
Bild 13	Karbonatisierungstiefen von Feinbetonen mit w/z = 0,50 (7d VL)	20
Bild 14	Karbonatisierungstiefen von Feinbetonen mit w/z = 0,40 (7d VL)	20
Bild 15	Karbonatisierungstiefen von Feinbetonen mit w/z = 0,35 (7d VL)	20
Bild 16	Karbonatisierungstiefen von Feinbetonen mit w/z = 0,50 (28d VL)	21
Bild 17	Karbonatisierungstiefen von Feinbetonen mit w/z = 0,40 (28d VL)	21
Bild 18	Karbonatisierungstiefen von Feinbetonen mit w/z = 0,35 (28d VL)	21
Bild 19	Karbonatisierungstiefen von Feinbetonen nach 140d Hauptlagerun	g 21
Bild 20	Druckfestigkeit von Feinbetonen nach 7d bzw. 28d Vorlagerung	22
Bild 21	Id 21 Abwitterung und rel. dyn. E-Modul von Betonen mit	
	Wasserzementwerten w/z = $0,50$; 28d Vorlagerung	23
Bild 22	Abwitterung und rel. dyn. E-Modul von Betonen mit	
	Wasserzementwerten w/z = 0,40 (Referenzen mit w/z = 0,50); 28d	
	Vorlagerung	23
Bild 23	Abwitterung und rel. dyn. E-Modul von Betonen mit	
	Wasserzementwerten w/z = 0,35 (Referenzen mit w/z = 0,50); 28d	
B ¹¹ I A I	Vorlagerung	24
Bild 24	Abwitterung und rel. dyn. E-Modul von Betonen mit	
D	Wasserzementwerten w/z = $0,50$; 90d Vorlagerung	24
Bild 25	Abwitterung und rei. dyn. E-Modul von Betonen mit	
	Wasserzementwerten w/z = 0,40 (Referenzen mit w/z = 0,50); 900	05
	Vorlagerung	25
Blid 26	Abwitterung und rei. dyn. E-Modul von Betonen mit	
	vvasserzementwerten w/z = 0,35 (Reterenzen mit w/z = 0,50); 900	05
בנ מוש	Vullagetullig	25
	Australia dar Eachatana mit Hüttanaand St	20
	Auspreilinaise der Feinbelone mil Hullensand 51	28
DII0 29	r- una zoa-טועכאופגווטאפון מפר רפוחטפנטחפ mit Huttensana 51	29

Abso	hlussbericht	"Reduzierung der Umweltwirkung der Betonbauweise"	Seite 5 von 106
Bild	30	7- und 28d-Druckfestigkeit der Feinbetone mit Hüttensanden S1,	S2 und
		S3	29
Bild	31	Karbonatisierungstiefe der Feinbetone mit Hüttensand S1	30
Bild	32	Karbonatisierungstiefe der Feinbetone mit Hüttensanden S1, S2 u	und S3 30
Bild	33	Ausbreitmaß und Fließmittelbedarf der Betone mit Hüttensand S1	31
Bild	34	Plastische Viskosität der Frischbetone mit Hüttensand S1	32
Bild	35	Druckfestigkeitsentwicklung der Betone B1 und B3	32
Bild	36	Zusammenhang zwischen der Druckfestigkeit und dem	
		Karbonatisierungswiderstand der untersuchten Feinbetone	33
Bild	37	Vergleich der gemessenen Karbonatisierungswiderstände mit der	n
		Bewertungshinterdrund aus [11]	33
Bild	38	Ausbreitmaß und Luftporengehalt der untersuchten Betone mit	
		Werkszementen	35
Bild	39	Plastische Viskosität und Fließmittelbedarf der untersuchten Beto	ne mit
	_	Werkszementen	35
Bild	40	Druckfestigkeit und Luftporengehalt der Betone mit Werkszement	en 36
Bild	41	Spannungs-Dehnungs-Beziehung der Betonzylinderproben	36
Bild	42	Darstellung des E-Moduls	36
Bild	43	Darstellung der Spaltzugfestigkeit	. 36
Bild	44	Verlauf der Schwindverformungen der Referenzbetone und der Be	etone
		mit klinkereffizienten Zementen	38
BIIO	45	Kriechverformungen der Referenzbetone und der Betone mit	20
Dild	146	Klinkeremzienten Zementen	38
DIIU	40	Austraitmaß und plastische Viskosität in Abhängigkeit des	30
Bilu		Massorgobaltos	40
Bild	48	Druckfestigkeit und Luftporengehalt in Abhängigkeit des Wasserg	eh-
	140	altes	۵۱- 40
Bild	49	Karbonatisierungstiefe in Abhängigkeit des Wassergehaltes	40
Bild	50	Ausbreitmaß und plastische Viskosität in Abhängigkeit der	10
		Frischbetontemperatur	40
Bild	51	Druckfestigkeit und Luftporengehalt in Abhängigkeit der	
		Frischbetontemperatur	40
Bild	52	Karbonatisierungstiefe in Abhängigkeit der Frischbetontemperatur	r 41
Bild	53	Rissbildung und Versagensart der untersuchten bewehrten Balke	n 42
Bild	54	Vergleich der Betondruckfestigkeiten TUDA / VDZ	43
Bild	55	Vergleich der Druckfestigkeiten Laborzemente / Werkszemente	44
Bild	56	Definition "Nachhaltiges Bauen" des DGNB [15]	44
Bild	57	Vorgehensweise bei einer Ökobilanzierung nach DIN EN ISO 140	40 und
		14044 [16, 17]	46
Bild	58	Treibhauspotential und Gesamtenergiebedarf der analysierten Ze	mente
		mit und ohne Allokation	47
Bild	59	Gegenüberstellung der Umweltwirkungen der Referenz- und	
		Laborzemente aus K-S-LL bezogen auf Durchschnittszement für	
		Deutschland	48
Bild	60	Treibhauspotential der untersuchten Betone aus Werkszementen	49

Abschlussbericht "Reduzierung der Umweltwirkung der Betonbauweise" Seite 6 von 106				
Bild 61	Gesamtenergiebedarf der untersuchten Betone aus Werkszementen 4			
Bild 62	Korngrößenverteilungen der Ausgangsstoffe für die Laborzemente	e bzw.		
	Referenzzemente	60		
Bild 63	Korngrößenverteilungen der Ausgangsstoffe für die Werkszement	te bzw.		
	Werkszemente	60		
Bild 64	Zusammenhang zwischen Fein- und Normalbetondruckfestigkeit	88		
Bild 65	Gegenüberstellung der Mess- und Rechenwerte des Schwindvers	suchs 95		
Bild 66	Gegenüberstellung der Mess- und Rechenwerte des Kriechversue	chs 95		
Bild 67	Bewehrungsplan für Typ II Balken	103		
Bild 68	Bewehrungsplan für Typ III Balken	103		
Bild 69	Bewehrungsplan für Typ IV Balken	104		

1.2 Tabellen

Tabelle 1	Abkürzungsverzeichnis	8		
Tabelle 2	Fließmittelbedarf und Ausbreitmaß 1			
Tabelle 3	Betonrezepturen	16		
Tabelle 4	Feinbetonrezepturen	28		
Tabelle 5	Betonrezepturen	31		
Tabelle 6	Mischungsentwürfe der Betone mit Werkszementen für die Prüfung der			
	bemessungsrelevanten Betoneigenschaften	34		
Tabelle 7	Gegenüberstellung der gemessenen und rechnerischen Traglasten	42		
Tabelle 8	Chemisch-mineralogische Zusammensetzung	57		
Tabelle 9	Chemisch-mineralogische Zusammensetzung	58		
Tabelle 10	Chemisch-mineralogische Zusammensetzung	59		
Tabelle 11	Dichte, spezifische Oberfläche, RRSB Parameter	59		
Tabelle 12	Mörteldruckfestigkeiten (1)	61		
Tabelle 13	Mörteldruckfestigkeiten (2)	62		
Tabelle 14	Mörteldruckfestigkeiten (3)	63		
Tabelle 15	Mörteldruckfestigkeiten (4)	64		
Tabelle 16	Mörteldruckfestigkeiten (5)	65		
Tabelle 17	Mörteldruckfestigkeiten (6)	66		
Tabelle 18	Mörteldruckfestigkeiten (7)	67		
Tabelle 19	Frischbetoneigenschaften	68		
Tabelle 20	Druckfestigkeitsentwicklung der Betone B1 bis B3	69		
Tabelle 21	Druckfestigkeitsentwicklung der Betone B4	70		
Tabelle 22	Eindringtiefe und Chloridmigrationskoeffizient D der Betone B1 bis B3	71		
Tabelle 23	Druckfestigkeiten der Feinbetone (1)	72		
Tabelle 24	Druckfestigkeiten der Feinbetone (2)	73		
Tabelle 25	Karbonatisierungstiefen nach 7d Vorlagerung und 140d Hauptlagerung	74		
Tabelle 26	Karbonatisierungstiefen nach 28d Vorlagerung und 140d Hauptlagerung	74		
Tabelle 27	Abwitterungen der Betone, 28d Vorlagerung, CIF (1)	75		
Tabelle 28	Abwitterungen der Betone, 28d Vorlagerung, CIF (2)	76		
Tabelle 29	relative dynamische E-Moduli der Betone, 28d Vorlagerung, CIF (1)	77		
Tabelle 30	relative dynamische E-Moduli der Betone, 28d Vorlagerung, CIF (2)	78		
Tabelle 31	Abwitterungen der Betone, 90d Vorlagerung, CIF (1)	79		

Abschlussbericht	"Reduzierung der Umweltwirkung der Betonbauweise"	Seite 7 von 106
Tabelle 32	Abwitterungen der Betone, 90d Vorlagerung, CIF (2)	80
Tabelle 33	relative dynamische E-Moduli der Betone, 90d Vorlagerung, CIF (1) 81
Tabelle 34	relative dynamische E-Moduli der Betone, 90d Vorlagerung, CIF (2) 82
Tabelle 35	Abwitterungen der Betone, CDF	83
Tabelle 36	relative dynamische E-Moduli der Betone, CDF	84
Tabelle 37	Ergebnisse der Feinbetonprüfungen mit Hüttensand S1	85
Tabelle 38	Ergebnisse der Feinbetonprüfungen mit unterschiedlichen	
	Hüttensandqualitäten	86
Tabelle 39	Ergebnisse der Betonprüfungen mit Hüttensand S1	87
Tabelle 40	Ergebnisse der Betonprüfungen mit unterschiedlichen	
	Hüttensandqualitäten	87
Tabelle 41	Frischbetoneigenschaften der Betone mit Werkszementen	89
Tabelle 42	Ergebnisse der Druckfestigkeit der Betone mit Werkszementen	90
Tabelle 43	Mess- und Rechenwerte zum Elastizitätsmodul der Betone mit	
	Werkszementen	91
Tabelle 44	Mess- und Rechenwerte zur Spaltzugfestigkeit der Betone mit	
	Werkszementen	92
Tabelle 45	Schwinddehnungen der untersuchten Betone	93
Tabelle 46	Kriechverformung der untersuchten Betone	94
Tabelle 47	Messwerte zur Bestimmung der Karbonatisierungstiefe des Betor	IS
	B050-CEM I 52,5 R	96
Tabelle 48	Messwerte zur Bestimmung der Karbonatisierungstiefe des Betor	IS
	B050-CEM III/A 42,5 N	97
Tabelle 49	Messwerte zur Bestimmung der Karbonatisierungstiefe des Betor	IS
	B050-CEM (50K,30S,20LL)	98
Tabelle 50	Messwerte zur Bestimmung der Karbonatisierungstiefe des Betor	IS
	B040-CEM (35K,30S,35LL)	99
Tabelle 51	Messwerte zur Bestimmung der Karbonatisierungstiefe des Betor	IS
	B035-CEM (20K,30S,50LL)	100
Tabelle 52	Mischungsentwürfe zur Versuchsreihe Robustheit (Anderung des	
	Wassergehalts)	101
Tabelle 53	Mischungsentwurfe zur Versuchsreihe Robustheit (Anderung der	
T . I II. C .	Frischbetontemperatur)	101
labelle 54	Ergebnisse zur Versuchsreihe Robustneit (Anderung des	100
T-1-50	Wassergenalts)	102
i abelle 55	Ergebnisse zur Versuchsreine Robustheit (Anderung der	400
	Frischberontemperatur)	102
Tabelle 56	Ivilschungsentwurfe der bilanzierten Betone	105
i adelle 57	Basisdaten Okobilanzierung	106

2 Abkürzungsverzeichnis

Abkürzung	Erklärung				
1	2				
Bezeichnungen der Zemente und Zementhauptbestandteile					
CEM I 52,5 R	Portlandzement der Firma Spenner Zement GmbH				
CEM I 42,5 N	Portlandzement der Firma Spenner Zement GmbH				
CEM III/A 42,5 N	Hochofenzement der Firma Spenner Zement GmbH				
LL / LL 4200	Kalkstein aus dem Vorkommen Brilon (ca. 4200 cm²/g nach Blaine)				
LL 4800	Kalkstein aus dem Vorkommen Brilon (ca. 4800 cm²/g nach Blaine)				
S1	Hüttensand für Laborzemente mit einer Feinheit von ca. 4800 cm²/g nach Blaine				
S2	Hüttensand für Laborzemente mit einer Feinheit von ca. 3750 cm²/g nach Blaine				
S3	Hüttensand für Laborzemente mit einer Feinheit von ca. 6000 cm²/g nach Blaine				
SW	Hüttensand für Werkszemente mit einer Feinheit von ca. 5000 cm²/g nach Blaine				
Zementbezeichnungen					
CEM (50K,30S1,20LL)	Zement mit 50 M% CEM I, 30 M% Hüttensand S1, 20 M% Kalkstein LL 4200				
Betonbezeichnungen,	/DZ und TU Darmstadt				
B1	Beton mit einem Wasserzementwert von 0,50				
B2	Beton mit einem Wasserzementwert von 0,40				
В3	Beton mit einem Wasserzementwert von 0,35				
B4	Beton mit künstlichen Luftporen und Wasserzementwerten zwischen 0,50 und 0,35				
FB	Feinbeton mit einem Größtkorn von 8 mm, ansonsten Zusammensetzung wie Mörtel				

Tabelle 1Abkürzungsverzeichnis

3 Zusammenfassung

Die Zementproduktion verursacht etwa 5 % der weltweiten von Menschen verursachten CO_2 -Emissionen. Eine weitere Reduzierung dieser CO_2 –Emissionen kann ggf. durch die Verwendung neuer Zemente unter ressourcenschonendem Einsatz von Portlandzementklinker in Kombination mit weiteren Zementhauptbestandteilen erreicht werden.

Eine Möglichkeit, den Klinkergehalt im Zement unter 50 M.-% zu senken (neben den heute bereits gängigen Zementen mit Klinkergehalten in dieser Größenordnung und niedriger – z. B. CEM III/A bzw. CEM III/B), wird in der Kombination der drei Hauptbestandteile Klinker, Kalkstein und Hüttensand sowie einer auf diese Zemente abgestimmten Betontechnologie gesehen. Das Untersuchungsfeld dieses Forschungsvorhabens ist durch einen Klinkergehalt von 20-65 M.-%, Kalksteingehalte von 20-50 M.-% und Hüttensandgehalte zwischen 5 und 45 M.-% gekennzeichnet.

Es wurden Versuche zur Verarbeitbarkeit, zu mechanischen Eigenschaften und Dauerhaftigkeitskennwerten von Betonen mit Labor- und Werkszementen mit unterschiedlichen Kalkstein- und Hüttensandqualitäten und -gehalten durchgeführt. Es konnte gezeigt werden, dass Zemente im Grenzbereich der derzeit vorgesehenen Erweiterung der DIN EN 197-1 vergleichbare Frischbetoneigenschaften, gute mechanische Eigenschaften und, mit Ausnahme des Frost-Tausalz-Widerstandes, sehr gute Dauerhaftigkeitseigenschaften im Rahmen üblicher Betontechnologie aufweisen. Für Zemente deutlich jenseits des Rahmens der derzeit vorgesehenen Erweiterung der DIN EN 197-1 gelten prinzipiell die Erkenntnisse des voranaegangenen Forschungsvorhaben zu Zementen im Zweistoffsystem K-LL: Diese K-S-LL -Zemente sind ebenfalls für die Herstellung von Konstruktionsbeton geeignet, wenn anspruchsvolle verfahrenstechnische Maßnahmen im Zementwerk und ebenso anspruchsvolle betontechnologische Maßnahmen (wasserarmer Beton mit entsprechenden Zusatzmitteldosierungen) in der Betonherstellung beachtet werden. Die Robustheit derartiger Systeme im Baubetrieb bedarf weiterhin einer zusätzlichen Absicherung. Werden die genannten Bedingungen eingehalten, kann die im vorangegangen Forschungsvorhaben definierte Grenze von 50 M.-% Klinker im Zement weiter gesenkt werden. Damit sinken auch das Treibhauspotential sowie der Gesamtenergiebedarf für Herstellung eine m³ Beton:

Die Umweltwirkungen der untersuchten Betone konnten durch Substitution des Portlandzementklinkers mit Hüttensand und Kalkstein weiter verbessert werden. Das Treibhauspotential des Betons mit einem Zement im Grenzbereich der derzeit vorgesehenen Erweiterung der DIN EN 197-1 liegt bei konventionellen betontechnologischen Randbedingungen 30% unter dem Treibhauspotential eines Betons mit EPD Durchschnittszementes. Für Zemente deutlich jenseits des Rahmens der derzeit vorgesehenen Erweiterung der DIN EN 197-1 könnte eine weitere Reduzierung der CO_2 -Emmision erreicht werden: Bei angepassten betontechnologischen Maßnahmen beträgt die Reduzierung des Treibhauspotentials von Betonen mit Zementen mit 35 – 20 M.-% Klinker bis zu 55% gegenüber dem EPD: Durchschnittszement.

4 Einleitung

Die wesentliche Ursache der globalen Erwärmung und der daraus resultierenden nicht abzuschätzenden Folgen liegt nach dem gegenwärtigen wissenschaftlichen Verständnis in der Verstärkung des natürlichen Treibhauseffektes durch menschliches Einwirken. Insbesondere die Anreicherung des Treibhausgases Kohlendioxid (CO₂) in der Atmosphäre sorgt dafür, dass weniger Wärmestrahlung von der Erdoberfläche in das Weltall abgestrahlt werden kann. Neben der globalen Erwärmung zählt die Versauerung der Meere zu den Hauptfolgen der menschlichen Emissionen des Treibhausgases Kohlendioxid.

Die Zementproduktion verursacht etwa 5 % der weltweiten von Menschen verursachten CO₂-Emissionen. Zur Gesamtbetonproduktion in Deutschland gibt es keine statistischen Erhebungen. Die Betonproduktion Deutschlands kann aber beispielsweise aus dem Zementverbrauch (27 Mio. t in 2014) und dem durchschnittlichen Zementgehalt pro m³ Transportbeton (294 kg/m³) zu rd. 92 Mio. m³ pro Jahr oder aus dem Absatz der Transportbetonindustrie (46,8 Mio. m³ in 2014) und dem Anteil Transportbeton an der Gesamtbetonproduktion (rd. 58%) zu 81 Mio. m³ abgeschätzt werden. Unter der Annahme eines mit der Herstellung des Betons verbundenen durchschnittlichen Treibhauspotentials (GWP) von ca. 200 kg CO₂-Äq./m³ entspricht dies einer Umweltwirkung von 17 Mio. t CO₂-Äquivalent pro Jahr. Bei einer Reduzierung des Treibhauspotentials um beispielsweise 20 % ergäbe sich eine Minderung von 3,4 Mio. t CO₂-Äq. pro Jahr allein in Deutschland. Eine Reduzierung der Umweltwirkung von Beton in dieser Größenordnung kann nur durch den Einsatz neuer Zemente unter gezieltem bzw. ressourcenschonendem Einsatz von Portlandzementklinker in Kombination mit weiteren Zementhauptbestandteilen erreicht werden. Wie in [1] gezeigt wurde, sind die reaktiven Hauptbestandteile Hüttensand und Flugasche nur begrenzt verfügbar und werden bereits zum überwiegenden Teil verwendet (Bild 1, Bild 2).

Bild 1 Verfügbarkeit von Hüttensand in Deutschland [2], [3]

Bild 2 Verfügbarkeit von Steinkohlenflugasche in Deutschland [4], [5]

Eine weitere deutliche Reduzierung des Klinkergehalts im Zement und eine damit verbundene CO₂-Minderung könnte ggf. über die Verwendung von Kalkstein als nahezu unbegrenzt

verfügbarem aber inertem Hauptbestandteil erfolgen. Wie im vorangegangen Forschungsvorhaben [6] gezeigt, ist der Einsatz von Kalkstein selbst bei Verwendung einer angepassten Betontechnologie begrenzt. Eine Möglichkeit, den Klinkergehalt im Zement unter 50 M.-% zu senken, wird in der Kombination der drei Hauptbestandteile Klinker, Kalkstein und Hüttensand sowie einer auf solche Zemente abgestimmten Betontechnologie gesehen. Untersuchungen an Kompositzementen aus Klinker-Hüttensand-Kalkstein mit S > 30% wurden Bereits im Rahmen des ECOserve Projektes durchgeführt [7, 8]. Die Betontechnologie wurde allerdings nicht angepasst.

Das Untersuchungsfeld dieses Forschungsvorhabens ist durch einen Klinkergehalt von 20-65 M.-%, Kalksteingehalte von 20-50 M.-% und Hüttensandgehalte zwischen 5 und 45 M.-% gekennzeichnet (vgl. **Bild 3**). Mit diesen Zementen könnte eine weitere Absenkung der CO₂-Emission im Beton um bis zu 60% gegenüber einem Beton mit dem deutschen EPD-Durchschnittszement erreicht werden.

Bild 3 Untersuchungsrahmen, dargestellt im Dreistoffsystem des Zementes, zusammengesetzt aus Portlandzementklinker (K), Hüttensand (S) und Kalkstein (LL)

Die Ergebnisse werden, wie in [6], ökobilanziell bewertet.

5 Versuche und Ergebnisse - Allgemein

5.1 Ausgangsstoffe

5.1.1 Zemente und Zementhauptbestandteile

Es wurden je ein CEM I 52,5 R, ein CEM I 42,5 N und ein CEM III/A 42,5 N als Referenzzemente verwendet (**Tabelle 11** im Anhang). Die Prüfzemente wurden durch getrennte Mahlung und anschließendes Mischen des CEM I 52,5 R mit verschiedenen Hüttensanden sowie Kalkstein hergestellt. Für die Mörtelversuche erfolgte das Mischen der Komponenten im Labor. Die Versuche wurden zunächst mit dem Hüttensand S1 durchgeführt. Ausgewählte Zemente wurden, um die Auswirkungen unterschiedlicher Hüttensandqualitäten zu beurteilen, mit den Hüttensanden S2 und S3 durchgeführt.

Für die Betonversuche wurden werkseitig produzierte Zemente verwendet.

5.1.2 Gesteinskörnung

Für die Mörtelversuche wurde CEN-Normsand mit maximaler Korngröße von 2,0 mm verwendet. Die Betonversuche erfolgten mit praxisüblicher Gesteinskörnung. Neben Rheinsand und Rheinkies kam Quarzmehl (W3) zum Einsatz, um die Verarbeitbarkeit des Frischbetons zu verbessern. Die Sieblinien können **Bild 4** entnommen werden. Die Wasseraufnahme der Gesteinskörnungen wurde bei der Festlegung der der Zugabewassermenge berücksichtigt.

Siebweite in mm	A16/B16
1	2
0,063	0,7
0,125	1,2
0,25	3,9
0,5	14,0
1	22,3
2	32,8
4	44,1
8	69,2
16	96,3
32	100,0

Bild 4 Sieblinien (ist-Werte)

5.1.3 Chemisch mineralogische Zusammensetzung

Die chemische Zusammensetzung der Referenzzemente, der Hüttensande, der Kalksteine sowie der werkseitig produzierten Prüfzemente wurde mit der Röntgenfluoreszenzanalyse, einem Alternativverfahren nach DIN EN 196-2, bestimmt. Die Zementzusammensetzungen sind bezogen auf den sulfatträgerhaltigen Zement angegeben. Der Gesamtgehalt an organischem Kohlenstoff (TOC-Gehalt) des Kalksteins wurde gemäß DIN EN 13639 ermittelt. Der Tongehalt des Kalksteins wurde mit dem Methylenblauverfahren nach DIN EN 933-9 bestimmt. Die Ergebnisse sind in **Tabelle 8** bis **Tabelle 10** im Anhang zusammengestellt.

Die Abweichung zwischen der Sollzusammensetzung und der tatsächlichen Zusammensetzung der Werkszemente lag bei rd. 1 M.-%.

5.1.4 Granulometrie

Die Korngrößenverteilungen der Zementhauptbestandteile und der Zemente wurden mittels Lasergranulometrie (CILAS 1064) bestimmt. **Tabelle 11** sowie **Bild 62** und **Bild 63** im Anhang zeigen die Ergebnisse.

6 Versuche und Ergebnisse – VDZ gGmbH

6.1 Mörteleigenschaften

Die Druckfestigkeit sowohl von Normmörteln als auch von Mörteln mit abweichenden Zementgehalten und Wasserzementwerten wurde nach 2, 7, 28 und 91 Tagen gemäß DIN EN 196-1 an Prismen mit den Abmessungen 40 mm x 40 mm x 160 mm geprüft. Normmörtel mit einem Wasserzementwert von w/z = 0,50 wurden gemäß DIN EN 196-1 prinzipiell ohne die Verwendung von Fließmitteln mit einem Zementgehalt von 450 g je Mischung hergestellt. Mörtel mit einem Wasserzementwert von w/z = 0,40 wurden, um einen konstanten Leimgehalt von rd. 420 l/m³ beizubehalten, mit einem Zementgehalt von 500 g je Mischung hergestellt, Mörtel mit w/z = 0,35 mit 535 g je Mischung. Ein PCE-basiertes Fließmittel wurde verwendet, um ein konstantes Ausbreitmaß von 160 ± 10 mm zu erzielen. Den Fließmittelbedarf und die zugehörigen Ausbreitmaße zeigt **Tabelle 2**.

Seite 14 von 106

Zement	Kürzel	Fließmittelbedarf in % v. Z.		Aus	Ausbreitmaß in mm			
		w/z = 0,50	w/z = 0,40 w/z = 0,35		w/z = 0,50	w/z = 0,40	w/z = 0,35	
1	2	3	4	5	6	7	8	
CEM I 52,5 R	Z1	0,00			134,5			
CEM I 42,5 N	Z2	0,00	nicht hergestellt		143,0	nicht hergestellt		
CEM III/A 42,5 N	Z3	0,00		160,1				
CEM (65K,15S1,20LL)	Z4	0,00	0,30	0,53	158,5	160,0	168,5	
CEM (50K,15S1,35LL)	Z5	0,00	0,25	0,41	160,5	163,0	164,0	
CEM (50K,30S1,20LL)	Z6-1	0,00	0,25	0,41	169,4	158,5	163,0	
CEM (50K,30S2,20LL)	Z6-2	0,00	0,21	0,43	170,5	164,5	168,5	
CEM (50K,30S3,20LL)	Z6-3	0,00	0,23	0,41	159,5	170,0	163,0	
CEM (50K,30SW,20LL)	Z6-W	0,00	0,24	0,40	164,5	161,5	168,0	
CEM (35K,15S1,50LL)	Z7	0,00	0,25	0,33	165,8	160,0	163,5	
CEM (35K,30S1,35LL)	Z8-1	0,00	0,25	0,36	169,5	168,5	169,0	
CEM (35K,30S2,35LL)	Z8-2	0,00	0,21	0,35	157,5	164,5	155,3	
CEM (35K,30S3,35LL)	Z8-3	0,00	0,23	0,33	164,5	170,0	171,0	
CEM (35K,30SW,35LL)	Z8-W	0,00	0,20	0,28	165,5	186,5	169,5	
CEM (35K,45S1,20LL)	Z9	0,00	0,25	0,35	166,5	168,0	161,5	
CEM (20K,30S1,50LL)	Z10-1	0,00	0,17	0,26	164,5	167,0	166,0	
CEM (20K,30S2,50LL)	Z10-2	0,00	0,18	0,27	166,5	164,0	169,5	
CEM (20K,30S3,50LL)	Z10-3	0,00	0,18	0,25	156,0	162,0	165,0	
CEM (20K,30SW,50LL)	Z10-W	0,00	0,18	0,25	173,0	166,0	168,0	
CEM (20K,45S1,35LL)	Z11	0,00	0,20	0,26	177,5	169,5	166,0	
CEM (20K,15S1,65LL)	Z12	0,00	0,17	0,26	167,0	163,5	164,5	

 Tabelle 2
 Fließmittelbedarf und Ausbreitmaß

Die Mörteldruckfestigkeiten sind in **Bild 5** bis **Bild 7** sowie in **Tabelle 12** bis **Tabelle 18** im Anhang dargestellt. Die Festlegung der Zemente, die mit verschiedenen Hüttensandqualitäten hergestellt wurden, erfolgte anhand folgender Kriterien:

- Z6 zeigte in einem Normmörtel mit w/z = 0,50 vergleichbare Festigkeiten wie die Referenzzemente Z2 und Z3 im Normmörtel mit w/z = 0,50. Darüber hinaus stellt Z6 die "Grenzzusammensetzung" zwischen den zukünftig in DIN EN 197-1 genormten Zementen CEM II/C-M (S-LL) und CEM VI sowie dem in Bild 3 rot dargestelltem neuen Zusammensetzungsfeld dar.
- Z8 zeigte in einem Mörtel mit w/z = 0,40 vergleichbare Festigkeiten wie die Referenzzemente Z2 und Z3 im Normmörtel mit w/z = 0,50.
- Z10 weist mit einem Kalksteingehalt von 50 M.-% den in [6] ermittelten maximalen Kalksteingehalt für Zemente auf, die mit angepasster Betontechnologie dauerhafte Betone ergeben können.

Seite 15 von 106

Bild 6 Festigkeitsentwicklung von Mörteln mit w/z = 0,40 (Referenzen mit w/z = 0,50)

Bild 7 Festigkeitsentwicklung von Mörteln mit w/z = 0.35 (Referenzen mit w/z = 0.50)

6.2 Betonversuche

6.2.1 Allgemeines

Für die Betonversuche im VDZ wurden die industriell hergestellten Werkszemente CEM (50K,30S,20LL), CEM (35K,30S,35LL) und CEM (20K,30S,50LL) verwendet. Die Betone wurden nach dem gleichen Prinzip wie die Mörtel hergestellt: Zunächst wurden Referenzbetone entsprechend Tabelle F2.1 bzw. F2.2 der DIN 1045-2 zusammengesetzt. Für die Betone mit den Prüfzementen wurde der Wasserzementwert unter Beibehaltung des Leimgehalts gesenkt und durch die Verwendung von Fließmitteln ein konstantes Ausbreitmaß eingestellt. Bei den Betonen B4 wurde eine niedrigere Konsistenzklasse gewählt, um ein zu starkes Entlüften der künstlich eingebrachten Luftporen zu verhindern. **Tabelle 3** zeigt die Betonrezepturen.

	Beton B1	Beton B2	Beton B3	Beton B4
1	2	3	4	5
Zementgehalt in kg/m ³	320	365	390	320 – 390
Wasserzementwert	0,50	0,40	0,35	0,50 - 0,35
Gehalt an Luftporen in %		keine Vorgabe		$4,5 \pm 0,5$
Leimgehalt inkl. Gesteinskör- nungsanteil <125µm in l/m³	290 ± 5	290 ± 5	290 ± 5	290 ± 5
Konsistenzklasse	F3 - F4	F3 - F4	F3 - F4	F2 - F3

Tabelle 3	Betonrezepturen
	BotonnoLoptanon

Seite 17 von 106

Beton B4 wurde mit den Referenzzementen sowie CEM (50K,30S,20LL) mit einen Wasserzementwert w/z = 0,50 und einem Zementgehalt von 320 kg/m³ hergestellt. Für den Beton B4 mit CEM (35K,30S,35LL) wurden 365 kg/m³ Zement und ein Wasserzementwert w/z = 0,40 verwendet. Für den Beton B4 mit CEM (20K,30S,50LL) wurden 390 kg/m³ Zement und ein Wasserzementwert w/z = 0.35 verwendet.

6.2.2 Frischbetoneigenschaften

Direkt nach Mischende wurde die Frischbetontemperatur T_f gemessen. Direkt bzw. 10 Minuten nach Mischende wurden die Konsistenz des Frischbetons anhand des Ausbreitmaßes a nach DIN EN 12350-5, der Luftgehalt LP mittels Druckausgleichsverfahren im Luftporentopf nach DIN EN 12350-7 und die Frischbetonrohdichte pf nach DIN EN 12350-6 bestimmt. Die Ergebnisse zeigen Bild 8 und Bild 9 sowie Tabelle 19 im Anhang.

Bei allen Betonen konnten mindestens die Zielkonsistenzen erreicht werden. Mit sinkendem Wasserzementwert sowie steigendem Klinkergehalt der Versuchszemente stieg der Fließmit-

6.2.3

Betondruckfestigkeit

telbedarf.

Die Betondruckfestigkeit der Betone B1 bis B3 wurde nach DIN EN 12390-3 im Alter von 1, 7, 28 und 91 Tagen an Würfeln mit der Kantenlänge 150 mm bestimmt. Die Betondruckfestigkeit der Betone B4 wurde im Alter von 28 Tagen bestimmt. Die Probekörper wurden entsprechend DIN EN 12390-2:2001-06, Anhang NA zunächst 24 Stunden in den Formen vor Zugluft und Austrocknung geschützt bei einer Lufttemperatur von (20 ± 2) °C gelagert. Nach 24 Stunden wurden die Probekörper entformt und 6 Tage in einem Wasserbad mit (20 ± 1) °C gelagert. Im Alter von 7 Tagen wurden die Probekörper aus dem Wasserbad entnommen und bis zur Prüfung bei einer Temperatur von (20 ± 2) °C und einer relativen Luft-

Seite 18 von 106

feuchtigkeit von (65 \pm 5) % gelagert. Die Ergebnisse zeigen Bild 10 und Bild 11 sowie Tabelle 20 und Tabelle 21 im Anhang.

Druckfestigkeitsentwicklung der Betone B1 bis B3

Der Beton B1 mit CEM (50K,30S,20LL) zeigt vergleichbare Festigkeiten wie die Betone B1 mit Referenzzementen. Mit weiter abnehmendem Klinkergehalt sinkt die Festigkeit zu allen Prüfzeitpunkten erwartungsgemäß.

Der Beton B2 mit CEM (35K,30S,35LL) bzw. der Beton B3 mit CEM (20K,30S,50LL) weisen etwas höhere Festigkeiten auf als die Referenzbetone. Die Festigkeit eines Betons ist jedoch kein hinreichendes Merkmal für die Dauerhaftigkeit.

6.2.4 Chlorideindringwiderstand

Der Widerstand des Betons gegenüber eindringenden Chloriden wurde mit Hilfe eines Schnellverfahrens (Migrationstest: [9], [10]) ermittelt.

Der Chlorideindringwiderstand wurde an den Betonen B1 bis B3 geprüft. Die Probekörper (Würfel 150 mm) zur Bestimmung des Migrationskoeffizienten wurden 1 d abgedeckt in der Schalung und anschließend bis zur Prüfung bei einer Temperatur von (20 ± 1) °C unter Wasser gelagert. Im Alter von 28 bzw. 91 Tagen wurde jeweils aus der Mitte eines Würfels ein Zylinder mit einem Durchmesser von 100 mm herausgebohrt. Aus jedem Zylinder wurde ein Prüfkörper mit einer Höhe von 50 mm herausgesägt. Die Prüfkörper wurden weiter unter Wasser gelagert. Die Prüfergebnisse im Alter von 35 Tagen bzw. 98 Tagen zeigen **Bild 12** sowie **Tabelle 22** im Anhang.

Bild 12 Chlorideindringwiderstand der Betone B1 bis B3

Alle Betone mit Prüfzementen weisen unabhängig vom Wasserzementwert sehr niedrige Chloridmigrationskoeffizienten – d.h. sehr hohe Widerstände gegen das Eindringen von Chloriden – auf. Damit konnte eine wesentliche Schwäche der in [6] untersuchten Zemente,

die ausschließlich Kalkstein als weiteren Hauptbestandteil enthielten, beseitigt werden. 30 M.-% Hüttensand waren bei den im Forschungsvorhaben untersuchten Zementen, unabhängig vom Verhältnis Klinker zu Kalkstein, ausreichend, um einen hohen Chlorideindringwiderstand für Anwendungen z. B. im Wasserbau sicherstellen zu können.

6.2.5 Karbonatisierung

Die Karbonatisierungstiefe wurde an Feinbetonprismen mit den Abmessungen 40 mm x 40 mm x 160 mm und einer Sieblinie A8/B8 durchgeführt. Dies entspricht den Randbedingungen in Zulassungsverfahren des Deutschen Instituts für Bautechnik (DIBt) für Zemente. Mörtel mit einem Wasserzementwert von w/z = 0,50 wurden ohne die Verwendung von Fließmitteln mit einem Zementgehalt von 450 g je Mischung hergestellt. Mörtel mit einem Wasserzementwert von w/z = 0,40 wurden, um einen konstanten Leimgehalt beizubehalten, mit einem Zementgehalt von 500 g je Mischung hergestellt, Mörtel mit w/z = 0,35 mit 535 g je Mischung. Jeweils die Hälfte der Prismen wurde 7 Tage in Wasser mit einer Temperatur von (20 ± 1) °C vorgelagert, die andere Hälfte lagerte 28 Tage in Wasser mit einer Temperatur von (20 ± 1) °C. Anschließend lagerten die Probekörper bei einer Temperatur von (20 ± 2) °C und einer relativen Feuchte von (65 ± 5) %. Die Karbonatisierungstiefen nach 140 Tagen Lagerung dienen der Einordnung in die Ergebnisse früherer Zulassungsprüfungen, die in [11] veröffentlicht wurden (vgl. **Bild 37**).

Zur Prüfung der Karbonatisierungstiefe wurden von jeweils drei Probekörpern ca. 30 - 50 mm lange Stücke abgespalten und mit Phenolphtaleinlösung besprüht. Nach rd. 24 Stunden wurden die Karbonatisierungstiefen jeder Seite der abgespalteten Stücke gemäß DIN EN 14630 ermittelt und die mittlere Karbonatisierungstiefe wurde berechnet. Die Eckbereiche blieben unberücksichtigt.

Des Weiteren wurde jeweils nach der Wasserlagerung die Druckfestigkeit gemäß DIN EN 196-1 bestimmt.

Die Ergebnisse sind in **Bild 13** bis **Bild 20** sowie in **Tabelle 23** bis **Tabelle 26** im Anhang dargestellt.

Seite 21 von 106

Bild 19 Karbonatisierungstiefen von Feinbetonen nach 140d Hauptlagerung

Bild 20 Druckfestigkeit von Feinbetonen nach 7d bzw. 28d Vorlagerung

Der Feinbeton mit CEM (50K,30S,20LL) zeigt vergleichbare Festigkeiten und Karbonatisierungstiefen wie die Feinbetone mit Referenzzementen. Mit weiter abnehmendem Klinkergehalt sinken die Festigkeit und der Karbonatisierungswiderstand zu allen Prüfzeitpunkten erwartungsgemäß.

Der Feinbeton mit CEM (35K,30S,35LL) und einem Wasserzementwert von w/z = 0,40 bzw. der Feinbeton mit CEM (20K,30S,50LL) und einem Wasserzementwert von w/z = 0,35 weisen etwas höhere Festigkeiten aber vergleichbare Karbonatisierungswiderstände auf wie die Referenzbetone.

6.2.6 Frostwiderstand

Der Frostwiderstand von Betonen wurde mittels des CIF-Verfahrens gemäß CEN/TR 15177 bestimmt. Für die Untersuchungen zum Frostwiderstand wurden je Beton 10 Probekörper mit den Abmessungen 150 mm x 110 mm x 70 mm hergestellt. Je 5 Probekörper wurden 24 Stunden in den Formen vor Zugluft und Austrocknung geschützt bei einer Lufttemperatur von (20 ± 2) °C, 6 Tage unter Wasser bei (20 ± 1) °C (Vorlagerung) und anschließend 21 Tage bei einer Temperatur von (20 ± 2) °C und einer relativen Feuchte von (65 ± 5) % gelagert. 2 bis 7 Tage vor Beendigung dieser Trockenlagerung wurden die Seitenflächen der Probekörper mit Aluminiumfolie mit Butylklebung abgedichtet. Im Alter von 28 Tagen begann das 7tägige kapillare Saugen der Probekörper.

Je 5 weitere Probekörper wurden 24 Stunden in den Formen vor Zugluft und Austrocknung geschützt bei einer Lufttemperatur von (20 ± 2) °C gelagert, 27 Tage unter Wasser bei (20 ± 1) °C (Vorlagerung) und anschließend 63 Tage bei einer Temperatur von (20 ± 2) °C

und einer relativen Feuchte von (65 ± 5) % gelagert. 2 bis 7 Tage vor Beendigung dieser Trockenlagerung wurden die Seitenflächen der Probekörper mit Aluminiumfolie mit Butylklebung abgedichtet. Im Alter von 90 Tagen begann das 7tägige kapillare Saugen der Probekörper.

Im Anschluss an das kapillare Saugen wurden 56 Frost-Tauwechsel durchgeführt. Die Abwitterung und der relative dynamische E-Modul wurden bestimmt. Die Ergebnisse zeigen **Bild 21** bis **Bild 26** als Mittelwerte von je 5 Prüfkörpern sowie **Tabelle 27** bis **Tabelle 34** im Anhang.

Bild 21 Abwitterung und rel. dyn. E-Modul von Betonen mit Wasserzementwerten w/z = 0,50; 28d Vorlagerung

Bild 22 Abwitterung und rel. dyn. E-Modul von Betonen mit Wasserzementwerten w/z = 0,40 (Referenzen mit w/z = 0,50); 28d Vorlagerung

Bild 23 Abwitterung und rel. dyn. E-Modul von Betonen mit Wasserzementwerten w/z = 0,35 (Referenzen mit w/z = 0,50); 28d Vorlagerung

Bild 24 Abwitterung und rel. dyn. E-Modul von Betonen mit Wasserzementwerten w/z = 0,50; 90d Vorlagerung

Bild 25 Abwitterung und rel. dyn. E-Modul von Betonen mit Wasserzementwerten w/z = 0,40 (Referenzen mit w/z = 0,50); 90d Vorlagerung

Bild 26 Abwitterung und rel. dyn. E-Modul von Betonen mit Wasserzementwerten w/z = 0,35 (Referenzen mit w/z = 0,50); 90d Vorlagerung

Beim Frostangriff ohne Einwirkung von Taumitteln ist bei nicht geeigneten Ausgangsstoffen bzw. nicht geeigneter Betonzusammensetzung i. d. R. hauptsächlich mit einer inneren Gefügeschädigung zu rechnen. Diese kann gemäß [10] durch den relativen dynamischen E-Modul beschrieben werden.

Bild 21 zeigt, dass die Prüfzemente bei Verwendung im Beton B1 keinen ausreichenden Frostwiderstand aufwiesen. Eine Absenkung des Wasserzementwertes auf w/z = 0,40 führte zu einer deutlich geringeren Abnahme des relativen dynamischen E-Moduls. Der Beton mit CEM (50K,30S,20LL) liegt unterhalb des Grenzwertes. Bei einer weiteren Absenkung des

Wasserzementwertes auf w/z = 0,35 liegen auch die Betone mit CEM (35K,30S,35LL) und CEM (20K,30S,50LL) unterhalb des Grenzwertes.

Eine Verlängerung der Vorlagerungszeit kann durch die Erhöhung der Hydratationsgrades und damit des dichteren Gefüges zu einer Verbesserung des Frostwiderstandes beitragen (vgl. **Bild 21** bis **Bild 23** mit **Bild 24** bis **Bild 26**).

6.2.7 Frost-Tausalzwiderstand

Der Frost-Tausalzwiderstand von Betonen wurde mittels des CDF-Verfahrens gemäß DIN EN 12390-9 bestimmt. Für die Untersuchungen zum Frostwiderstand wurden je Beton 5 Probekörper mit den Abmessungen 150 mm x 110 mm x 70 mm hergestellt. Die Probekörper wurden 24 Stunden in den Formen vor Zugluft und Austrocknung geschützt bei einer Lufttemperatur von (20 ± 2) °C gelagert, 6 Tage unter Wasser bei (20 ± 1) °C (Vorlagerung) und anschließend 21 Tage bei einer Temperatur von (20 ± 2) °C und einer relativen Feuchte von (65 ± 5) % gelagert. 2 bis 7 Tage vor Beendigung dieser Trockenlagerung wurden die Seitenflächen der Probekörper mit Aluminiumfolie mit Butylklebung abgedichtet. Im Alter von 28 Tagen begann das 7tägige kapillare Saugen der Probekörper in 3 %iger Natriumchlorid-Lösung.

Im Anschluss an das kapillare Saugen wurden 28 Frost-Tauwechsel in 3 %iger Natriumchlorid-Lösung durchgeführt. Die Abwitterung und der relative dynamische E-Modul wurden bestimmt. Die Ergebnisse zeigen **Bild 27** als Mittelwerte von je 5 Prüfkörpern sowie **Tabelle 35** und **Tabelle 36** im Anhang.

Bild 27 Abwitterung und rel. dyn. E-Modul von Betonen im CDF-Versuch

Beim Frost-Tausalzangriff ist bei nicht geeigneten Ausgangsstoffen bzw. nicht geeigneter Betonzusammensetzung i. d. R. hauptsächlich mit Abwitterung zu rechnen.

Bild 27 zeigt, dass die Prüfzemente in den gewählten Betonrezepturen keinen ausreichenden Frost-Tausalz-Widerstand aufwiesen. Der verwendete Referenzzement CEM III/A 42,5 N

zeigte jedoch einen ähnlichen Abwitterungsverlauf. Durch eine Verlängerung der Vorlagerung, ggf. nicht unter Wasser sondern in Folie eingeschweißt, um den Sättigungsgrad nicht zu erhöhen, könnte zur Verbesserung des Frost-Tausalz-Widerstandes beitragen.

7 Versuche und Ergebnisse – TU Darmstadt

7.1 Allgemeines

Um mehrere Laborzemente mit unterschiedlichen K-S-LL- und w/z-Wert-Kombinationen zu untersuchen, wurden zunächst im Rahmen der Vorversuche verschiedene Feinbetone (Größtkorn 8 mm) und Normalbetone (Größtkorn 16 mm) systematisch analysiert. Verarbeitbarkeit, Druckfestigkeit und die Dauerhaftigkeit hinsichtlich Karbonatisierung wurden untersucht (Abschnitt 7.2).

In Abschnitt 7.3 werden die Ergebnisse zu umfangreichen Prüfungen an Betonen aus drei Werkszementen mit unterschiedlichen K-S-LL-Verhältnissen und zwei Referenzzementen (CEM I 52,5 R und CEM III/A 42,5 N) dargestellt. Die Betone mit den neuen Werkszementen sollten mit den Betonen mit Referenzzementen vergleichbare Frisch- und Festbetoneigenschaften aufweisen. Im Abschnitt 7.4 wird das Tragverhalten von Bauteilen mit den ausgewählten Betonen dargestellt.

7.2 Vorversuche an Feinbetonen und Betonen aus Laborzementen

7.2.1 Versuche an Feinbeton

Ausbreitmaß, Druckfestigkeit (nach 7 und 28 Tagen) und Karbonatisierungswiderstand (nach 140 Tagen und 1 Jahr) wurden an Feinbetonproben aus Laborzementen untersucht. An jedem Prüftermin wurden zwei jeweils $40 \times 40 \times 160$ mm³ Prismen geprüft. Die Proben wurden nach einem Tag ausgeschalt und danach 6 Tage im Wasser gelagert. Anschließend wurden die Proben bis zum Prüftermin im Klimaraum bei 20 ± 1 °C und einer rel. F. von 65% gelagert. Die CO₂-Konzentration des Klimaraums betrug 0,04 Vol.-%. Abweichend von EN 196-1 enthalten die Proben Gesteinskörnungen mit einem Größtkorndurchmesser von 8 mm und weisen Wasserzementwerte von w/z = 0,50, w/z = 0,40 bzw. w/z = 0,35 auf. Der Leimgehalt der Proben wurde dabei konstant gehalten. Der Zementgehalt als Summe aller Hauptbestandteile wurde entsprechend von 450 g auf 500 g (w/z = 0,40) bzw. 535 g (w/z = 0,35) erhöht. Als Gesteinskörnungen wurden je Mischung 675 g Rheinsand 0/2 mm und 675 g Rheinkies 2/8 mm verwendet. **Tabelle 4** zeigt die Mischungszusammensetzung und die Randbedingung der hergestellten Feinbetone.

Nachfolgend werden ausgewählte Ergebnisse dargestellt. Die umfassende Darstellung aller Ergebnisse erfolgt im Anhang (**Tabelle 37** und **Tabelle 38**).

Seite 28 von 106

Feinbeton	FB1 FB2 FB3		FB3
1	2	3	4
Zementgehalt [g]	450	500	535
Wasserzementwert [-]	0,50	0,40	0,35
Zugabewasser [g]	225 200 187		187
Leimgehalt inkl. Gesteinskörnungsanteil <125µm [ml]		375 ± 10	
Sand 0-2/Kies 2-8 mm [g]		675/675	
Ausbreitmaß nach DIN EN 1015-3 [mm]	170 ± 20 mm		

 Tabelle 4
 Feinbetonrezepturen

7.2.1.1 Ausbreitmaß der Feinbetone

Für die Feinbetonproben mit w/z = 0,40 und w/z = 0,35 wurden zur Einstellung eines konstanten Ausbreitmaßes zwei PCE-basierte Fließmittel (LZF und ACE 391) eingesetzt. Die zeitabhängigen Ausbreitmaße (nach 10, 30 und 60 min) gemäß DIN EN 1015-3 sind in **Bild 28** dargestellt.

Bild 28 Ausbreitmaße der Feinbetone mit Hüttensand S1

7.2.1.2 Druckfestigkeit der Feinbetone

Bild 29 zeigt die Druckfestigkeiten der Feinbetone aus verschiedenen Laborzementen mit Hüttensand S1 nach 7 und 28 Tagen. Die Ergebnisse der 7- und 28d-Druckfestigkeit der Feinbetone aus ausgewählten Laborzementen (Z6, Z8 und Z10) mit unterschiedlichen Hüttensanden (S1, S2 und S3) sind in **Bild 30** abgebildet.

Seite 29 von 106

Bild 29 7- und 28d-Druckfestigkeit der Feinbetone mit Hüttensand S1

Bild 30 7- und 28d-Druckfestigkeit der Feinbetone mit Hüttensanden S1, S2 und S3

7.2.1.3 Karbonatisierungswiderstand der Feinbetone

Die Messung zur Karbonatisierungstiefe erfolgte nach 140 Tagen sowie nach einem Jahr Auslagerungsdauer mit Hilfe des Phenolphthalein-Indikators. Die Karbonatiserungstiefen der Feinbetone mit Hüttensand S1 sowie der Referenzfeinbetone sind in **Bild 31** dargestellt. Die Ergebnisse zu den Karbonatisierungstiefen der Feinbetone mit ausgewählten Laborzementen (Z6, Z8 und Z10) mit unterschiedlichen Hüttensanden S1, S2 und S3 nach 140 d und 1 a sind in **Bild 32** abgebildet.

Bild 31 Karbonatisierungstiefe der Feinbetone mit Hüttensand S1

7.2.2 Versuche an Beton

7.2.2.1 Frischbetoneigenschaften

Betone mit der Betonrezeptur B1 (w/z = 0,50) und den Referenzzementen (CEM I 52,5 R, CEM I 42,5 N und CEM III/A 42,5 N) sowie Betone der Betonrezeptur B3 mit w/z = 0,35 und allen Laborzementen Z1 bis Z12 (inkl. Beton B2 mit Zement Z8) wurden hergestellt. Die Feinheit des Kalksteins (Kalkstein 4200 und 4800), die Hüttensandqualität (S1-S3) sowie Art

des Fließmittels (ACE 391, LZF und BT3) wurden variiert. **Tabelle 5** zeigt die Mischungszusammensetzung und die Randbedingung der hergestellten Betone.

Beton	B1 B2		B3
1	2	3	4
Zementgehalt [kg/m³]	320	365	390
Wasserzementwert [-]	0,50	0,40	0,35
Leimgehalt inkl. Gesteinskörnungsanteil <125µm [l/m³]	290 ± 5	290 ± 5	290 ± 5
Quarzsand W3 [kg/m³]	67		
Rheinsand 0-2/Kies 2-8/Kies 8/16 mm [kg/m³]	513/475/836		
Ausbreitmaß nach DIN EN 12350-5 [mm]	450 bis 550		

	Tabelle 5	Betonrezepturen
--	-----------	-----------------

Die zeitabhängigen Ausbreitmaße wurden, in Anlehnung an DIN EN 12350-5, in Zeitabständen von 15, 30 und 60 min nach Wasserzugabe geprüft und die Frischbetontemperatur aufgezeichnet. Die plastische Viskosität des Frischbetons wurde 15 Minuten nach der Wasserzugabe mittels ICAR-Betonrheometer analysiert. Für die Betone mit den Prüfzementen wurde der Wasserzementwert bei konstantem Leimgehalt gesenkt und durch die Verwendung von drei PCE-basierten Fließmitteln (LZF, ACE 391 und BT3) ein konstantes Ausbreitmaß 550 ± 30 mm eingestellt. Die Mahlfeinheit des Kalksteinmehls (Kalkstein LL 4200 und LL 4800) sowie die Hüttensandqualität (S1, S2 und S3) wurden variiert. Die Ergebnisse zum Ausbreitmaß und Fließmittelbedarf sowie zur plastischen Viskosität der Betone B1 und B3 mit Fließmittel ACE 391 und Kalkstein LL 4200 sind in **Bild 33** bzw. **Bild 34** dargestellt und mit der Verarbeitbarkeitsgrenze aus [12] verglichen. Eine detaillierte Darstellung der Ergebnisse ist in **Tabelle 39** und **Tabelle 40** des Anhangs enthalten.

Bild 33 Ausbreitmaß und Fließmittelbedarf der Betone mit Hüttensand S1

Seite 32 von 106

7.2.2.2 Betondruckfestigkeit

Die Druckfestigkeit der Betone B1, B2 und B3 mit unterschiedlichen Zementzusammensetzungen mit Hüttensand S1 wurden nach 2, 7 und 28 Tagen geprüft. Exemplarisch wurde der Einfluss der Hüttensandqualität für drei verschiede Zemente (Z6, Z8 und Z10) mit w/z-Werten von 0,50, 0,40 bzw. 0,35 analysiert. **Bild 35** sowie die im Anhang dargestellte **Tabelle 39** und **Tabelle 40** zeigen die gemittelten Ergebnisse (je drei 150 x 150 mm³ Würfel).

Bild 35 Druckfestigkeitsentwicklung der Betone B1 und B3

Bild 64 im Anhang zeigt einen linearen Zusammenhang zwischen Fein- und Normalbetondruckfestigkeit bei gleicher Lagerungsbedingung und Mischungsammensetzung (K-S-LL Kombinationen und w/z-Wert). Eine direkte Übertragbarkeit der Druckfestigkeiten von Feinbetonproben auf Normalbetonproben ist möglich.

7.2.3 Diskussion der Ergebnisse

Bild 36 stellt die Ergebnisse der Druckfestigkeit und des Karbonastierungswiderstandes der Feinbetone gegenüber. Erkennbar ist, dass der Karbonatisierungswiderstand bei steigender Druckfestigkeit zunimmt. Bei gleichbleibender Druckfestigkeit zeigen jedoch die Feinbetone mit Portlandzement kleinere Karbonatisierungstiefen, als die Proben mit hüttensand- und kalksteinhaltigen Zementen.

Die Ergebnisse aus den Abschnitten 7.2.1 und 7.2.2 zeigen, dass die Frischbetoneingeschaften, die Druckfestigkeit und der Karbonatisierungswiderstand des Betons mit Z6 (CEM (50K, 30S, 20LL)) mit einem w/z-Wert von 0,50 alle Anforderungen erfüllen bzw. einem Referenzbeton aus CEM III/A gleichwertig sind. Dieser Zement wird in die zukünftige Zementnorm EN 197-1 mit aufgenommen [13]. Es ist festzulegen, dass eine weitere Abminderung des Klinkergehalts (als ein Ziel des Vorhabens) nur bei gleichzeitiger Absenkung des w/z-Wertes möglich ist. Mit reduzierten w/z-Werten von 0,40 bzw. 0,35 zeigen die Zemente Z8 und Z10 (K = 35% bzw. 20% v. Z.) eine ausreichende Leistungsfähigkeit (hier hinsichtlich plastischer Viskosität, Druckfestigkeit und Karbonatisierungswiderstand (vgl. **Bild 37**).

Die Druckfestigkeit der (Fein-)betone mit im Werk produzierten Zementen war deutlich höher als die der (Fein-)betone mit Laborzementen gleicher Zusammensetzung (siehe **Bild 55**). Da Druckfestigkeit und Karbonatisierungswiderstand beide von der Gefügedichtigkeit abhängen, ist auch der Karbonatisierungswiderstand von (Fein-)betonen mit Werkszementen höher.

Bild 36 Zusammenhang zwischen der Druckfestigkeit und dem Karbonatisierungswiderstand der untersuchten Feinbetone

7.3 Prüfungen an Betonen mit Werkszementen

7.3.1 Allgemeines

Auf Grundlage der Vorversuche mit Laborzementen wurden Betone mit drei verschiedenen Werkszementen und unterschiedlichen Klinkergehalten (50%, 35% und 20% v. Z.) hergestellt und deren Eigenschaften geprüft. Die Wasserzementwerte betrugen 0,50, 0,40 bzw. 0,35. Um die Betoneigenschaften bewerten zu können, wurden auch Referenzbetone mit CEM I 52,5 R und CEM III/A 42,5 N jeweils mit Wasserzementwerten von 0,50 untersucht. Eine detaillierte Mischungszusammensetzung der Betone für die Hauptversuche ist in **Tabel-Ie 6** dargestellt.

	levaliten betollegenschalten					
			Beton B1		Beton B2	Beton B3
Mis	chung	B050-CEM I	B050-CEM III/A	B050-CEM	B040-CEM	B035-CEM
		52,5 R	42,5 N	(50K,30S,20LL)-W	(35K,30S,35LL)-W	(20K,30S,50LL)-W
	1	2	3	4	5	6
It	Art	CEM I 52,5 R	CEM III/A 42,5 N	CEM (50/20/30)	CEM (35/35/30)	CEM (20/50/30)
Jer	Gesamtgehalt [kg/m3]	320	320	320	365	390
Zen	Klinker [kg/m³]	320	160	160	128	78
	Kalkstein [kg/m ³]	0	0	64	128	195
	Hüttensand [kg/m ³]	-	160	96	110	117
w/z·	Wert [-]	0,50	0,50	0,50	0,40	0,35
Wa	ssergehalt [kg/m³]	160	160	160	146	136,5
Fließmittel ACE391 [kg/m ³]		1,76	0,82	0,58	1,20	1,44
Zen	nentleim [l/m ³]			270 ± 5		
Qua	arzsand W3 [kg/m³]			67		
Rhe	einsand [kg/m³]			513		
Rhe	einkies 2/8 [kg/m ³]			475		
Rhe	einkies 8/16 [kg/m³]			836		

Tabelle 6	Mischungsentwürfe der Betone mit Werkszementen für die Prüfung der bemessungsre-
	levanten Betoneigenschaften

7.3.2 Frischbetoneigenschaften

Die Konsistenz des Betons wurde 10, 30 und 60 Minuten nach der Wasserzugabe mittels Ausbreitversuch nach DIN EN 12350-5:2009 bestimmt. Die Ergebnisse zum Ausbreitmaß und zum Luftporengehalt sind in **Bild 38** abgebildet.

Erkennbar ist, dass die Mischungen mit w/z > 0,35, ausgehen von einem Ausbreitmaß a_{15} > 450 mm Ausbreitmaße von mehr als 300 mm nach 60 min erreichen konnten. Für den Beton B3 mit w/z = 0,35 wurde ein signifikanter Abfall des Ausbreitmaßes bis auf 250 mm beobachtet.

Bild 39 zeigt die Ergebnisse zur plastischen Viskosität und Fließmitteldosierung der untersuchten Betone mit Werkszementen. Aus **Bild 39** wird ersichtlich, dass mit abnehmendem Wasserzementwert eine Erhöhung der plastischen Viskosität einhergeht. Festgestellt wurde eine hohe plastische Viskosität von Beton B3 mit w/z = 0,35, knapp über der Verarbeitbarkeitsgrenze. Alle anderen Betone mit klinkereffizienten Zementen besitzen eine akzeptable plastische Viskosität im Vergleich zu den Referenzbetonen.

Seite 35 von 106

7.3.3 Druckfestigkeitsentwicklung und Arbeitslinie

Die Druckfestigkeit der Betone wurde im Alter von 2, 7, 28 und 91 Tagen geprüft. Es wurden für jeden Prüftermin 3 Würfel mit 150 mm Kantenlänge nach DIN EN 12390-3 hergestellt (bzw. 6 Probekörper für die Bestimmung der 28 Tage Druckfestigkeit). Die Würfel wurden entsprechend DIN EN 12390-2 einen Tag in der Form belassen, bis zum 7. Tag unter Wasser gelagert und anschließend bis zum jeweiligen Prüfalter bei einer Temperatur von etwa 20 °C und 65 % r. F. gelagert.

Die Untersuchung zur Bestimmung der Spannungs-Dehnungs-Linie erfolgte 28 Tage nach der Probenherstellung. Es wurden je Betonmischung 3 Betonzylinder mit einem Durchmesser von 150 mm und einer Höhe von 300 mm geprüft. Die Belastungsgeschwindigkeit betrug 0,075 mm/min.

Der Beton mit CEM I hat die höchste 28 Tage Festigkeit und weist zudem eine hohe Frühfestigkeit auf. Durch den latent hydraulischen Hüttensand verlangsamt sich die Festigkeitsentwicklung der Betone. Die Betone mit kalksteinhaltigen Zementen haben bei abgestimmten Wasserzementwert ähnliche Festigkeitswerte. Der geringere Klinkergehalt des Zements wird durch den verringerten w/z-Wert kompensiert. Alle Betone mit klinkereffizienten Zementen und abgestimmten Wasserzementwerten haben eine vergleichbare Festigkeitsentwicklung sowie Spannungs-Dehnungs-Beziehung im Vergleich zum Referenzbeton mit CEM III/A.

7.3.4 Spaltzugfestigkeit und Elastizitätsmodul

Ergebnisse zur Prüfung des E-Moduls nach DIN 1048-5:1991-06 und zur Spaltzugfestigkeit nach DIN EN 12390-5:2009-07 sind in **Bild 42** und **Bild 43** dargestellt. Die Prüfungen erfolgten im Betonalter von 28 Tagen. Der E-Modul und die Spaltzugfestigkeit der Betone lagen im zu erwartenden Bereich.

Bild 43

Darstellung der Spaltzugfestigkeit
7.3.5 Kriechen und Schwinden

Die Schwind- und Kriechmessungen an Zylindern mit den Abmessungen $\emptyset = 158$ mm, h = 300 mm wurden in Anlehnung an DAfStb-Heft 422, Abschnitt 2.6 [14] an je 2 Zylindern durchgeführt. Die Probekörper wurden nach dem Betonieren einen Tag in der Schalung belassen, danach bis zum 7. Tag unter Wasser und anschließend bei einer Temperatur von 20 °C und einer relativen Luftfeuchte von (65 ± 2) % gelagert. Die Schwindmessungen wurden nach 6 Tagen Wasserlagerung, sowie 1, 3, 7, 14, 28, 56, 84, 112, 140 und 168 Tagen nach Auslagerung durchgeführt. Die Kriechmessungen erfolgten unmittelbar nach der Belastung, 2 Stunden sowie 1, 2, 7, 14, 28, 51, 56, 83, 111 und 140 Tage nach Belastung.

Für die Verformungsmessungen wurden auf der Mantelfläche der Zylinder mittig vier 150 mm lange Messstrecken auf jeweils um 90° gegeneinander versetzten Mantellinien angeordnet. Die verwendeten Probekörper inklusive der Messstellen, das Messverfahren sowie die Lagerungsbedingungen entsprechen denen der Schwindversuche. Die Kriechspannung von $\sigma_u = 1/3 f_{c,cyl}$ (aus **Bild 41**) wurde im Alter von 28 Tagen aufgebracht.

Die gemessenen Schwinddehnungsverläufe sind in Bild 44 (sowie **Tabelle 45** im Anhang) dargestellt. Man erkennt ein ausgeprägtes Quellen des Betons mit Hochofenzement während der Wasserlagerung. Da der Beton mit CEM I das größte Schwindmaß hat, ist davon auszugehen, dass sich Kalkstein und Hüttensand positiv auf das Schwindverhalten auswirken. Da das Schwindmaß des Betons B050-CEM (50K,30S,20LL)-W bei gleichem w/z-Wert größer ist als das Schwindwerhalten günstiger auswirken kann als Kalkstein. Bei Anpassung des w/z-Wertes auf 0,35 entspricht der Beton mit CEM (20K,30S,50LL)-W dem Referenzbeton mit CEM III/A.

Die gemessenen Kriechdehnungsverläufe sind in **Bild 45** (sowie **Tabelle 46** im Anhang) dargestellt. Es handelt sich um die reinen Kriechverkürzungen - elastischen Verkürzungen und Schwindverkürzungen sind nicht enthalten. Die Verkürzungen beziehen sich auf die Erstmessung unmittelbar nach dem Belastungsbeginn. Da der Beton mit CEM I das größte Kriechmaß hat, ist davon auszugehen, dass sich Kalkstein und Hüttensand positiv auf das Kriechverhalten auswirken. Beim Vergleich von B050-CEM III/A und B050-CEM (50K,30S,20LL)-W kann aufgrund des gleichen w/z-Wertes festgestellt werden, dass sich Hüttensand etwas günstiger auf das Kriechverhalten auswirkt als Kalkstein. Bei Anpassung des w/z-Wertes auf 0,40 bzw. 0,35 wirkt Kalkstein wie Hüttensand.

Ein Vergleich zwischen den Mess- und Rechenwerten der Schwind- und Kriechverformungen der untersuchten Betone ist in **Bild 65** und **Bild 66** im Anhang dargestellt. Hier ist ersichtlich, dass alle Messwerte der Betone mit den neu entwickelten Zementen unterhalb der Rechenwerte liegen, wobei die Unterschreitung bei den Kriechverformungen deutlicher ausfällt.

7.3.6 Karbonatisierungswiderstand

Die mittleren Karbonatisierungstiefen nach 28 und 56 Tagen Lagerung bei erhöhter CO₂-Konzentration von 2 Vol.-% sowie die zugehörigen Druckfestigkeiten sind im **Bild 46** dargestellt. Der Beton B1 mit CEM I weist mit Abstand die niedrigsten Karbonatisierungstiefen auf und hat somit den größten Karbonatisierungswiderstand. Die Karbonatisierungswiderstände des Hochofenzementes sowie die der Betonmischung B050-CEM (50K,30S,20LL)-W befinden sich auf einem ähnlichen Niveau.

Eine kleinere Karbonatisierungstiefe im Vergleich zu anderen Betonen mit klinkereffizienten Zementen wurde bei Beton B040-CEM (35K,30S,35LL)-W festgestellt. Bei dem Beton mit dem geringsten Klinkergehalt (B035-CEM (20K,30S,50LL)-W) ist die Karbonatisierungstiefe am Größten.

Bild 46 Mittlere Karbonatisierungstiefen

7.3.7 Robustheit

Anhand experimenteller Untersuchungen sollte quantifiziert werden, inwieweit sich die Variation des Wassergehaltes ($\Delta w = -10$, 0, +10 und +20 l/m³) und der Frischbetontemperatur (T = 10, 20 und 30 °C) auf den Fließmittelbedarf, die Verarbeitbarkeit, die Druckfestigkeit und den Karbonatisierungswiderstand auswirken. Dabei wurden die Untersuchungen sowohl an Betonen mit zwei klinkereffizienten Zementen als auch am Referenzbeton mit CEM III/A 42,5 N durchgeführt. Die Mischungszusammensetzungen für diese Versuchsreihe sind in **Tabelle 52** und **Tabelle 53** des Anhangs zusammengefasst. Bei der Variation des Wassergehaltes wurde durch angepasste Fließmitteldosierung ein Ausbreitmaß von ca. 500 mm eingestellt.

In der Versuchsreihe mit variierter Frischbetontemperatur wurden alle Ausgangstoffe inkl. Zugabewasser in einer Klimakammer bei jeweiliger Zieltemperatur gelagert. Die Proben wurden nach der Betonherstellung (mit temperierten Ausgangsstoffen) 24 Stunden in der Klimakammer bei vorgegebener Solltemperatur gelagert. Anschließend wurden die Proben ausgeschalt und bei 20°C bis zur Prüfung in Wasser gelagert.

Der Einfluss auf die Druckfestigkeit wurde durch die Prüfung der 2- und 28-Tage-Druckfestigkeit an Würfeln mit 150 mm Kantenlänge untersucht. Zur Beurteilung der Verarbeitbarkeit wurde die zur Einstellung des Ausbreitmaßes benötigte Menge an Fließmittel, das zeitabhängige Ausbreitmaß und die plastische Viskosität herangezogen. Der Einfluss auf die Dauerhaftigkeit gegenüber karbonatisierungsinduzierter Bewehrungskorrosion wurde durch die Messung der Karbonatisierungstiefe (Lagerung bei 20 °C, rel. F von 65 % und erhöhter CO₂-Konzentration von 2 Vol.-%) quantifiziert.

Die Ergebnisse zum Ausbreitmaß, zur plastischen Viskosität, zur Druckfestigkeit und zum Karbonatisierungswiderstand sind in Abhängigkeit des Wassergehaltes in **Bild 47** bis **Bild 49** zusammengestellt. Den Einfluss der Betontemperatur verdeutlichen **Bild 50** bis **Bild 52**. Es kann beobachtet werden, dass die Druckfestigkeit der Betone mit kalksteinhaltigen Zementen sensibler auf die Änderung des Wassergehaltes reagieren, als die Druckfestigkeit des Referenzbetons mit CEM III/A. Gleiches gilt für die Karbonatisierungstiefe. Im Gegensatz zur Änderung des Wassergehaltes beeinflusst die Variation der Frischbetontemperatur den Fließmittelbedarf nur in geringem Maße. Der Einfluss der Frischbetontemperatur auf die Konsistenzhaltung und plastische Viskosität war ebenfalls gering. Die Ursache für die geringe 28-d Druckfestigkeit des Betons B050-CEM-(50K,30S,20,LL) bei 30 °C ist unklar.

Die Einzelmesswerte der durchgeführten Versuche sind in **Tabelle 54** und **Tabelle 55** des Anhangs enthalten.

Bild 47 Ausbreitmaß und plastische Viskosität in Abhängigkeit des Wassergeh-

Bild 49 Karbonatisierungstiefe in Abhängigkeit des Wassergehaltes

Bild 50 Ausbreitmaß und plastische Viskosität in Abhängigkeit der Frischbetontemperatur

Bild 48 Druckfestigkeit und Luftporengehalt in Abhängigkeit des Wassergehaltes

Bild 51 Druckfestigkeit und Luftporengehalt in Abhängigkeit der Frischbetontemperatur

Seite 40 von 106

Bild 52 Karbonatisierungstiefe in Abhängigkeit der Frischbetontemperatur

7.4 Traglastversuche an Bauteilen

Nach der Ermittlung der bemessungsrelevanten Festbetoneigenschaften wurde auch das Verhalten bewehrter Betonprobekörper untersucht. Aus der Referenzmischung B050-CEM III/A und den Mischungen mit klinkereffizienten Zementen B050-CEM (50K,30S,20LL)-W, B040-CEM (35K,30S,35LL)-W und B035-CEM (20K,30S,50LL)-W wurden bewehrte und unbewehrte Betonbalken mit den Maßen 150 x 150 x 700 mm³ hergestellt. Die Bewehrungspläne der Balken sind im Anhang dargestellt (vgl. **Bild 67** bis **Bild 69** im Anhang). Zweck der unterschiedlichen Bewehrungsführung war es, für jede Betonmischung alle relevanten Versagensmechanismen zu erzeugen. Die Balken vom Typ II wurden mit einer schwachen Längsbewehrung versehen, die Balken vom Typ III mit einer starken Längsbewehrung. Typ IV wurde mit einer starken Längsbewehrung und einer Bügelbewehrung hergestellt.

Mit den Mittelwerten der Materialparameter und der einwirkenden Kraft wurden die Bauteilversuche nach DIN EN 1992-1-1 nachgerechnet. Die Messwerte der Bauteilprüfungen und die berechneten Versagenslasten sind in **Tabelle 7** gegenübergestellt. Die Rechenwerte für die Bauteile aus Referenzbeton und den Betonen aus den entwickelten klinkereffizienten Zementen stimmen gut mit den gemessenen Werten überein. Allerdings wiesen die Bauteile des Typ III eine unerwartete hohe Tragfähigkeit aus. Weiterhin zeigten die geprüften Bauteile das erwartete Versagensverhalten (außer Bauteil Typ III aus CEM III/A). Die Rissbildung und die Versagensart der untersuchten bewehrten Balken sind im **Bild 53** zu sehen.

Patan	Тур	gemessene Maximallast		Rechnerische Traglast für		Ausnutzungsgrad		
Beton		Biegung [kN]	Querkraft [kN]	Biegung [kN]	Querkraft [kN]	Biegung [%]	Querkraft [%]	
1	2	3	4	5	6	7	8	
B050-CEM III/A 42,5 N		25	13	24	22	104	57	
B050-CEM (50K,30S,20LL)-W	ш	26	13	24	23	105	57	
B040-CEM (35K,30S,35LL)-W		26	13	24	23	105	57	
B035-CEM (20K,30S,50LL)-W		25	13	24	21	104	59	
B050-CEM III/A 42,5 N		74	37	71	28	104	132	
B050-CEM (50K,30S,20LL)-W	ш	67	33	71	28	94	118	
B040-CEM (35K,30S,35LL)-W	111	68	34	71	28	96	121	
B035-CEM (20K,30S,50LL)-W		72	36	71	27	102	133	
B050-CEM III/A 42,5 N		154	77	131	184	118	42	
B050-CEM (50K,30S,20LL)-W	N7	146	73	131	187	112	39	
B040-CEM (35K,30S,35LL)-W	IV	146	73	131	187	112	39	
B035-CEM (20K,30S,50LL)-W		141	71	131	187	108	38	

 Tabelle 7
 Gegenüberstellung der gemessenen und rechnerischen Traglasten

Fett: Ausnutzungsgrad bei maßgebendem Versagenskriterium

Bild 53 Rissbildung und Versagensart der untersuchten bewehrten Balken

8 Vergleich der Ergebnisse

8.1 Vergleich zwischen den Forschungsstellen

Die Versuche im Forschungsvorhaben wurden so auf die Forschungsstellen verteilt, dass möglichst wenige Prüfungen doppelt durchgeführt werden mussten. So wurden mit den Laborzementen im VDZ im Wesentlichen Mörtel gemäß bzw. in Anlehnung an DIN EN 196-1 (Größtkorn 2 mm) geprüft, während an der TUDA Feinbetone mit einem Größtkorn von 8 mm bzw. Betone mit einem Größtkorn von 16 mm geprüft wurden.

Mit den drei Werkszementen wurden beim VDZ Betone mit jeweils Wasserzementwerten geprüft, während an der TUDA als Ergänzung zu den umfangreichen Untersuchungen an Betonen mit Laborzementen lediglich 3 Werkzement – Wasserzementwert – Kombinationen untersucht. In diesem Arbeitspaket sind entsprechend Prüfungen zur Betondruckfestigkeit

vorhanden, die an beiden Prüfstellen durchgeführt wurden. **Bild 54** zeigt, dass die Druckfestigkeiten zu späteren Prüfzeitpunkten beim VDZ bis zu 20 % höher sind als bei der TUDA. Gründe dafür können in den unterschiedlichen Gesteinskörnungen bzw. in deren Verwendung liegen: Beim VDZ werden Gesteinskörnungen kernfeucht und oberflächentrocken eingesetzt. Die TUDA verwendet ofentrockene Gesteinskörnungen und gibt die dem Wasseranspruch der Gesteinskörnung entsprechende Wassermenge dem Zugabewasser hinzu.

Bild 54 Vergleich der Betondruckfestigkeiten TUDA / VDZ

8.2 Vergleich zwischen Labor- und Werkszementen

Die Betonversuche der TUDA bzw. die Mörtelversuche des VDZ ermöglichen einen direkten Vergleich zwischen der Leistungsfähigkeit der Labor- und der Werkszemente. **Bild 55** zeigt, dass bei Verwendung eines Hüttensandes vergleichbarer Feinheit (S1 und Sw) die Mörtel und Betone mit Werkszementen im Mittel um rd. 23 -25 % höhere Festigkeiten aufweisen.

Betonversuche TUDA

Mörtelversuche VDZ

Bild 55 Vergleich der Druckfestigkeiten Laborzemente / Werkszemente

9 Ökobilanzierung

9.1 Grundlagen Nachhaltigkeitsbewertung

Eine Nachhaltigkeitsbewertung von Gebäuden beinhaltet nach den in CEN/TC 350 ("Sustainability of Construction Works") entwickelten europäischen Normen eine Bewertung der umweltbezogenen, der sozialen und der ökonomische Qualität. Die technische und funktionale Qualität steht in einer Wechselbeziehung zu der umweltbezogenen, sozialen und ökonomischen Qualität und wird daher für eine Bewertung der Nachhaltigkeit eines Gebäudes ebenfalls berücksichtigt (vgl. **Bild 56**, in Anlehnung an [15])

Bild 56 Definition "Nachhaltiges Bauen" des DGNB [15]

In Deutschland wurde in einer zweijährigen kooperativen Zusammenarbeit des Bundesministeriums für Verkehr, Bau und Stadtentwicklung (BMVBS) mit der Deutschen Gesellschaft für Nachhaltiges Bauen e. V. (DGNB) ein System zur ganzheitlichen Betrachtung und Bewertung von Nachhaltigkeitsaspekten für Gebäude entwickelt. Hieraus entwickelten sich zwei Zertifizierungssysteme, das Bewertungssystem Nachhaltiges Bauen für Bundesgebäude (BNB) sowie das Zertifizierungssystem der DGNB. Beide Systeme berücksichtigen ökologische, ökonomische, soziale und technische Kriterien.

9.1.1 Die Methodik der Ökobilanzierung

Die Ökobilanz nach DIN EN ISO 14040 und 14044 [16, 17], die als Untersuchungsmethode für das vorliegende Forschungsvorhaben herangezogen wurde, dient der Abschätzung der mit einem Produkt verbundenen Umweltaspekte und produktspezifischen potenziellen Umweltwirkungen.

Ein Produkt kann hierbei eine Ware (wie z. B. ein Fertigteil oder eine Betonsorte), ein verfahrenstechnisches Hilfsmittel (wie z. B. Schalöl oder das Thermoöl für die Wärmebehandlung) oder eine Dienstleistung (wie z. B. ein Transportprozess) sein.

Die Methode der Ökobilanz besteht nach DIN EN ISO 14040 bzw. DIN EN ISO 14044 aus den nachfolgenden Arbeitsschritten, die in **Bild 57** dargestellt sind:

- Festlegung des Ziels der Ökobilanz und des Untersuchungsrahmens
- Sachbilanz
- Wirkungsabschätzung
- Auswertung

Die einzelnen Schritte beeinflussen sich gegenseitig und können nicht getrennt voneinander betrachtet werden. Im Folgenden werden die einzelnen Bestandteile bzw. Phasen einer Ökobilanz detailliert erläutert.

9.1.2 Phasen einer Ökobilanz

Der erste Arbeitsschritt der Ökobilanz besteht nach DIN EN ISO 14040 aus den zwei Teilabschnitten "Festlegung des Ziels" und "Festlegung des Untersuchungsrahmens". Die "Festlegung des Ziels" umfasst hierbei Angaben zu den Gründen der Durchführung der Ökobilanz sowie eine Definition des Adressaten der Untersuchung. Der ebenfalls festgelegte Untersuchungsrahmen besteht aus Angaben zur Systemgrenze, der funktionellen Einheit und Informationen zur Datenqualität. Die Systemgrenze definiert sich hierbei als der technische und geografische Erfassungsraum der Daten, sowie der Zeitraum über den die Ökobilanz erstellt wird. Idealerweise ist die Systemgrenze so gewählt, dass an ihren Grenzen nur noch Elementarflüsse als Input oder Output auftreten. Die Sicherstellung der Vergleichbarkeit von zwei oder mehreren Ökobilanzen erfordert die Festlegung einer funktionellen Einheit. Sie ist die Größe auf die alle Input- und Outputströme bezogen werden. Vergleichbar sind zwei Ökobilanzen, wenn sie die gleiche Funktion erfüllen oder denselben Nutzen erzeugen und die identische Systemgrenze haben.

In der im zweiten Arbeitsschritt der Ökobilanz zu erstellenden Sachbilanz werden die Daten der Input- und Outputströme des Produktsystems gesammelt und quantifiziert. In ihr wird ein Bezug zwischen den Energie- sowie Stoffverbräuchen und der funktionellen Einheit hergestellt. Die Sachbilanz stellt die Grundlage für die spätere Wirkungsabschätzung dar.

Bild 57 Vorgehensweise bei einer Ökobilanzierung nach DIN EN ISO 14040 und 14044 [16, 17]

Im Arbeitsschritt "Wirkungsabschätzung" werden aus den in der Sachbilanz zusammengetragenen Daten potentielle Umweltauswirkungen abgeleitet. Hierzu werden die einzelnen aus der Sachbilanz resultierenden Stoff- und Energieströme spezifischen, für die Untersuchung ausgewählten Kriterien zugeordnet (Klassifizierung) und gemäß ihres Beitrags zur mit dem Kriterium verbundenen Umweltwirkung gewichtet (Charakterisierung). Mögliche Kriterien einer Ökobilanz sind im folgenden Abschnitt dargestellt.

In dem die Ökobilanz abschließenden Arbeitsschritt "Auswertung" werden die Ergebnisse der Studie dargestellt. Zudem erfolgt eine Beurteilung der Güte der Ökobilanz durch die Prüfung auf Vollständigkeit, Sensitivität und Konsistenz. Kontrolliert wird zudem die Übereinstimmung der Ergebnisse mit dem in Arbeitsschritt 1 definierten Ziel, sowie dem Untersuchungsrahmen der Ökobilanz. Der Arbeitsschritt enthält zudem Schlussfolgerungen, Erläuterungen von Einschränkungen und Empfehlungen für das weitere Vorgehen.

Um die Umweltwirkungen eines Baustoffs bzw. Bauwerks beschreiben und quantifizieren zu können, werden im Rahmen der Ökobilanz verschiedene ökologischen Kriterien herangezogen. Die genaue Definition der üblichen Kriterien, beispielsweise Treibhauspotential oder Primärenergiebedarf, können beispielsweise in [6] nachgelesen werden.

9.2 Durchgeführte Ökobilanzierung

9.2.1 Allgemein

Im folgendem Kapitel werden die Umweltwirkungen der im Forschungsprojekt entwickelten Zemente und Betone berechnet und grafisch dargestellt. Für die Berechnungen wurde auf die Basisdaten der Software GaBi 5 des Netzwerks Lebenszykluskosten (Datenprojekt Zement) [18] und die EPD für den deutschen Durchschnittszement (VDZ) zugegriffen [19]. Für die Bewertung der Zemente und Betone wurden die Transportwege vom Werk zum Abnehmer vernachlässigt.

9.2.2 Bilanzierung der Zemente

In den folgenden Diagrammen sind das Treibhauspotential, der Gesamtenergiebedarf (Primärenergie (erneuerbar und nicht erneuerbar) zuzüglich Energie aus Sekundärbrennstoffen) und Relativwerte weiterer Wirkungskategorien für übliche Portlandzemente und Zemente mit verschieden hohen Kalkstein- und Hüttensandgehalten dargestellt (**Bild 58** und **Bild 59**). Diese Betrachtung erfolgte unabhängig von der Zementleistungsfähigkeit. Es wird deutlich, dass die Werte aller Wirkungskategorien bei einer Substitution des Zementklinkers durch Kalkstein und Hüttensand signifikant reduziert werden können. Der Unterschied im Gesamtenergiebedarf (**Bild 58**) zwischen dem deutschen Durchschnittszement und den GaBi-Daten resultiert aus der aktuelleren Datenerhebung des EPD- Zements. In der Zeit zwischen der Erhebung der beiden Datensätze haben sich sowohl die Einsatzmengen an Sekundärbrennstoffen in der Zementindustrie, als auch der durchschnittliche Energiemix in Deutschland signifikant verändert. Bei der Ökobilanzierung des Hüttensands wurde eine ökonomische Allokation (0,114 kg CO_{2-äqiv}/kg Hüttensand) nach [20] berücksichtigt.

Bild 58 Treibhauspotential und Gesamtenergiebedarf der analysierten Zemente mit und ohne Allokation

9.2.3 Bilanzierung der Betone

Im Gegensatz zur Bewertung der Zemente wurde bei der Betonbewertung die jeweilige Leistungsfähigkeit (Druckfestigkeit und Dauerhaftigkeit) berücksichtigt. Betone (mit ähnlicher Druckfestigkeit und Leistungsfähigkeit) mit klinkereffizienten Zementen wurden mit Referenzbetonen sowie einem im vorangegangenen Forschungsvorhaben entwickelten Beton mit kalksteinreichem Zement (B035-CEM (50K,0S,LL50)) verglichen. In **Bild 60** und **Bild 61** sind die Ergebnisse zur Ökobilanzierung der Betone mit vergleichbarer Leistungsfähigkeit bezüglich Druckfestigkeit und Dauerhaftigkeit dargestellt. Vergleichbare Ergebnisse gegenüber den Referenzbetonen hinsichtlich ihres Chlorideindringwiderstandes zeigten die Betone B050 CEM (50K,30S,20LL)-W, B040 CEM (35K,30S,35LL)-W und B035 CEM (20K,30S,50LL)-W (vgl. Kapitel 7.2 und 7.2.3).

Die 28 Tage Betondruckfestigkeiten der analysierten Betone betragen 65 ± 10 N/mm. Die Mischungsentwürfe sowie die Basisdaten der Ökobilanzierung sind in **Tabelle 56** und **Tabelle 57** des Anhangs zusammengestellt.

Im Vergleich mit dem Beton mit EPD Durchschnittszement ergibt sich eine Minderung des GWP von ca. 35% bei Verwendung des Betons B050-CEM (50K,30S,20LL)-W. Größere Einsparungen bis zu 40% und 55% können bei der Verwendung der Betone B040-CEM (35K,30S,35LL)-W und B035-CEM (20K,30S,50LL)-W erreicht werden. Gegenüber dem Referenzbeton mit CEM I 42,5 R wurde eine maximale Verringerung des GWP um bis zu 61% beim Beton B035-CEM (20K,30S,50LL)-W erreicht. Allerdings erreichen die Verarbeitbarkeit (plastische Viskosität) und die Dauerhaftigkeit hinsichtlich Karbonatisierungswiderstand nicht die zuvor definierten Anforderungen.

Bild 60 Treibhauspotential der untersuchten Betone aus Werkszementen

Bild 61 Gesamtenergiebedarf der untersuchten Betone aus Werkszementen

Seite 49 von 106

Abschlussbericht "Reduzierung der Umweltwirkung der Betonbauweise"

10 Technische Bewertung der Ergebnisse

Die Versuche haben gezeigt, dass sich Zemente aus dem in **Bild 3** gezeigten Bereich neuer K-S-LL – Zemente prinzipiell zur Herstellung von Konstruktionsbetonen eignen.

Zemente im Grenzbereich der derzeit vorgesehenen Erweiterung der DIN EN 197-1 sind dabei für Zementhersteller von besonderem Interesse: Diese Zemente weisen im Vergleich zu bisher im Markt etablierten Zementen vergleichbare Frischbetoneigenschaften, gute mechanische Eigenschaften und, mit Ausnahme des Frost- und Frost-Tausalz-Widerstandes, sehr gute Dauerhaftigkeitseigenschaften im Rahmen üblicher Betontechnologie auf. Werden solche Zemente unter Beachtung einer chemisch-mineralogischen sowie granulometrischen Optimierung und der im Zementwerk sichergestellten Qualitätsüberwachung produziert, könnten sie vergleichsweise einfach im Markt platziert werden. Ein Hindernis stellt der in weiteren Optimierungsschritten sicherzustellende Frost- und Frost-Tausalz-Widerstand dar.

Für Zemente deutlich jenseits des Bereichs der derzeit vorgesehenen Erweiterung der DIN EN 197-1 gelten prinzipiell die Erkenntnisse des vorangegangenen Forschungsvorhaben zu Zementen im Zweistoffsystem K-LL: Diese K-S-LL - Zemente sind ebenfalls für die Herstellung von Konstruktionsbeton geeignet, wenn anspruchsvolle verfahrenstechnische Maßnahmen im Zementwerk und ebenso anspruchsvolle betontechnologische Maßnahmen (wasserarmer Beton mit entsprechenden Zusatzmitteldosierungen) in der Betonherstellung beachtet werden. Die Robustheit derartiger Systeme im Baubetrieb bedarf weiterhin einer zusätzlichen Absicherung. Werden die genannten Bedingungen eingehalten, kann die im vorangegangen Forschungsvorhaben definierte Grenze von 50 M.-% Klinker im Zement weiter gesenkt werden. Damit sinken auch das Treibhauspotential sowie der Gesamtenergiebedarf für Herstellung eines Kubikmeters Beton (vgl. Bild 60 und Bild 61).

11 Ökobilanzielle Bewertung der Ergebnisse

Die hergestellten Betone mit den neu entwickelten Zementen weisen mit den Referenzbetonen vergleichbare Frisch- und Festbetoneigenschaften sowie Dauerhaftigkeitskennwerte auf bzw. erfüllen die definierten Grenzwerte. Eine Ausnahme bilden der Frost- und Frost-Tausalz-Widerstand. Aufgrund der begrenzten Verfügbarkeit des Hüttensandes wurde dessen Maximalgehalt in den Werkszementen auf 30 M.-% festgelegt.

Die Umweltwirkungen der untersuchten Betone konnten durch Substitution des Portlandzementklinkers mit Hüttensand (reaktive Komponente) und Kalksteinmehl (inerte Komponente) signifikant abgesenkt werden. Das Treibhauspotential des Betons mit CEM (50K,30S,20LL) liegt bei konventionellen betontechnologischen Randbedingungen 30% unter dem Wert des Betons mit EPD Durchschnittszement.

Bei angepassten betontechnologischen Maßnahmen (granulometrische Optimierung der Zementkomponenten sowie Absenkung des w/z-Wertes) könnte eine weitere Reduzierung der CO₂-Emmision erreicht werden; bei B035-CEM (20K,30S,50LL) bis zu 55% gegenüber dem EPD-Durchschnittszement (vgl. **Bild 60**). Die gleiche Tendenz (aber in geringerer Größenordnung aufgrund des Energiebedarfs zur Mahlung des Hüttensandes) gilt für den Gesamtenergiebedarf (vgl. **Bild 61**). Der Beton B040-CEM (35K,30S,35LL) wies sowohl eine hohe Leistungsfähigkeit in allen technischen Kriterien als auch eine günstige Umweltwirkung auf. Das Treibhauspotential (mit Allokation) reduzierte sich hier auf 147 kgCO_{2-äqiv}/m³.

Insgesamt wurden die im Projektantrag formulierten Ziele zur Verringerung der relevanten Umweltwirkungen (Treibhauspotential, siehe Abbildung 12 im Antrag) erreicht.

12 Ökonomische Bewertung der Ergebnisse

Für die Fa. Spenner Zement ergeben sich durch das Forschungsvorhaben ökonomische Vorteile sowohl durch eine kurzfristige Umsetzung der Erkenntnisse im Rahmen der Herstellung bisher praxisüblicher Zemente als auch ggf. mittelfristig weitere Vorteile durch die Einführung neuer Zemente auf Basis veränderter Betontechnologie.

Der CEM (50K, 30S, 20LL) liegt im Grenzbereich der derzeit vorgesehenen Erweiterung der DIN EN 197-1 zwischen CEM II/C-M (S-LL) und CEM VI. Dieser Zement hat sich als sehr leistungsstark erwiesen. Sowohl die Verarbeitungseigenschaften, als auch die Festigkeitsentwicklung und die Dauerhaftigkeit mit Ausnahme der Versuche zum Frost- und Frost-Tausalz-Widerstand entsprechen den Eigenschaften bisher marktüblicher Zemente. Dabei weist dieser Zement einen geringen Klinkergehalt, einen moderaten Hüttensandgehalt und den nach der derzeit vorgesehenen Erweiterung der DIN EN 197-1maximalen Kalksteingehalt auf. Der Zement müsste hinsichtlich des Frost- und Frost-Tausalz-Widerstand werksseitig noch optimiert werden, beispielswiese durch eine geringfügige Anhebung des Klinkeranteils bzw. eine Erhöhung der Mahlfeinheit des Klinkers bzw. des Hüttensandes. Der Zement könnte dann – nach Vorliegen entsprechender bauordnungsrechtlicher Nachweise (allgemeine bauaufsichtliche Anwendungszulassung oder Europäische Technische Bewertung) – in das Produktportfolio der Firma Spenner Zement aufgenommen werden.

Durch eine Erhöhung des Anteils an weiteren Hauptbestandteilen kann pro produzierter Tonne Klinker mehr Zement hergestellt werden. Da die Zuteilung von CO_2 – Zertifikaten für ein Zementwerk auf Basis der Klinkerproduktion erfolgt, ergeben sich weitere wirtschaftliche Vorteile durch die Markteinführung neuer, leistungsfähiger Zemente mit geringeren Klinkergehalten.

13 Umsetzung der Ergebnisse bei der Firma Spenner Zement

Die Firma Spenner Zement ist bestrebt, den Klinkerfaktor des Produktportfolios möglichst gering zu halten. Derzeit werden – neben Portlandzement – Zemente mit Hüttensand oder Kalkstein als weiterem Hauptbestandteil produziert. Die Firma Spenner Zement hat durch das Mahlwerk in Duisburg Zugriff auf bisher ausreichende Mengen an Hüttensand, um diese Strategie zu verfolgen. Es ist jedoch nicht abzusehen, wie sich die Verfügbarkeit von Hüttensand sowohl in der benötigten Menge als auch der benötigten Qualität zukünftig in Deutschland entwickeln wird: So sind die Betreiber von Hochöfen beispielsweise bestrebt, ihren Rohstoffen einen definierten Anteil an Titandioxid zuzugeben, um die Hochofenreise (Betriebsdauer eines Hochofens zwischen zwei Neuzustellungen oder Wartungszyklen) zu verlängern. Dieser Titandioxidgehalt findet sich im Hüttensand wieder und senkt üblicherweise die Leistungsfähigkeit des Hüttensands bzw. damit hergestellter Zemente.

Die Ergebnisse dieses Forschungsvorhabens versetzen Spenner Zement in die Lage, auf zukünftige Entwicklungen in der deutschen Stahlindustrie zu reagieren: CEM II/B-M (S-LL), CEM II/C-M (S-LL) oder CEM VI-Zemente können auf Basis der Erkenntnisse des Forschungsvorhabens mit im Vergleich zu CEM III Zementen geringeren Hüttensandgehalten produziert werden. Durch die Kombination mit Kalkstein kann der Klinkerfaktor des Produktportfolios konstant gehalten oder sogar gesenkt werden.

Das Forschungsvorhaben hat des Weiteren zu Erkenntnissen geführt, welche Parameter relevant sind, um geeignete Klinker für Zemente im Dreistoffsystem K-S-LL zu produzieren. Der Klinker, der derzeit bei Spenner Zement für einen CEM I 52,5 R verwendet wird, ist hierfür geeignet. Ggf. müssen zur Sicherstellung des Frostwiderstandes von klinkereffizienten CEM II/C-M (S-LL) oder CEM VI-Zementen noch einige Optimierungen vorgenommen werden.

Die Firma Spenner Zement überlegt – auch auf Basis der Ergebnisse dieses und des vorangegangen Forschungsvorhabens – das gesamte Mühlenkonzept zu überarbeiten. Derzeit laufen Technikumsversuche zur Produktion von Portlandzement bzw. der Klinkerkomponente für Kalkstein- oder Hochofenzemente in einer Vertikalmühle, die momentan ausschließlich für die Produktion von Hüttensand verwendet wird.

Generell hat das Forschungsvorhaben gezeigt (**Bild 55**), dass Zemente im Zementwerk mit besserer Leistungsfähigkeit bei gleicher Zementzusammensetzung produziert werden können als im Labor. Grund dafür sind im vorliegenden Fall die genaue Kenntnis über die chemisch-mineralogischen sowie granulometrischen Eigenschaften der Zementbestandteile in Verbindung mit einer optimierten Mischtechnik sowie ein hohes Maß an Qualitätssicherung als begleitende Maßnahme.

14 Literatur

- V. Hoenig, K. Koring, P. Fleiger, C. Müller und S. Palm, "Energieeffizienz bei der Zementherstellung – Teil 1," *Cement International*, 2013 (in Vorbereitung).
- [2] Institut für Baustoff-Forschung e.V. (FEhS), "Report," Duisburg, 2011, 18. Jahrgang, Nr.1.
- [3] Institut für Baustoff-Forschung e.V. (FEhS), persönliche Mitteilung, Juli 2012.
- [4] Backes, H.-P., Brandenburger, D., Meißner, M., "Flugasche Verfügbarkeit, Logistik, Potential," 2011.
- [5] VGB Powertech e.V., persönliche Mitteilung, Juli 2012.
- [6] W. Neufert, S. Palm, T. Proske, S. Hainer, M. Rezvani, I. Reuken, K. Severins, G. Weber, C. Müller und C.-A. Graubner, "Reduzierung der Umweltwirkung der Betonbauweise durch neuartige Zemente und daraus hergestellter Betone unter Verwendung hinreichend verfügbarer Ausgangsstoffe, vorläufiger Abschlussbericht," Deutsche Bundesstiftung Umwelt, 2013.
- [7] E. C. i. S. o. S. E. NETWORK, "Cluster 2: Production and application of blended cements".
- [8] ECOserve NETWORK, Blended cements-The sustainable solution for the cement and concrete industry in Europe.
- [9] L. Tang, Chloride Transport in Concrete Measurement and Prediction, Göteborg, Chalmers University of Technology: Diss., 1996.
- [10] Bundesanstalt für Wasserbau, Chlorideindringwiderstand von Beton, BAW-Merkblatt "Chlorideindringwiderstand", 2004.
- [11] CEN/TC 104, "CEN/TR 16563:2013: Principles of the equivalent durability procedure (Verfahrensgrundsätze zum Nachweis gleichwertiger Dauerhaftigkeit)," 2013.
- [12] T. Proske, M. Rezvani, S. Hainer und C.-A. Graubner, "Highly workable eco-friendly concretes – Influence of constituents on the rheological properties," In: Proceedings of the 1st International RILEM Conference on Rheology and Processing of Construction Materials and the 7th RILEM Conference on Self-Compacting Concrete, Paris, France, 2013.
- [13] "DIN EN 197-1: Zement Teil 1: Zusammensetzung, Anforderungen und Konformitätskriterien von Normalzement; Deutsche Fassung prEN 197-1:2014," 2014.
- [14] D. A. f. Stahlbeton, "Prüfung von Beton, Empfehlungen und Hinweise als Ergänzung zu DIN 1048-Heft 422," 1991.

[15] DIN EN 15643-1: Nachhaltigkeit von Bauwerken – Bewertung der Nachhaltigkeit von Gebäuden – Teil 1: Allgemeine Rahmenbedingungen, Berlin: DIN Deutsches Institut für Normung e. V., 2010.

[16] "DIN EN ISO 14040: 2006-10; Umweltmanagement - Ökobilanz - Grundsätze und Rahmenbedingungen," Beuth Verlag, Beril, 2006.

[17] "DIN EN ISO 14044: 2006-10; Umweltmanagement - Ökobilanz - Anforderungen und Anleitungen," Beuth Verlag, Berlin, 2006.

[18] S. Nemuth und J. Kreißig, "Datenprojekt Zement im Netzwerk Lebenszykluskosten," PE International, 2007.

[19] Verein Deutscher Zementwerke e.V, Institut Bauen und Umwelt e.V., *Umwelt Produktdeklaration des Vereins Deutscher Zementwerke e.V.– Zement,* März 2012.

[20] C. Chen, G. Habert, Y. Bouzidi, A. Jullien und A. Ventura, "LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete," *Resources, Conservation and Recycling,* Bd. 54, pp. 1231-1240, 2010.

[21] Verein Deutscher Zementwerke e.V., "Zement-Taschenbuch," 2008.

[22] M. Rezvani, P. Ramge, T. Proske und C.-A. Graubner, "Rheology of water reduced Ecofriendly concretes – Rheologie wasserreduzierter Ökobetone," in Tagungsband der 22. Workshop und Kolloquium Rheologische Messungen an Baustoffen, Regensburg, 2013.

[23] "Fib-Bulletin 55: Model Code 2010, Final Draft – Volume 1," 2010.

[24] DIN EN 1992 - Eurocode 2: Design of concrete structures, Berlin: DIN Deutsches Institut für Normung e. V., 2011.

[25] "Fib Bulletin 34: Model Code for Service Life Design," February, 2006.

[26] H. Weigler und S. Karl, Handbuch für Beton-, Stahlbeton- und Spannbeton – Beton – Arten, Herstellung, Eigenschaften, Ernst & Sohn Verlag, 1989.

[27] S. Hainer, T. Proske und C.-A. Graubner, "Vorhersagemodell für die Carbonatisierung von zementreduzierten Ökobetonen," in *18. Internationale Baustofftagung (ibausil)*, Bauhaus-Universität Weimar, 2012.

[28] DIN EN 15643-2: Nachhaltigkeit von Bauwerken – Bewertung der Nachhaltigkeit von Gebäuden – Teil 2: Rahmenbedingungen für die Bewertung der umweltbezogenen Qualität, Berlin: DIN Deutsches Institut für Normung e. V., 2010.

[29] Deutscher Ausschuss für Stahlbeton, "Schlussberichte zur ersten Phase des DAfStb/BMBF-Verbundvorhabens "Nachhaltig Bauen mit Beton-Heft 572," Beuth Verlag, Berlin, 2007.

Seite 56 von 106

15 Unterschriften

e, M. 05.2016

nner zei Dent Gmb Co. ach 1126

Rechtsverbindliche Unterschrift und Stempelabdruck

Spenner Zement GmbH & Co. KG

02.09.2016 Ort, Datum

VDZ gGn Tannenstraße 3, 40476 Düsseldorf Postfach 30 10 ø3, 40410 Düsseldorf

Rechtsverbindliche Unterschrift des Leiters und Stempelabdruck der Forschungsstelle

VDZ gGmbH

Davastadt den 59.16 Ort, Datum

Univ.-Prof. Dr.-Ing. C.-A. Graubner Institut für Massivbau Technische Universitat Darmstadt Franziska-Braun-Straße 3 64287 Darmstadt Rechtsverbindliche Unterschrift des Leiters und Stempelabdruck der Forschungsstelle Technische Universität Darmstadt

16 Anhang

	Einheit	CEM I 52,5 R	CEM I 42,5 N	CEM III/A 42,5 N	LL Labor	LL Werk
1	2	3	4	5	6	7
Silizium(IV)-oxid	%	21,50	21,85	29,16	0,48	0,48
Aluminiumoxid	%	4,13	3,95	7,95	0,09	0,10
Titandioxid	%	0,23	0,23	0,64	0,02	0,01
Phosphor(V)-oxid	%	0,16	0,15	0,06	0,04	0,02
Eisen(III)-oxid	%	2,80	2,89	1,47	0,09	0,12
Mangan(III)-oxid	%	0,07	0,07	0,30	0,03	0,07
Magnesiumoxid	%	0,92	0,87	4,59	0,51	1,73
Calciumoxid	%	65,10	64,15	50,62	55,53	53,19
Sulfat als SO3	%	3,46	2,63	3,82	0,02	0,01
Kaliumoxid	%	0,56	0,54	0,46	0,03	<0,01
Natriumoxid	%	0,20	0,20	0,24	0,01	0,01
Natriumaequivalent	%	0,57	0,56	0,55	0,03	0,01
Kohlendioxid, 950°C; IR	%	0,48	1,02	0,34	42,93	43,53
Wasser, 950°C; IR	%	0,47	0,33	0,30	0,09	0,15
Glühverlust	%	0,95	1,35	0,65	43,03	43,69
тос	%		nicht hestimmt		<0,01	0,02
Methylenblauwert	g/100g				0,10	0,03

Tabelle 8 Chemisch-mineralogische Zusammensetzung

Seite 58 von 106

	Einheit	CEM I 52,5 R*	S1	S2	S3	SW
1	2	3	4	5	6	7
Silizium(IV)-oxid	%	21,47	37,86	34,92	36,69	37,77
Aluminiumoxid	%	4,10	11,78	10,37	11,08	10,91
Titandioxid	%	0,23	0,99	0,49	1,46	0,73
Phosphor(V)-oxid	%	0,15	0,00	0,00	0,00	<0,01
Eisen(III)-oxid	%	2,93	0,44	0,52	0,53	0,31
Mangan(III)-oxid	%	0,06	0,53	0,16	0,30	0,34
Magnesiumoxid	%	0,88	7,98	7,84	7,13	6,44
Calciumoxid	%	65,15	39,40	44,52	41,33	42,24
Sulfat als SO3	%	3,55	0,13	0,00	0,00	0,02
Kaliumoxid	%	0,54	0,44	0,41	0,33	0,46
Natriumoxid	%	0,23	0,28	0,38	0,20	0,25
Natriumäquivalent	%	0,59	0,57	0,65	0,42	0,56
Kohlendioxid, 950°C; IR	%	0,85	0,14	0,11	0,19	0,11
Wasser, 950°C; IR	%	0,46	0,17	0,15	0,16	0,17
Glühverlust	%	1,31	0,31	0,27	0,35	0,28

 Tabelle 9
 Chemisch-mineralogische Zusammensetzung

* für Werkszemente

Seite 59 von 106

	Einheit	CEM (50K,30S,20LL)	CEM (35K,30S,35LL)	CEM (20K,30S,50LL)
1	2	3	4	5
Silizium(IV)-oxid	%	22,32	19,28	15,94
Aluminiumoxid	%	5,43	4,87	4,11
Titandioxid	%	0,32	0,30	0,26
Phosphor(V)-oxid	%	0,08	0,06	0,04
Eisen(III)-oxid	%	1,57	1,12	0,78
Mangan(III)-oxid	%	0,15	0,15	0,15
Magnesiumoxid	%	2,76	2,86	3,07
Calciumoxid	%	55,73	54,46	52,70
Sulfat als SO3	%	1,91	1,52	1,09
Kaliumoxid	%	0,39	0,28	0,17
Natriumoxid	%	0,17	0,17	0,12
Natriumäquivalent	%	0,43	0,35	0,23
Kohlendioxid, 950°C; IR	%	8,77	14,83	21,51
Wasser, 950°C; IR	%	0,31	0,27	0,21
Glühverlust	%	9,08	15,09	21,72
analysierter Anteil K	%	49,5	35,5	21,5
analysierter Anteil S	%	30,7	30,5	29,4
analysierter Anteil LL	%	19,7	34,1	49,1

ıg

 Tabelle 11
 Dichte, spezifische Oberfläche, RRSB Parameter

Hauptbestandteil bzw. Zement	Dichte in g/cm ³	spez. Oberfläche nach Blaine in cm²/g	RRSB Parameter d	RRSB Parameter n
1	2	3	4	5
CEM I 52,5 R	3,18	5310	11,32	0,83
CEM I 52,5 R*	3,14	4970	11,06	0,94
CEM I 42,5 N	3,16	3250	22,14	0,81
CEM III/A 42,5 N	3,03	4880	12,24	0,90
LL Labor	2,72	4210	22,62	0,75
LL Werk	2,73	4990	15,58	0,84
S1	2,90	4850	12,67	0,91
S2	2,92	3740	8,51	0,95
S3	2,93	6020	16,78	0,92
SW	2,90	4680	11,71	0,94
CEM (50K:30S:20LL)	2,98	5200	11,66	0,95
CEM (35K:30S:35LL)	2,92	5170	11,83	0,94
CEM (20K:30S:50LL)	2,86	5100	12,59	0,92

* für Werkszemente

Bild 62 Korngrößenverteilungen der Ausgangsstoffe für die Laborzemente bzw. Referenzzemente

Alter	CEM I 52,5 R	CEM I 42,5 N	CEM III/A 42,5 N	CEM (65K,15S1 ,20LL)	CEM (50K,15S1 ,35LL)	CEM (50K,30S1 ,20LL)	CEM (50K,30S2 ,20LL)	CEM (50K,30S3 ,20LL)	CEM (50K,30S W,20LL)
Alter	-				w/z = 0,50				
				Druc	kfestigkeit in	МРа			
1	2	3	4	5	6	7	8	9	10
	45,9	28,1	20,1	26,3	15,4	19,7	18,3	17,1	20,3
	46,1	28,8	20,3	26,0	15,8	20,3	19,0	16,8	20,9
EW,	47,0	28,8	20,4	26,3	15,8	20,4	18,4	16,7	21,3
2d	46,4	29,4	19,9	26,4	15,5	19,2	18,3	17,8	20,8
	45,8	29,1	20,3	26,6	15,6	19,4	19,1	18,0	20,7
	46,8	28,8	19,7	27,2	14,9	19,6	19,2	15,4	21,2
MW, 2d	46,3	28,8	20,1	26,5	15,5	19,8	18,7	17,0	20,9
	64,0	47,3	35,3	44,3	29,3	36,1	44,1	35,3	38,8
	63,6	47,9	36,1	43,6	29,4	35,9	43,9	34,4	40,3
EW,	63,6	47,3	37,4	43,7	28,9	35,4	42,4	35,6	39,1
7d	64,9	47,3	36,9	44,1	27,4	35,9	42,8	35,6	40,1
	64,3	47,4	36,6	42,9	28,2	37,1	43,3	34,6	39,6
	63,9	47,6	36,8	44,9	28,5	35,8	42,3	35,1	39,6
MW, 7d	64,1	47,5	36,5	43,9	28,6	36,0	43,1	35,1	39,6
	80,1	61,4	55,4	61,7	43,9	59,6	72,1	59,0	62,1
	76,1	60,5	56,1	59,9	44,8	57,4	71,3	60,1	62,5
EW,	77,6	62,6	57,3	60,1	43,4	59,4	68,9	58,4	64,1
28d	74,4	61,1	56,7	58,8	43,8	57,6	68,6	60,9	64,4
	75,1	61,9	56,1	61,5	43,5	55,8	71,1	60,1	64,2
	76,1	62,4	56,8	62,0	42,5	58,4	69,4	58,1	62,6
MW, 28d	76,6	61,7	56,4	60,6	43,6	58,0	70,2	59,4	63,3
	81,9	71,3	75,8	73,3	54,4	75,1	80,4	76,0	70,6
	78,8	69,0	75,8	73,2	54,2	73,1	78,0	78,3	73,4
EW,	83,3	73,9	77,4	73,4	54,6	75,2	76,9	77,5	74,4
91d	84,6	70,5	76,1	75,6	52,3	74,1	76,4	75,4	72,8
	83,4	69,8	74,4	72,1	51,4	73,6	76,9	76,6	73,2
	79,3	72,3	77,1	71,7	51,4	75,8	78,1	76,9	72,0
MW, 91d	81,9	71,1	76,1	73,2	53,1	74,5	77,8	76,8	72,7

 Tabelle 12
 Mörteldruckfestigkeiten (1)

EW: Einzelwerte

Seite 62 von 106

Alter	CEM (35K,15S1 ,50LL)	CEM (35K,30S1 ,35LL)	CEM (35K,30S2 ,35LL)	CEM (35K,30S3 ,35LL)	CEM (35K,30S W,35LL)	CEM (35K,45S1 ,20LL)	CEM (20K,30S1 ,50LL)	CEM (20K,30S2 ,50LL)	CEM (20K,30S3 ,50LL)
Alter	-	•			w/z = 0,50	•			
				Druc	kfestigkeit in	MPa			
1	2	3	4	5	6	7	8	9	10
	7,7	8,6	10,5	9,7	12,7	9,4	3,6	4,7	4,1
	7,8	8,5	10,2	9,7	12,7	9,2	3,4	4,8	4,4
EW,	7,5	8,6	10,2	9,9	12,6	8,8	2,8	4,8	4,3
2d	7,9	8,7	10,0	9,8	12,3	9,4	3,7	4,8	4,2
	7,8	8,6	10,0	9,9	12,1	8,9	3,4	4,7	4,2
	7,9	8,6	10,3	10,0	12,1	9,0	2,8	4,9	4,4
MW, 2d	7,8	8,6	10,2	9,8	12,4	9,1	3,3	4,8	4,3
	15,9	21,0	25,8	22,6	28,1	25,5	11,5	16,7	12,0
	15,5	19,3	27,2	22,9	27,3	26,4	11,5	17,2	12,4
EW,	15,3	21,6	26,2	22,5	27,4	25,4	11,7	17,4	12,0
7d	15,7	21,4	27,1	22,6	27,8	25,9	11,4	17,2	12,7
	15,6	21,7	26,9	21,9	27,8	26,3	11,4	16,7	12,6
	15,6	22,4	26,9	23,4	26,8	26,1	11,7	17,0	12,5
MW, 7d	15,6	21,2	26,7	22,6	27,5	25,9	11,6	17,0	12,4
	27,4	37,5	44,6	44,0	46,8	47,0	28,9	31,3	30,2
	27,2	39,4	46,2	43,6	47,1	47,3	29,1	31,0	30,0
EW,	27,9	38,5	43,9	42,5	48,7	47,5	29,1	31,2	30,3
28d	28,5	39,7	46,7	42,5	48,7	47,0	28,8	31,4	30,4
	28,1	37,3	43,2	42,8	48,5	47,6	28,3	31,3	29,7
	28,5	40,5	46,4	42,4	47,6	47,4	28,4	30,8	29,9
MW, 28d	27,9	38,8	45,2	43,0	47,9	47,3	28,8	31,2	30,1
	34,1	53,0	51,7	59,8	55,9	61,3	36,3	37,1	39,9
	33,4	53,1	52,5	58,7	55,3	60,6	35,4	38,5	39,8
EW,	34,8	54,2	53,8	59,0	55,4	62,3	35,2	37,8	40,1
91d	34,6	51,9	53,9	58,4	56,5	64,9	35,1	36,4	38,9
	33,9	52,6	52,7	58,8	54,6	64,8	35,4	37,9	39,6
	34,4	55,8	53,0	58,5	54,4	63,7	34,7	38,1	39,6
MW, 91d	34,2	53,4	52,9	58,8	55,4	62,9	35,3	37,6	39,7

 Tabelle 13
 Mörteldruckfestigkeiten (2)

EW: Einzelwerte

Seite 63 von 106

	CEM (20K,30S W.50LL)	CEM (20K,45S1 .35LL)	CEM (20K,15S1 .65LL)	CEM (65K,15S1 .20LL)	CEM (50K,15S1 .35LL)	CEM (50K,30S1 .20LL)	CEM (50K,30S2 .20LL)	CEM (50K,30S3 .20LL)	CEM (50K,30S W.20LL)			
Alter	,,	w/z = 0,50	,,	,	,,	,/ w/z =	= 0,40	,				
	Druckfestigkeit in MPa											
1	2	3	4	5	6	7	8	9	10			
	6,0	3,6	2,9	43,0	25,0	28,8	27,6	26,6	34,9			
	5,9	3,7	3,0	43,1	24,9	29,1	28,1	27,5	34,5			
EW,	5,9	3,5	2,9	42,6	26,1	28,5	27,2	27,9	34,6			
2d	5,9	2,8	2,7	42,8	25,9	28,7	27,1	27,2	35,1			
	5,8	3,5	2,8	42,5	25,9	28,8	27,1	28,1	34,9			
	5,7	3,6	2,8	42,8	25,6	29,3	27,9	27,8	35,2			
MW, 2d	5,8	3,4	2,8	42,8	25,6	28,9	27,5	27,5	34,9			
	18,5	14,7	6,6	62,5	42,1	48,1	56,3	50,1	57,7			
	17,9	14,5	6,9	59,7	42,1	47,8	57,3	50,8	58,9			
EW,	18,5	14,6	6,6	59,4	42,0	47,5	55,9	49,7	59,0			
7d	17,3	14,6	6,6	61,1	42,0	47,8	57,9	50,1	59,6			
	17,8	14,5	6,5	60,1	42,1	47,1	58,1	51,2	58,5			
	17,8	14,3	6,7	59,1	42,5	47,3	58,5	49,8	59,2			
MW, 7d	18,0	14,5	6,6	60,3	42,1	47,6	57,3	50,3	58,8			
	31,3	35,4	15,2	93,1	64,9	82,7	79,2	75,9	80,3			
	33,9	35,1	15,0	92,7	65,1	80,9	77,8	72,1	79,0			
EW,	33,1	35,3	15,7	90,3	67,0	80,1	79,2	72,7	77,7			
28d	31,1	34,8	15,5	91,0	68,6	79,7	80,1	72,6	82,2			
	32,8	34,4	15,2	87,3	63,6	78,4	78,9	74,2	76,4			
	33,4	34,9	15,2	88,6	65,1	78,4	74,7	74,9	78,4			
MW, 28d	32,6	35,0	15,3	90,5	65,7	80,0	78,3	73,7	79,0			
	41,5	44,0	19,2	89,1	76,5	84,3	85,7	85,7	87,5			
	40,9	43,7	19,4	89,6	75,5	86,6	86,6	88,4	92,3			
EW,	40,4	44,9	20,4	89,3	78,2	90,1	86,6	88,7	88,0			
91d	41,1	43,7	19,0	91,1	76,8	84,7	88,8	88,8	86,8			
	41,4	44,5	18,5	90,2	79,6	88,0	87,9	93,0	89,9			
	40,4	45,3	20,4	92,1	76,6	91,1	85,9	91,9	92,5			
MW, 91d	41,0	44,3	19,5	90,2	77,2	87,5	86,9	89,4	89,5			

 Tabelle 14
 Mörteldruckfestigkeiten (3)

EW: Einzelwerte

Seite 64 von 106

Altor	CEM (35K,15S1 ,50LL)	CEM (35K,30S1 ,35LL)	CEM (35K,30S2 ,35LL)	CEM (35K,30S3 ,35LL)	CEM (35K,30S W,35LL)	CEM (35K,45S1 ,20LL)	CEM (20K,30S1 ,50LL)	CEM (20K,30S2 ,50LL)	CEM (20K,30S3 ,50LL)			
Allei					w/z = 0,40							
	Druckfestigkeit in MPa											
1	2	3	4	5	6	7	8	9	10			
	13,8	14,9	16,5	15,5	18,6	15,7	6,1	8,1	6,3			
	13,6	14,6	16,4	15,2	18,2	15,3	6,1	8,1	6,4			
EW,	13,8	14,8	16,3	15,5	18,1	15,5	5,9	8,1	6,2			
2d	14,0	13,7	16,9	15,0	18,7	15,8	6,0	7,9	6,3			
	13,7	14,6	16,8	15,4	18,6	15,8	6,0	7,9	6,0			
	13,8	14,2	16,8	15,8	18,8	16,0	6,1	8,2	6,0			
MW, 2d	13,8	14,5	16,6	15,4	18,5	15,7	6,0	8,0	6,2			
	27,6	36,6	42,0	37,3	40,8	41,4	17,2	27,4	21,3			
	27,7	36,1	41,0	36,4	40,9	40,4	18,4	27,9	20,9			
EW,	28,1	36,4	41,9	36,4	40,9	40,8	17,6	27,6	21,8			
7d	27,7	36,1	42,6	37,1	40,5	41,1	17,6	27,5	21,3			
	27,5	36,1	41,9	35,9	40,4	41,4	17,8	27,8	20,9			
	27,5	35,5	42,1	35,9	40,8	41,2	17,8	27,1	20,3			
MW, 7d	27,7	36,1	41,9	36,5	40,7	41,1	17,7	27,5	21,1			
	46,0	56,9	63,3	57,8	63,9	70,3	36,0	43,1	39,8			
	46,1	57,9	62,4	57,2	65,3	70,7	37,9	44,3	40,1			
EW,	45,2	56,8	62,1	59,7	63,4	69,3	37,8	43,9	41,3			
28d	46,1	56,8	63,4	57,5	64,1	72,5	37,9	43,4	40,3			
	46,1	58,2	63,1	58,3	62,8	72,2	37,9	44,2	41,0			
	45,9	57,8	62,6	59,6	63,6	71,7	38,4	43,9	40,8			
MW, 28d	45,9	57,4	62,8	58,3	63,9	71,1	37,7	43,8	40,5			
	58,9	75,9	69,3	77,8	85,6	87,1	49,4	49,0	55,1			
	59,1	76,9	69,3	77,5	85,2	88,8	48,3	49,0	54,6			
EW,	59,6	78,1	69,7	76,4	83,9	89,1	48,6	47,9	55,1			
91d	60,0	77,0	69,8	77,4	85,6	93,5	48,7	48,9	53,9			
	58,6	77,6	70,9	74,2	84,4	91,9	48,1	48,8	54,9			
	57,8	75,7	70,7	76,9	83,5	93,1	47,8	48,3	55,4			
MW, 91d	59,0	76,9	69,9	76,7	84,7	90,6	48,5	48,7	54,8			

 Tabelle 15
 Mörteldruckfestigkeiten (4)

EW: Einzelwerte

Seite 65 von 106

Altor	CEM (20K,30S W,50LL)	CEM (20K,45S1 ,35LL)	CEM (20K,15S1 ,65LL)	CEM (65K,15S1 ,20LL)	CEM (50K,15S1 ,35LL)	CEM (50K,30S1 ,20LL)	CEM (50K,30S2 ,20LL)	CEM (50K,30S3 ,20LL)	CEM (50K,30S W,20LL)
Aller		w/z = 0,40				w/z =	= 0,35	<u> </u>	
				Druc	kfestigkeit in	MPa			
1	2	3	4	5	6	7	8	9	10
	6,8	6,7	5,3	53,2	34,5	35,4	39,7	37,1	46,8
	6,9	6,7	5,4	54,0	33,9	35,9	39,9	37,3	46,9
EW,	6,7	6,7	5,2	54,5	33,8	36,7	40,3	37,4	46,9
2d	6,7	6,6	5,3	53,6	34,4	34,9	39,7	37,3	46,9
	6,8	6,5	5,2	53,9	34,9	36,1	39,9	37,6	47,1
	6,6	6,5	5,2	53,6	34,3	35,9	39,4	37,5	47,1
MW, 2d	6,7	6,6	5,3	53,8	34,3	35,8	39,8	37,4	46,9
	22,9	28,1	13,3	78,9	55,9	62,0	75,9	65,8	72,4
	23,0	28,6	13,6	77,1	54,8	62,1	75,8	65,8	71,3
EW,	23,4	28,3	13,5	76,0	55,6	62,4	75,6	66,9	73,3
7d	23,1	28,0	12,7	77,6	54,9	60,6	74,1	63,0	73,1
	22,4	28,9	13,2	78,6	54,1	61,0	74,9	64,0	75,1
	22,8	27,9	13,3	77,3	55,1	60,9	77,9	67,1	75,8
MW, 7d	22,9	28,3	13,3	77,6	55,1	61,5	75,7	65,4	73,5
	42,3	49,5	24,4	95,5	78,5	80,3	95,8	86,3	100,1
	43,4	50,8	24,4	97,7	75,6	82,9	97,6	87,1	97,9
EW,	42,6	49,9	24,4	95,6	77,3	89,1	96,1	85,8	93,6
28d	42,1	49,6	25,0	94,1	77,7	84,6	98,6	83,8	97,4
	41,1	50,0	25,1	94,1	74,4	84,3	99,8	91,3	99,9
	42,5	51,9	24,6	98,9	77,8	85,2	94,2	88,9	91,9
MW, 28d	42,3	50,3	24,6	96,0	76,9	84,4	97,0	87,2	96,8
	50,8	63,2	34,2	107,8	87,6	100,9	98,9	99,8	108,7
	50,6	62,8	33,7	111,0	81,0	95,8	99,7	102,7	106,8
EW,	51,9	64,9	33,7	109,3	87,7	96,9	100,4	100,1	106,4
91d	48,9	63,4	33,4	106,3	87,6	94,3	100,5	103,1	106,8
	50,3	62,2	35,1	110,3	84,5	97,1	101,3	106,4	106,4
	50,8	62,5	34,0	104,3	86,6	95,4	94,8	102,4	103,4
MW, 91d	50,5	63,2	34,0	108,2	85,8	96,7	99,3	102,4	106,4

 Tabelle 16
 Mörteldruckfestigkeiten (5)

EW: Einzelwerte

Seite 66 von 106

Alter	CEM (35K,15S1 ,50LL)	CEM (35K,30S1 ,35LL)	CEM (35K,30S2 ,35LL)	CEM (35K,30S3 ,35LL)	CEM (35K,30S W,35LL)	CEM (35K,45S1 ,20LL)	CEM (20K,30S1 ,50LL)	CEM (20K,30S2 ,50LL)	CEM (20K,30S3 ,50LL)
Alter	-	•			w/z = 0,35	•			
				Druc	kfestigkeit in	MPa			
1	2	3	4	5	6	7	8	9	10
	17,3	18,9	24,6	22,3	25,9	21,1	7,4	10,4	9,1
	17,2	18,5	24,3	21,6	26,4	22,0	7,0	10,3	9,1
EW,	17,4	18,6	24,4	21,9	26,1	21,5	7,4	10,3	9,1
2d	17,2	18,7	23,7	22,6	27,0	20,9	7,2	10,4	8,9
	17,1	18,9	24,3	22,4	26,9	21,3	7,1	10,3	8,7
	17,3	18,8	23,6	22,6	27,0	21,4	7,5	10,2	8,8
MW, 2d	17,2	18,7	24,1	22,2	26,6	21,4	7,3	10,3	9,0
	34,4	44,0	53,6	49,6	53,8	52,9	26,1	37,4	30,3
	34,4	43,6	54,8	47,6	52,0	53,9	26,0	37,2	29,8
EW,	34,6	44,7	56,4	47,9	52,7	53,4	26,1	36,4	30,0
7d	34,2	43,8	54,8	49,8	53,5	51,4	26,2	36,8	30,3
	34,9	43,5	54,9	48,5	51,7	52,4	25,8	36,8	30,2
	34,8	44,1	56,2	48,1	52,6	51,6	26,3	36,5	29,8
MW, 7d	34,5	43,9	55,1	48,6	52,7	52,6	26,1	36,8	30,1
	54,6	69,8	74,5	71,8	75,7	78,7	46,3	55,8	51,7
	54,2	70,7	76,8	59,2	74,3	82,6	46,7	57,5	50,6
EW,	54,0	69,2	75,4	72,0	74,8	82,6	48,3	55,9	52,1
28d	57,3	67,9	74,3	72,0	76,2	80,5	45,6	54,6	51,9
	52,5	68,8	69,4	71,9	75,3	83,9	47,3	54,4	50,5
	52,9	68,9	75,1	71,7	74,4	83,1	47,8	54,4	52,3
MW, 28d	54,2	69,2	74,2	71,9	75,1	81,9	47,0	55,4	51,5
	63,9	87,6	81,8	94,0	85,6	96,8	58,6	61,1	65,4
	63,4	85,8	83,6	87,4	85,2	96,9	59,0	62,0	67,3
EW,	62,7	84,4	88,4	91,5	83,9	97,9	58,0	60,9	67,8
91d	62,9	86,9	83,8	87,9	85,6	92,5	60,0	59,3	66,5
	63,1	83,6	84,8	89,9	84,4	90,8	58,9	58,9	63,8
	63,5	84,2	85,0	91,4	83,5	95,8	59,6	60,6	64,8
MW, 91d	63,3	85,4	84,5	90,4	84,7	95,1	59,0	60,5	65,9

 Tabelle 17
 Mörteldruckfestigkeiten (6)

EW: Einzelwerte

Seite 67 von 106

	CEM (20K,30SW,50LL)	CEM (20K,45S1,35LL)	CEM (20K,15S1,65LL)							
Alter		w/z = 0,35								
		Druckfestigkeit in MPa								
1	2	3	4							
	11,0	8,1	7,7							
	10,7	8,2	7,8							
EW,	11,0	8,1	7,4							
2d	11,0	8,3	7,6							
	11,0	8,1	7,8							
	11,0	8,6	7,7							
MW, 2d	11,0	8,2	7,7							
	33,8	33,6	18,6							
	33,9	33,9	17,6							
EW,	35,0	33,2	18,3							
7d	34,8	32,8	18,3							
	34,6	34,0	18,1							
	34,3	33,3	18,3							
MW, 7d	34,4	33,5	18,2							
	59,1	55,0	32,9							
	59,8	57,4	35,1							
EW,	61,3	55,0	33,3							
28d	59,3	54,9	32,9							
	59,3	57,4	34,9							
	60,8	56,5	33,4							
MW, 28d	59,9	56,0	33,7							
	68,1	70,7	41,7							
	66,7	69,4	41,9							
EW,	67,6	70,0	42,4							
91d	63,3	70,9	42,4							
	66,9	68,4	43,4							
	68,3	69,3	42,3							
MW, 91d	66,8	69,8	42,4							

 Tabelle 18
 Mörteldruckfestigkeiten (7)

EW: Einzelwerte

Seite 68 von 106

Beton	Zement	ρ _f	a ₀	a ₁₀	LP ₁₀	T _f
Deton	Zement	kg/dm³	mm	mm	Vol%	°C
1	2	3	4	5	6	7
	CEM I 42,5 N	2370	420	430	2,2	20,2
	CEM III/A 42,5 N	2380	465	445	1,1	19,8
B1	CEM (50K,30S,20LL)	2380	485	495	0,9	22,9
	CEM (35K,30S,35LL)	2370	510	530	1,1	21,9
	CEM (20K,30S,50LL)	2360	495	n. b.	1,4	20,4
B2	CEM (50K,30S,20LL)	2410	485	515	0,8	21,4
	CEM (35K,30S,35LL)	2400	505	580	1,0	20,8
	CEM (20K,30S,50LL)	2400	550	n. b.	1,3	21,1
	CEM (50K,30S,20LL)	2420	530	605	0,5	21,8
B3	CEM (35K,30S,35LL)	2430	475	585	0,4	20,9
	CEM (20K,30S,50LL)	2400	445	495	1,0	20,4
	CEM I 42,5 N	2260	420	n. b.	5,5	18,1
	CEM III/A 42,5 N	2270	450	n. b.	5,4	17,4
B4	CEM (50K,30S,20LL)	2260	365	n. b.	4,7	20,3
	CEM (35K,30S,35LL)	2280	480	440	5,5	19,3
	CEM (20K,30S,50LL)	2320	450	n. b.	4,0	21,7

 Tabelle 19
 Frischbetoneigenschaften

n. b.: nicht bestimmt

Seite 69 von 106

Tabelle 20	Druckfestigkeitsentwicklung	der	Betone	Β1	bis B3	3
	2.000.000.000.000.000.000.000.000					٢.

		Druckfestigkeit in MPa								
Beton	Zement	1d EW	1d MW	7d EW	7d MW	28d EW	28d MW	91d EW	91d MW	
1	2	3	4	5	6	7	8	9	10	
		15,4		46,2		68,2		71,3		
	CEM I 42,5 N	14,6	15,0	45,5	46,4	65,8	66,7	72,6	72,4	
		15,1		47,6		66,2		73,4		
		8,7		32,7		53,9		66,1		
	CEM III/A 42,5 N	8,8	8,6	33,9	33,1	54,8	54,1	66,0	66,3	
		8,3		32,7		53,6		66,7		
		11,8		38,3		57,8		68,6		
B1	CEM (50K,30S,20LL)	11,3	11,4	38,9	38,6	61,0	59,9	70,2	68,6	
		11,0		38,7		60,9		67,2		
		6,4		27,9		46,8		52,7		
	CEM (35K,30S,35LL)	6,3	6,3	28,1	27,9	42,4	45,0	54,4	54,4 53,2 52,4	
		6,3	-	27,8		45,9		52,4		
	CEM (20K,30S,50LL)	2,3		15,5		27,7	27,6	33,3		
		2,4	2,3	15,8	15,5	27,3		32,8	32,9	
		2,3		15,1		27,9		32,5		
	CEM (50K,30S,20LL)	18,3		60,9	60,5	91,7	92,3	97,6	99,0	
		18,6	18,5	60,7		92,8		99,2		
		18,5		60,0		92,4		100,3		
		11,7		45,6		76,6		86,0		
B2	CEM (35K,30S,35LL)	11,6	11,5	46,2	45,7	76,4	76,8	83,5	84,7	
		11,2	-	45,4		77,3		84,7		
		4,9		28,4		50,8		59,0		
	CEM (20K,30S,50LL)	5,0	4,8	28,7	28,6	51,3	50,8	59,5	59,9	
		4,6	-	28,9		50,3		61,3		
		24,5		71,2		100,6		109,2		
	CEM (50K,30S,20LL)	24,4	24,4	71,7	71,4	101,3	101,1	110,0	110,5	
		24,3		71,2		101,5		112,1		
		15,7		53,4		84,6		90,8	93,9	
B3	CEM (35K,30S,35LL)	15,2	15,5	53,0	52,7	84,6	84,1	96,8		
		15,7		51,7		83,2		94,2		
		7,6		35,1		64,8		73,9		
	CEM (20K,30S,50LL)	6,7	6,9	35,5	35,0	64,3	64,5	74,0	74,4	
		6,5		34,3		64,5	1	75,3		

EW: Einzelwerte

Tabelle 21	Druckfestigkeitsentwicklung de	r Betone B4
------------	--------------------------------	-------------

Beton	Zement	Druckfestigkeit im Alter von 28d in MPa							
	Zement		MW						
1	2	3	4	5	6				
B4	CEM I 42,5 N	48,1	46,4	48,7	47,7				
	CEM III/A 42,5 N	43,1	43,8	42,7	43,2				
	CEM (50K,30S,20LL)	46,5	47,3	47,6	47,1				
	CEM (35K,30S,35LL)	57,0	56,9	55,4	56,4				
	CEM (20K,30S,50LL)	54,8	55,3	54,1	54,8				

EW: Einzelwerte

		Eindringtiefe in mm				D _{Migration} in 10 ⁻¹² m ² /s			
Beton	Zement	35d EW	35d MW	98d EW	98d MW	35d EW	35d MW	98d EW	98d MW
1	2	3	4	5	6	7	8	9	10
	CEM I 42,5 N	12,5		12,0	11,9	15,5		14,9	
		13,0	13,5	11,4		16,2	16,9	14,1	14,8
		15,1		12,4		18,9		15,5	
		22,5		13,1		4,8		2,7	
	CEM III/A 42,5 N	20,1	21,0	11,5	11,7	4,3	4,5	2,4	2,4
		20,4		10,6		4,3		2,2	
		18,0		15,6		3,8		3,3	
B1	CEM (50K,30S,20LL)	17,4	17,3	12,5	13,6	3,7	3,7	2,6	2,8
		16,4		12,6		3,5		2,6	
		14,2		13,7		6,0	5,6	4,6	
	CEM (35K,30S,35LL)	13,6	13,3	#17,6	13,4	5,7		#6,1	4,5
		12,2		13,0		5,0		4,4	
	CEM (20K,30S,50LL)	14,3		14,3	15,6	6,0	5,1	2,8	
		12,6	12,3	16,1		5,2		3,2	3,1
		10,1		16,3		4,1		3,3	
	CEM (50K,30S,20LL)	15,1		13,0	11,4	3,2	3,2	2,7	2,3
		16,7	15,2	10,5		3,6		2,1	
		13,9		10,8		2,9		2,2	
	CEM (35K,30S,35LL)	13,0		12,9	13,6	2,7	3,0	2,7	2,9
B2		12,8	14,2	14,2		2,6		3,0	
		16,9		13,6		3,6		2,9	
		19,2		11,8		4,1	4,3	2,4	2,8
	CEM (20K,30S,50LL)	18,4	19,7	14,9	13,7	4,1		3,1	
		21,6		14,3		4,6		3,0	
		14,0		11,0		2,8		2,2	1,9
	CEM (50K,30S,20LL)	14,0	14,3	8,6	9,6	2,8	2,9	1,7	
		14,9		9,1		3,0		1,8	
		18,0		9,6		3,8		1,9	
B3	CEM (35K,30S,35LL)	15,1	16,4	9,8	10,6	3,2	3,5	2,0	2,2
		16,0		12,5		3,4	1	2,6	
		17,4		10,4		3,7		1,9	
	CEM (20K,30S,50LL)	19,0	17,5	9,5	9,9	4,1	3,8	1,7	1,8
		16,2		9,9		3,5		1,8	

Tabelle 22Eindringtiefe und Chloridmigrationskoeffizient D der Betone B1 bis B3

EW: Einzelwerte

MW: Mittelwert

#: Wert nicht zur Berechnung des Mittelwertes verwendet

Seite 72 von 106

	CEM I 52,5 R	CEM III/A 42,5 N	CEM (50K,30S,20LL)	CEM (35K,30S,35LL)	CEM (20K,30S,50LL)					
Alter	w/z = 0,50									
			Druckfestigkeit in MPa	ı						
1	2	3	4	5	6					
	65,3	35,7	39,4	28,7	15,4					
	67,6	34,8	40,1	28,8	15,3					
EW,	65,4	34,8	40,4	28,5	14,8					
7d	67,9	33,9	39,9	27,9	15,7					
	65,4	35,5	40,9	28,2	15,3					
	65,6	34,4	41,8	28,9	16,6					
MW, 7d	66,2	34,9	40,4	28,5	15,5					
	77,8	52,1	62,9	47,4	29,8					
	77,4	54,3	66,0	50,4	30,1					
EW,	75,6	54,0	61,8	50,4	29,7					
28d	77,6	54,2	62,2	53,5	31,3					
	76,8	53,3	64,7	52,6	30,4					
	77,3	51,6	64,9	51,9	30,5					
MW, 28d	77,0	53,2	63,7	51,0	30,3					

 Tabelle 23
 Druckfestigkeiten der Feinbetone (1)

EW: Einzelwerte
Seite 73 von 106

	CEM (50K,30S,20LL)	CEM (35K,30S,35LL)	CEM (20K,30S,50LL)	CEM (50K,30S,20LL)	CEM (35K,30S,35LL)	CEM (20K,30S,50LL)					
Alter		w/z = 0,40		w/z = 0,35							
	Druckfestigkeit in MPa										
1	2	3	4	5	6	7					
	58,0	43,0	25,3	73,6	52,9	35,3					
	56,3	43,5	25,4	71,3	56,9	36,5					
EW,	58,3	45,4	26,2	73,3	53,4	37,0					
7d	57,9	44,1	25,4	72,0	57,3	34,9					
	55,6	45,1	24,9	72,3	57,2	35,9					
	59,1	43,5	25,5	73,0	55,8	35,6					
MW, 7d	57,5	44,1	25,4	72,6	55,6	35,9					
	74,6	68,6	44,4	93,7	76,8	58,9					
	78,9	69,4	45,4	92,8	76,4	60,7					
EW,	75,8	69,7	44,1	92,9	77,1	63,2					
28d	78,7	68,7	46,1	90,6	77,4	58,6					
	78,4	64,6	44,2	93,6	78,6	58,0					
	80,3	68,4	43,8	89,9	76,6	59,9					
MW, 28d	77,8	68,2	44,7	92,2	77,2	59,9					

 Tabelle 24
 Druckfestigkeiten der Feinbetone (2)

EW: Einzelwerte

MW: Mittelwert

Seite 74 von 106

Alter	CEM I 52,5 R	CEM III/A 42,5 N	CEM (50K,30 S,20LL)	CEM (35K,30 S,35LL)	CEM (20K,30 S,50LL)	CEM (50K,30 S,20LL)	CEM (35K,30 S,35LL)	CEM (20K,30 S,50LL)	CEM (50K,30 S,20LL)	CEM (35K,30 S,35LL)	CEM (20K,30 S,50LL)
			w/z = 0,50			w/z = 0,40 w/z = 0,35					
	Karbonatisierungstiefe in mm										
1	2	3	4	5	6	7	8	9	10	11	12
=144	0,2	3,0	1,7	3,3	7,0	1,0	1,7	4,8	0,3	1,7	2,6
EW, 147d	0,3	3,0	1,6	3,6	7,1	0,8	1,8	4,8	0,2	1,4	2,7
	0,2	3,0	1,8	4,0	6,6	0,8	1,5	4,5	0,2	1,6	2,8
MW, 147d	0,2	3,0	1,7	3,6	6,9	0,8	1,6	4,7	0,2	1,6	2,7

 Tabelle 25
 Karbonatisierungstiefen nach 7d Vorlagerung und 140d Hauptlagerung

EW: Einzelwerte

MW: Mittelwert

Tabelle 26 Karbonatisierungstiefen nach 28d Vorlagerung und 140d Hauptlagerung

Alter	CEM I 52,5 R	CEM III/A 42,5 N	CEM (50K,30 S,20LL)	CEM (35K,30 S,35LL)	CEM (20K,30 S,50LL)	CEM (50K,30 S,20LL)	CEM (35K,30 S,35LL)	CEM (20K,30 S,50LL)	CEM (50K,30 S,20LL)	CEM (35K,30 S,35LL)	CEM (20K,30 S,50LL)
			w/z = 0,50				w/z = 0,40			w/z = 0,35	
	Karbonatisierungstiefe in mm										
1	2	3	4	5	6	7	8	9	10	11	12
	0,2	2,7	1,4	2,3	4,7	0,5	1,1	3,2	0,1	0,9	2,5
EVV, 168d	0,1	2,6	1,5	2,3	4,9	0,5	1,0	3,4	0,1	0,8	2,5
	0,2	2,6	1,2	2,3	4,9	0,5	1,2	3,4	0,2	0,9	2,3
MW, 168d	0,2	2,6	1,3	2,3	4,8	0,5	1,1	3,3	0,1	0,8	2,4

EW: Einzelwerte

MW: Mittelwert

Seite 75 von 106

Tabelle 27	Abwitterungen	der Betone,	28d Vorlagerung,	CIF (1)
------------	---------------	-------------	------------------	---------

			Abwitterung								
	An-		Einzelw	erte je Prob	ekörper			Stan-			
Beton	zahl FTW	1	2	3	4	5	Mittelwert	dardabwei- chung			
			kg/m²								
1	2	3	4	5	6	7	8	9			
	2	0,01	0,01	0,01	0,01	0,02	0,01	0,00			
	8	0,03	0,03	0,03	0,03	0,03	0,03	0,00			
CEM I, w/z =	14	0,05	0,04	0,04	0,05	0,05	0,04	0,01			
0,50	28	0,09	0,09	0,07	0,09	0,11	0,09	0,02			
	42	0,13	0,12	0,09	0,13	0,18	0,13	0,03			
	56	0,18	0,18	0,11	0,17	0,26	0,18	0,05			
	4	0,06	0,05	0,06	0,07	0,05	0,06	0,01			
	6	0,07	0,06	0,07	0,08	0,05	0,07	0,01			
CEM III/A, w/z =	14	0,12	0,12	0,11	0,13	0,08	0,11	0,02			
0,50	28	0,23	0,19	0,20	0,28	0,14	0,21	0,05			
	42	0,35	0,29	0,33	0,46	0,24	0,33	0,08			
	56	0,48	0,39	0,50	0,66	0,37	0,48	0,11			
	4	0,03	0,03	0,02	0,02	0,02	0,03	0,00			
	8	0,03	0,04	0,03	0,03	0,03	0,03	0,00			
	14	0,05	0,05	0,05	0,04	0,05	0,05	0,01			
(30R, 303, 20LL), w/z = 0.50	28	0,11	0,13	0,11	0,09	0,12	0,11	0,02			
0,00	42	0,19	0,28	0,26	0,20	0,26	0,24	0,04			
	56	0,28	0,50	0,47	0,39	0,44	0,41	0,09			
	8	0,16	0,20	0,12	0,08	0,18	0,15	0,05			
CEM	14	0,26	0,33	0,17	0,10	0,65	0,30	0,21			
(35K,30S,35LL),	28	0,78	1,15	0,40	0,41	1,16	0,78	0,37			
w/z = 0,50	42	1,32	1,55	1,11	0,80	1,52	1,26	0,31			
	56	1,68	1,81	1,43	1,49	1,75	1,63	0,16			
	4	0,04	0,05	0,04	0,05	0,04	0,04	0,01			
0.5.1	12	0,13	0,18	0,24	0,18	0,29	0,20	0,06			
(20K 30S 50LL)	14	0,18	0,27	0,36	0,28	0,39	0,29	0,08			
w/z = 0.50	28	0,80	1,54	1,58	1,93	1,88	1,54	0,45			
	42	1,97	3,53	3,38	3,60	3,81	3,26	0,74			
	56	3,72	4,84	4,88	4,78	5,22	4,69	0,57			
	4	0,02	0,03	0,02	0,02	0,02	0,02	0,00			
	8	0,03	0,04	0,02	0,02	0,02	0,03	0,01			
	14	0,03	0,05	0,03	0,03	0,03	0,04	0,01			
w/z = 0.40	28	0,05	0,07	0,06	0,09	0,06	0,07	0,01			
-,	42	0,08	0,10	0,09	0,13	0,09	0,10	0,02			
	56	0,10	0,13	0,13	0,16	0,14	0,13	0,02			

Seite 76 von 106

Tabelle 28	Abwitterungen der	Betone, 28d	Vorlagerung,	CIF (2)
------------	-------------------	-------------	--------------	---------

		-			Abwitterun	g		
	An-		Einzelw	verte je Prob	ekörper			Stan-
Beton	zahl FTW	1	2	3	4	5	Mittelwert	dardabwei- chung
1	2	3	4	5	6	7	8	9
	4	0,04	0,03	0,03	0,02	0,04	0,03	0,01
	10	0,06	0,05	0,04	0,03	0,06	0,05	0,01
CEM (35K 30S 35U)	14	0,07	0,06	0,05	0,04	0,09	0,06	0,02
w/z = 0.40	28	0,14	0,14	0,14	0,10	0,18	0,14	0,03
,	42	0,27	0,26	0,22	0,19	0,35	0,26	0,06
	56	0,44	0,43	0,34	0,33	0,53	0,41	0,08
	2	0,02	0,02	0,02	0,02	0,02	0,02	0,00
OFM	12	0,07	0,08	0,07	0,09	0,07	0,08	0,01
CEM (20K 30S 50LL)	16	0,09	0,10	0,10	0,11	0,09	0,10	0,01
w/z = 0.40	28	0,17	0,18	0,23	0,23	0,15	0,19	0,03
,	42	0,33	0,34	0,41	0,37	0,28	0,34	0,05
	56	0,51	0,50	0,54	0,52	0,46	0,51	0,03
	2	0,02	0,02	0,01	0,01	0,01	0,02	0,00
054	12	0,03	0,03	0,02	0,02	0,02	0,02	0,00
CEM (50K 30S 20LL)	16	0,03	0,04	0,03	0,03	0,03	0,03	0,00
w/z = 0.35	28	0,04	0,04	0,04	0,04	0,04	0,04	0,00
,	42	0,06	0,06	0,06	0,06	0,05	0,06	0,00
	56	0,08	0,08	0,06	0,07	0,07	0,07	0,01
	2	0,02	0,03	0,03	0,03	0,03	0,03	0,00
OFM	12	0,03	0,04	0,04	0,04	0,04	0,04	0,00
CEM (35K 30S 35LL)	16	0,04	0,05	0,05	0,05	0,06	0,05	0,01
w/z = 0.35	28	0,13	0,13	0,11	0,11	0,12	0,12	0,01
,	42	0,20	0,23	0,18	0,20	0,20	0,20	0,02
	56	0,26	0,31	0,22	0,27	0,26	0,26	0,03
	2	0,01	0,02	0,01	0,01	0,01	0,01	0,00
054	8	0,02	0,04	0,02	0,02	0,03	0,03	0,01
	14	0,04	0,05	0,03	0,03	0,05	0,04	0,01
w/z = 0.35	28	0,07	0,11	0,07	0,09	0,11	0,09	0,02
- ,	42	0,12	0,18	0,13	0,15	0,19	0,15	0,03
	56	0,19	0,28	0,18	0,19	0,28	0,22	0,05

Seite 77 von 106

		relativer dynamischer E-Modul									
	An-		Einzelw	erte je Prob	ekörper			Stan-			
Beton	zahl FTW	1	2	3	4	5	Mittelwert	dardabwei- chung			
		%									
1	2	3	4	5	6	7	8	9			
	2	100,0	99,3	99,3	100,0	99,6	99,7	0,34			
	8	100,0	99,4	99,4	99,7	99,9	99,7	0,27			
CEM I, w/z =	14	100,0	98,8	99,7	99,7	99,2	99,5	0,49			
0,50	28	98,7	97,5	97,4	99,2	98,7	98,3	0,78			
	42	97,6	96,3	96,2	98,9	96,7	97,2	1,12			
	56	93,8	91,8	94,3	98,2	94,2	94,5	2,32			
	4	99,4	99,1	99,4	98,6	99,7	99,3	0,42			
	6	99,7	99,1	99,7	98,3	99,0	99,2	0,60			
CEM III/A, w/z =	14	98,1	97,8	99,3	97,0	96,9	97,8	0,95			
0,50	28	88,2	89,9	95,6	89,5	93,0	91,2	3,02			
	42	80,4	83,9	91,4	83,5	88,9	85,6	4,45			
	56	73,9	78,3	86,9	77,6	84,8	80,3	5,37			
	4	98,5	99,0	97,5	96,9	97,6	97,9	0,86			
	8	95,7	96,8	95,6	93,7	94,5	95,3	1,17			
	14	92,0	90,2	90,9	87,7	89,6	90,1	1,59			
(30R, 303, 20LL), w/z = 0.50	28	67,9	60,7	62,3	56,3	57,2	60,9	4,61			
	42	51,2	42,7	44,6	40,6	38,7	43,5	4,81			
	56	37,8	35,6	37,9	34,6	32,4	35,7	2,32			
	8	95,1	93,2	96,8	95,4	93,4	94,8	1,50			
CEM	14	87,4	87,6	92,0	87,8	86,3	88,2	2,20			
(35K,30S,35LL),	28	48,9	54,3	63,1	52,9	50,2	53,9	5,57			
w/z = 0,50	42	35,6	36,7	41,5	37,5	38,2	37,9	2,22			
	56	33,6	33,9	35,6	36,4	35,4	34,9	1,21			
	4	97,2	97,2	96,8	96,9	96,0	96,8	0,48			
	12	92,8	92,9	93,7	93,2	90,9	92,7	1,07			
	14	90,7	90,0	91,8	91,6	87,8	90,4	1,62			
(20R, 303, 50LL), w/z = 0.50	28	42,5	43,0	60,0	40,6	38,7	44,9	8,59			
11/2 - 0,00	42	35,3	36,3	39,4	37,1	36,5	36,9	1,51			
	56	34,7	36,2	42,4	41,4	40,5	39,0	3,38			
	4	99,4	99,3	100,0	100,0	99,0	99,5	0,45			
	8	99,1	98,6	99,0	99,3	97,9	98,8	0,55			
CEM	14	96,4	96,4	96,4	96,3	93,7	95,8	1,21			
(30K, 30S, 20LL), w/z = 0.40	28	88,2	86,3	86,2	83,8	80,4	84,9	3,01			
	42	78,2	75,1	78,3	75,1	71,6	75,7	2,74			
	56	72,7	69,8	75,5	69,9	66,5	70,9	3,41			

Tabelle 29 relative dynamische E-Moduli der Betone, 28d Vorlagerung, CIF (1)

Seite 78 von 106

			relativer dynamischer E-Modul									
	An-		Einzelw	erte je Prob	ekörper			Stan-				
Beton	zahl FTW	1	2	3	4	5	Mittelwert	dardabwei- chung				
					%							
1	2	3	4	5	6	7	8	9				
	4	97,5	98,4	98,1	97,6	98,0	97,9	0,36				
	10	93,4	94,7	94,2	95,0	94,1	94,3	0,62				
CEM	14	90,2	91,9	90,8	91,2	90,3	90,9	0,73				
(35K, 305, 35LL), w/z = 0.40	28	72,4	73,1	70,9	71,9	70,9	71,8	0,97				
	42	61,7	64,7	61,8	62,0	58,6	61,8	2,14				
	56	53,1	55,9	51,5	51,9	48,0	52,1	2,87				
	2	99,1	97,8	98,4	98,6	98,6	98,5	0,50				
	12	96,7	92,9	94,2	95,0	96,3	95,0	1,52				
	16	93,2	90,7	92,3	92,7	94,8	92,7	1,49				
(20R, 303, 50LL), w/z = 0.40	28	72,5	74,0	76,2	72,5	74,1	73,8	1,52				
11/2 = 0,10	42	50,8	53,3	57,1	52,7	53,6	53,5	2,29				
	56	37,4	37,7	37,4	38,9	36,5	37,6	0,87				
	2	99,0	99,6	99,0	99,3	99,4	99,3	0,27				
0.514	12	98,9	99,3	98,3	98,6	98,6	98,7	0,39				
CEM (50K 30S 20LL)	16	98,0	98,5	96,9	97,5	97,5	97,7	0,62				
w/z = 0.35	28	97,9	97,5	95,9	96,9	96,9	97,0	0,75				
,	42	97,3	97,5	96,2	96,6	97,2	96,9	0,54				
	56	97,9	97,5	96,9	97,2	97,3	97,3	0,37				
	2	99,7	98,1	99,2	98,7	98,4	98,8	0,63				
0.514	12	98,5	96,8	98,2	97,9	97,5	97,8	0,67				
CEM (35K 30S 35U)	16	95,6	92,9	94,0	93,1	95,0	94,1	1,19				
w/z = 0.35	28	89,6	87,5	87,3	87,2	91,1	88,5	1,71				
,	42	80,5	76,5	77,0	78,1	81,2	78,6	2,09				
	56	76,1	72,7	72,6	73,8	77,3	74,5	2,10				
	2	99,3	99,0	98,6	98,1	98,8	98,8	0,46				
0.514	8	98,1	95,8	96,7	96,6	97,5	96,9	0,90				
	14	95,1	93,8	94,2	94,9	95,3	94,7	0,64				
W/z = 0.35	28	82,8	80,4	82,2	85,5	84,7	83,1	2,02				
,	42	72,6	67,2	70,4	76,3	73,6	72,0	3,45				
	56	64,6	58,9	62,8	69,4	66,9	64,5	4,00				

Tabelle 30 relative dynamische E-Moduli der Betone, 28d Vorlagerung, CIF (2)

Seite 79 von 106

Tabelle 31	Abwitterungen	der Betone,	90d Vorlagerung,	CIF (1)
------------	---------------	-------------	------------------	---------

		-	Abwitterung								
	An-		Einzelw	verte je Prob	ekörper			Stan-			
Beton	zahl FTW	1	2	3	4	5	Mittelwert	dardabwei- chung			
					kg/m²						
1	2	3	4	5	6	7	8	9			
	4	0,01	0,01	0,01	0,01	0,01	0,01	0,00			
CEM I, w/z =	10	0,04	0,03	0,02	0,03	0,04	0,03	0,01			
0,50	12	0,06	0,04	0,04	0,05	0,06	0,05	0,01			
	28	0,13	0,09	0,10	0,16	0,16	0,13	0,03			
	4	0,06	0,04	0,05	0,06	0,07	0,06	0,01			
	10	0,09	0,06	0,08	0,07	0,09	0,08	0,01			
CEM III/A, w/z =	14	0,21	0,11	0,14	0,16	0,14	0,15	0,04			
0,50	28	0,53	0,17	0,26	0,26	0,26	0,30	0,14			
	42	0,83	0,27	0,39	0,45	0,41	0,47	0,21			
	4	0,05	0,03	0,04	0,03	0,03	0,04	0,01			
CEM	14	0,07	0,08	0,07	0,07	0,07	0,07	0,01			
(50K,30S,20LL),	28	0,09	0,18	0,12	0,10	0,12	0,12	0,04			
w/z = 0,50	42	0,14	0,26	0,17	0,17	0,16	0,18	0,05			
	56	0,18	0,37	0,24	0,23	0,22	0,25	0,07			
	2	0,05	0,04	0,05	0,05	0,05	0,05	0,00			
CEM	8	0,13	0,08	0,10	0,12	0,14	0,11	0,02			
(35K,30S,35LL),	14	0,31	0,17	0,19	0,31	0,22	0,24	0,07			
w/z = 0,50	28	1,34	0,81	0,80	0,80	0,61	0,87	0,28			
	42	1,95	1,45	1,55	1,46	1,46	1,57	0,21			
	4	0,14	0,18	0,18	0,20	0,19	0,18	0,02			
	6	0,18	0,22	0,22	0,25	0,25	0,22	0,03			
	14	0,49	0,43	0,40	0,50	0,55	0,47	0,06			
(20R, 303, 50LL), w/z = 0.50	28	2,36	1,72	1,74	2,09	2,68	2,12	0,41			
W/2 = 0,00	42	4,32	4,11	4,08	4,61	5,59	4,54	0,62			
	56	6,54	6,00	6,58	6,92	8,02	6,81	0,75			
	4	0,02	0,03	0,02	0,03	0,02	0,02	0,00			
	8	0,02	0,03	0,03	0,04	0,03	0,03	0,00			
CEM	14	0,04	0,05	0,05	0,05	0,04	0,04	0,00			
(30K, 30S, 20LL), w/z = 0.40	28	0,08	0,08	0,07	0,07	0,08	0,08	0,00			
	42	0,10	0,10	0,08	0,09	0,10	0,09	0,01			
	58	0,13	0,13	0,10	0,11	0,16	0,13	0,02			

Seite 80 von 106

		Abwitterung											
	An-		Einzelw	verte je Prob	ekörper			Stan-					
Beton	zahl FTW	1	2	3	4	5	Mittelwert	dardabwei- chung					
					kg/m²								
1	2	3	4	5	6	7	8	9					
	4	0,04	0,04	0,04	0,05	0,04	0,04	0,01					
	10	0,07	0,07	0,06	0,08	0,06	0,07	0,01					
CEM	14	0,09	0,09	0,08	0,10	0,07	0,08	0,01					
(35R, 303, 35LL), w/z = 0.40	28	0,19	0,18	0,16	0,18	0,09	0,16	0,04					
0,10	42	0,27	0,26	0,24	0,25	0,12	0,23	0,06					
	56	0,36	0,39	0,31	0,37	0,16	0,31	0,09					
	4	0,08	0,11	0,08	0,08	0,08	0,09	0,02					
CEM	14	0,18	0,22	0,20	0,20	0,20	0,20	0,02					
(20K,30S,50LL),	28	0,73	0,69	0,71	0,71	0,68	0,70	0,02					
w/z = 0,40	42	1,13	1,09	1,15	1,13	1,14	1,13	0,02					
	52	1,33	1,30	1,35	1,32	1,46	1,35	0,06					
	4	0,01	0,01	0,01	0,02	0,02	0,01	0,00					
0FM	10	0,02	0,02	0,02	0,02	0,02	0,02	0,00					
(50K 30S 20LL)	14	0,02	0,02	0,03	0,03	0,03	0,03	0,00					
w/z = 0.35	28	0,05	0,04	0,06	0,05	0,04	0,05	0,01					
	42	0,07	0,05	0,08	0,07	0,05	0,06	0,01					
	56	0,08	0,06	0,09	0,10	0,06	0,08	0,02					
	4	0,04	0,05	0,03	0,04	0,04	0,04	0,01					
OFM	10	0,06	0,07	0,06	0,06	0,06	0,06	0,01					
(35K 30S 35LL)	14	0,08	0,08	0,08	0,08	0,07	0,08	0,01					
w/z = 0.35	28	0,17	0,13	0,15	0,15	0,13	0,15	0,01					
	42	0,26	0,21	0,22	0,23	0,20	0,22	0,02					
	58	0,39	0,30	0,36	0,35	0,29	0,34	0,04					
	2	0,01	0,02	0,01	0,01	0,02	0,01	0,01					
CEM	12	0,07	0,06	0,05	0,06	0,06	0,06	0,01					
(20K,30S,50LL),	14	0,08	0,08	0,07	0,07	0,07	0,08	0,01					
w/z = 0,35	26	0,13	0,14	0,13	0,12	0,14	0,13	0,01					
-	36	0,18	0,18	0,17	0,18	0,19	0,18	0,01					

Seite 81 von 106

		relativer dynamischer E-Modul										
	An-		Einzelw	verte je Prob	ekörper			Stan-				
Beton	zahl FTW	1	2	3	4	5	Mittelwert	dardabwei- chung				
					%							
1	2	3	4	5	6	7	8	9				
	4	100,0	100,6	99,9	98,5	99,9	99,8	0,78				
CEM I, w/z =	10	100,1	100,4	100,7	98,9	99,7	99,9	0,70				
0,50	12	99,4	100,4	100,8	97,8	99,1	99,5	1,19				
	28	97,5	97,6	99,6	96,5	98,4	97,9	1,17				
	4	99,2	98,8	98,2	99,0	99,7	98,9	0,54				
	10	98,0	97,8	97,3	98,8	98,4	98,0	0,56				
0.50 CEM III/A, W/Z =	14	94,9	95,4	93,8	98,6	96,1	95,8	1,78				
0,00	28	92,3	93,9	91,9	96,0	95,4	93,9	1,83				
	42	86,4	89,3	86,5	96,0	92,8	90,2	4,18				
	4	97,5	98,1	97,1	97,8	98,2	97,7	0,43				
CEM	14	91,0	91,6	91,2	92,4	90,4	91,3	0,72				
(50K,30S,20LL),	28	79,9	81,3	81,3	80,4	80,7	80,7	0,62				
w/z = 0,50	42	73,8	74,5	75,2	74,1	73,2	74,2	0,74				
	56	67,1	67,9	69,1	68,8	64,4	67,4	1,88				
	2	98,1	98,4	99,7	98,8	98,3	98,6	0,65				
	8	91,3	92,9	93,6	92,9	91,8	92,5	0,95				
CEM (25K 20S 25U)	14	83,3	87,5	89,5	88,8	86,1	87,0	2,48				
w/z = 0.50	28	65,3	72,5	76,1	71,7	66,4	70,4	4,49				
,	42	35,3	54,5	57,1	52,5	51,6	50,2	8,57				
	56	35,2	47,8	50,7	44,9	46,2	44,9	5,86				
	4	91,4	94,4	94,5	95,5	95,3	94,2	1,65				
0 5 M	6	89,8	91,2	92,1	92,2	92,5	91,6	1,12				
CEM (20K 30S 50LL)	14	77,4	76,0	83,4	80,3	79,9	79,4	2,84				
w/z = 0.50	28	36,2	30,5	40,4	43,6	43,5	38,8	5,53				
	42	37,4	39,9	39,1	43,8	43,7	40,8	2,86				
	56	34,4	39,6	39,4	45,2	44,8	40,7	4,46				
	4	99,7	99,6	98,9	99,0	98,8	99,2	0,42				
0FM	8	98,9	99,3	98,9	97,5	98,9	98,7	0,69				
CEM (50K,30S,20LL), - w/z = 0,40	14	97,0	96,1	95,3	95,0	95,9	95,9	0,79				
	28	94,6	92,4	92,4	90,6	92,7	92,5	1,45				
	42	95,0	92,5	93,3	90,8	92,1	92,7	1,55				
	58	93,5	91,1	92,2	88,9	90,2	91,2	1,78				

Tabelle 33 relative dynamische E-Moduli der Betone, 90d Vorlagerung, CIF (1)

Seite 82 von 106

		relativer dynamischer E-Modul										
	An-		Einzelw	erte je Prob	ekörper			Stan-				
Beton	zahl	1	2	3	4	5	Mittelwert	dardabwei-				
	FTW		-	•	-	•		chung				
					%		-					
1	2	3	4	5	6	7	8	9				
	4	98,0	97,8	97,9	98,6	98,6	98,2	0,37				
0 - 14	10	96,0	94,6	94,5	95,3	95,2	95,1	0,61				
(25K 20S 25U)	14	94,8	94,1	93,6	93,2	93,9	93,9	0,61				
w/z = 0.40	28	88,7	90,4	89,6	88,6	90,3	89,5	0,87				
,	42	82,2	86,9	84,7	83,7	85,6	84,6	1,78				
	56	77,6	82,9	81,0	80,5	80,8	80,6	1,91				
	4	96,8	95,0	96,4	96,4	96,5	96,2	0,69				
CEM	14	86,6	88,2	88,1	89,8	88,9	88,3	1,17				
(20K,30S,50LL),	28	67,2	71,9	71,1	73,2	73,4	71,4	2,49				
w/z = 0,40	42	55,1	52,2	53,7	58,9	59,0	55,8	3,07				
	52	48,2	47,4	50,3	47,4	47,5	48,1	1,24				
	4	100,1	99,4	100,0	99,4	99,7	99,7	0,34				
0 - 14	10	99,1	98,4	99,2	98,6	98,7	98,8	0,35				
	14	98,8	98,8	99,2	98,6	98,4	98,7	0,30				
w/z = 0.35	28	97,4	97,2	98,2	97,9	97,0	97,5	0,49				
,	42	96,4	96,2	98,0	96,8	96,7	96,8	0,70				
	56	96,1	95,4	98,0	97,2	96,1	96,5	1,03				
	4	98,4	98,7	97,8	99,0	98,4	98,5	0,43				
0 - 14	10	97,2	96,6	96,8	96,9	97,2	96,9	0,27				
(25K 20S 25U)	14	94,9	95,2	92,9	95,4	95,8	94,8	1,11				
w/z = 0.35	28	92,3	92,9	91,6	93,0	92,8	92,6	0,58				
,	42	91,7	89,4	89,6	90,9	91,2	90,5	1,03				
	58	88,5	85,9	85,4	86,4	88,8	86,9	1,57				
	2	100,4	99,4	98,8	99,0	98,5	99,2	0,71				
CEM	12	96,3	96,9	96,6	95,3	96,4	96,3	0,59				
(20K,30S,50LL),	14	94,2	95,7	95,2	93,7	95,5	94,8	0,87				
w/z = 0,35	26	90,2	91,2	92,9	91,7	91,8	91,6	0,95				
.,_ 0,00	36	85,8	87,0	88,2	87,3	87,8	87,2	0,94				

Tabelle 34 relative dynamische E-Moduli der Betone, 90d Vorlagerung, CIF (2)

Seite 83 von 106

		Abwitterung											
	An-		Einzelw	verte je Prob	ekörper			Stan-					
Beton	zahl FTW	1	2	3	4	5	Mittelwert	dardabwei- chung					
					kg/m²								
1	2	3	4	5	6	7	8	9					
	4	0,07	0,05	0,04	0,06	0,05	0,05	0,01					
CEM I, w/z =	10	0,16	0,12	0,13	0,14	0,11	0,13	0,02					
0,50	14	0,20	0,15	0,17	0,18	0,13	0,16	0,03					
	28	0,39	0,30	0,33	0,37	0,28	0,34	0,05					
	4	0,86	0,76	0,94	0,68	0,83	0,81	0,10					
	10	1,39	1,31	1,47	1,22	1,33	1,34	0,10					
0,50	14	1,63	1,56	1,71	1,48	1,54	1,58	0,09					
	28	2,19	2,10	2,30	2,12	2,12	2,17	0,08					
054	4	0,79	0,65	0,78	0,69	0,58	0,70	0,09					
CEM (50K 30S 20LL)	12	1,37	1,21	1,36	1,29	1,06	1,26	0,13					
w/z = 0.50	14	1,51	1,33	1,52	1,42	1,15	1,38	0,15					
,	28	2,07	1,85	2,13	2,07	1,67	1,96	0,19					
OFM	4	0,69	0,69	0,58	0,58	0,71	0,65	0,06					
CEM (35K 30S 35LL)	12	1,34	1,34	1,15	1,14	1,40	1,27	0,12					
w/z = 0.40	14	1,46	1,47	1,25	1,26	1,51	1,39	0,12					
	28	2,08	2,09	1,76	1,95	2,18	2,01	0,16					
OF M	4	1,51	1,50	1,46	1,45	1,44	1,47	0,03					
CEM (20K,30S,50LL), - w/z = 0.35	10	2,60	2,54	2,47	2,62	2,49	2,54	0,07					
	14	3,04	3,02	2,95	3,07	2,95	3,01	0,05					
· ·	28	4,22	4,22	4,16	4,28	4,07	4,19	0,08					

 Tabelle 35
 Abwitterungen der Betone, CDF

Seite 84 von 106

		relativer dynamischer E-Modul											
	An-	-	Einzelw	verte je Prob	ekörper			Stan-					
Beton	zahl FTW	1	2	3	4	5	Mittelwert	dardabwei- chung					
					%								
1	2	3	4	5	6	7	8	9					
	4	99,7	100,2	99,6	101,1	99,6	100,0	0,64					
CEM I, $w/z =$	10	100,1	100,6	99,6	100,4	100,0	100,1	0,36					
0,50	14	100,8	100,9	99,6	101,8	99,9	100,6	0,86					
	28	101,8	101,2	100,2	101,8	100,3	101,1	0,80					
	4	100,2	100,0	99,7	100,3	99,3	99,9	0,42					
	10	100,0	100,4	100,4	100,0	99,6	100,0	0,32					
0,50	14	98,6	97,6	100,5	100,4	100,0	99,4	1,25					
	28	92,2	87,8	94,7	96,1	89,5	92,1	3,47					
0514	4	100,0	99,3	100,0	101,2	97,7	99,7	1,27					
(50K 30S 20LL)	12	99,7	99,5	98,9	102,7	97,5	99,7	1,88					
w/z = 0.50	14	98,8	99,3	98,0	101,3	97,6	99,0	1,46					
	28	95,6	99,2	96,1	97,5	95,2	96,7	1,63					
0514	4	99,1	99,6	99,6	99,4	99,6	99,5	0,25					
(35K 30S 35U)	12	99,6	100,0	99,6	99,0	100,0	99,6	0,42					
w/z = 0.40	14	99,6	100,5	100,0	99,3	100,3	99,9	0,51					
,	28	92,4	92,2	98,4	88,7	99,0	94,1	4,41					
0514	4	99,0	98,7	98,3	98,7	99,1	98,8	0,31					
CEM (20K,30S,50LL), w/z = 0,35	10	99,3	98,8	99,3	98,2	99,1	98,9	0,47					
	14	98,2	97,1	98,3	95,1	97,3	97,2	1,28					
	28	90,1	84,2	82,7	86,9	82,3	85,2	3,25					

Tabelle 36 relative dynamische E-Moduli der Betone, CDF

Seite 85 von 106

w/z-Wert [-] Zement		Hüttensand-	Fließmittel	Au	sbreitm [mm]	aß	Biegezugfestigkeir [N/mm²]		it Druckfestigkeit [N/mm²]		Karbonatisierungs- tiefe [mm]	
[]		quantat		10 min	30 min	60 min	7 d	28 d	7 d	28 d	140 d	1 a
1	2	3	4	5	6	7	8	9	10	11	12	13
	CEM152,5 R			170	155	150	8,5	8,8	60,0	82,3	0,40	0,77
	CEM I 42,5 N			190	163	160	6,3	8,0	35,9	59,1	2,08	2,66
	CEM III/A 42,5 N			190	160	155	6,7	7,6	34,4	58,5	4,04	4,68
	CEM (65K,15S,20LL)			190	165	153	6,8	9,7	41,3	61,4	2,61	4,34
	CEM (50K,15S,35LL)			195	170	160	5,5	7,8	28,1	41,5	5,35	7,84
0.50	CEM (50K,30S,20LL)	S1	-	185	170	160	5,9	7,9	31,3	50,4	4,86	5,62
-,	CEM (35K,15S,50LL)			192	185	175	3,9	4,9	15,5	27,2	8,84	13,12
	CEM (35K,30S,35LL)			195	180	180	4,6	5,9	20,2	35,8	7,26	9,66
	CEM (35K,45S,20LL)			187	180	175	4,9	6,5	24,2	42,1	5,41	7,23
	CEM (20K,30S,50LL)			185	178	172	2,6	3,5	8,9	20,2	11,95	17,19
	CEM (20K,45S,35LL)			180	165	155	3,4	4,6	14,0	25,5	9,05	13,19
	CEM (20K,15S,65LL)			190	180	170	1,7	2,8	6,3	11,2	18,03	20,00
	CEM152,5 R			165	145	140	10,6	9,5	84,1	96,9	0,12	0,13
	CEM142,5 N			188	170	155	9,2	9,2	68,5	86,6	0,59	0,73
	CEM II/A 42,5 N CEM (65K,15S,20LL)			160	145	138	8,7	8,7	50,3	79,7	1,29	1,49
0,40 CEM (65K,15S,20LL) CEM (50K,15S,35LL) CEM (50K,30S,20LL) CEM (35K,15S,50LL) CEM (35K,15S,50LL)			178	155	155	9,0	10,5	59,0	82,2	0,95	1,26	
	CEM (50K, 15S, 35LL)	S1	LZF	175	155	145	7,1	9,1	43,0	62,0	2,75	4,42
	CEM (50K,30S,20LL)			188	170	160	7,9	9,3	47,3	71,9	2,47	3,03
	CEM (35K, 155, 50LL)			213	1/5	162	5,9	1,1	26,9	42,2	5,61	8,33
	CEM (35K, 305, 35LL)			205	183	160	0,8	8,5	33,6	57,6	3,45	5,22
	CENI (30K,455,20LL)			193	100	102	1,1	7,9	30,4	00,4	2,00	3,02
	CEM (20K, 303, 30LL)			210	155	155	4,1	5,2	25.6	32,4	7,31	7.09
	CEM (20K,453,55LL)			170	170	140	2.0	0,4	20,0	40,7	0.12	15 10
	CEM1525 P			170	150	140	2,5	4,5	00.8	110.1	9,13	0.16
	CEMI 42.5 N			217	225	225	10.3	10.1	90,0 80.3	00.7	0.35	0,10
	CEM III/A 12 5 N			220	215	200	10,3	12.1	66.8	0/ Q	0,00	0,35
	CEM (65K 15S 2011)			165	165	165	9.6	11.3	74.5	0/ 8	0,00	0,70
	CEM (50K 15S 35U)			103	103	180	9,0	11,5	58.1	80.8	1.23	1.85
	CEM (50K 30S 20LL)			185	180	175	9,2	10.5	65.0	92.2	0.87	1,00
0,35	CEM (35K 15S 50LL)	S1	LZF	197	180	155	71	87	37.8	58.9	3 15	4.88
	CEM (35K 30S 35LL)			168	148	133	92	9.6	50.0	70.9	2 12	373
	CEM (35K 45S 20LL)			210	210	187	9.0	9.9	54.0	87.7	1.51	2 03
	CEM (20K.30S.50LL)			160	140	125	5.5	7.6	22.4	42.4	5.62	8.42
	CEM (20K.45S.35LL)			175	150	125	5.6	8.1	30.0	55.1	4.34	5.75
	CEM (20K.15S.65LL)			185	150	123	3.9	5.7	17.0	30.3	7.10	12.57
	CEM (65K.15S.20LL)			167	200	220	8.1	10.3	71.3	92.8	0.36	0.55
	CEM (50K, 15S, 35LL)	1		188	212	235	9,0	10,9	60,8	80,5	1,22	1,93
0,35	CEM (50K,30S,20LL)	1		170	200	215	8,6	9,5	58,2	86,0	1,26	1,50
	CEM (35K,15S,50LL)			158	165	172	6,4	9,9	34,3	53,8	3,45	6,27
	CEM (35K,30S,35LL)	S1	ACE 391	200	215	220	7,2	8,6	43,7	68,4	1,80	3,16
	CEM (35K,45S,20LL)			160	165	173	9,1	9,4	53,7	82,4	1,56	2,46
	CEM (20K,30S,50LL)]		180	188	178	5,7	6,7	25,6	47,1	4,40	6,76
	CEM (20K,45S,35LL)]		175	180	160	6,8	7,8	34,2	57,1	3,20	5,37
	CEM (20K.15S.65LL)			205	205	190	4.2	5.7	18.4	33.3	6.23	12.04

 Tabelle 37
 Ergebnisse der Feinbetonprüfungen mit Hüttensand S1

Seite 86 von 106

w/z-Wert Zement		Hüttensand-	Fließmittel	Ausbreitmaß [mm]			Biegezugfestigkeit [N/mm²]		t Druckfestigkeit [N/mm²]		Karbonatisierungs- tiefe [mm]	
[-]		quantat		10 min	30 min	60 min	7 d	28 d	7 d	28 d	140 d	1 a
1	2	3	4	5	6	7	8	9	10	11	12	13
	CEM (50K,30S,20LL)			200	185	184	7,1	8,0	38,2	62,5	1,69	2,61
	CEM (35K,30S,35LL)	S2		206	190	192	4,8	6,6	25,2	42,5	4,07	6,10
	CEM (20K,30S,50LL)	02		223	205	193	3,5	3,4	14,4	23,8	7,75	11,59
0.50	CEM (20K,45S,35LL)	S3		199	179	175	4,2	5,5	20,6	38,3	5,57	7,79
0,00	CEM (50K,30S,20LL)			192	170	163	6,2	7,7	32,2	54,2	3,43	5,49
	CEM (35K,30S,35LL)			200	186	175	4,7	6,1	20,1	36,1	5,89	8,41
	CEM (20K,30S,50LL)			199	192	172	2,8	4,1	11,8	24,3	8,90	11,83
	CEM (20K,45S,35LL)			196	178	167	3,6	4,6	15,6	32,3	6,72	9,98
	CEM (50K,30S,20LL)			205	195	210	8,2	9,8	53,7	77,7	1,61	2,22
	CEM (35K,30S,35LL)	52		197	185	183	7,7	8,4	39,7	59,5	1,98	3,51
	CEM (20K,30S,50LL)	52		183	155	150	4,5	6,0	22,2	39,3	4,17	7,95
0.40	CEM (20K,45S,35LL)		ACE 201	184	157	160	6,0	5,8	31,1	50,3	3,22	5,28
0,40	CEM (50K,30S,20LL)		ACE 391	160	160	153	8,7	10,6	50,5	71,6	1,64	2,52
	CEM (35K,30S,35LL)	60		175	170	164	6,4	7,9	32,9	54,6	3,71	4,93
	CEM (20K,30S,50LL)			180	166	157	4,7	6,0	20,2	37,5	6,16	8,76
	CEM (20K,45S,35LL)			220	210	193	5,5	6,6	25,7	43,6	4,05	7,02
	CEM (50K,30S,20LL)			188	203	220	9,2	11,4	64,9	91,3	0,22	0,30
	CEM (35K,30S,35LL)	60		197	201	195	7,9	9,4	46,2	73,5	1,21	2,42
	CEM (20K,30S,50LL)	52		160	160	152	7,1	7,0	30,8	52,9	3,19	5,10
0,35	CEM (20K,45S,35LL)			164	154	146	9,0	6,6	46,7	65,9	2,20	2,67
	CEM (50K,30S,20LL)			180	170	162,5	8,4	10,3	62,3	89,8	0,91	0,95
	CEM (35K,30S,35LL)	S3		177	161	152	8,6	9,5	51,2	70,2	1,82	2,99
	CEM (20K,30S,50LL)			205	200	160	6,0	7,3	30,4	51,0	4,31	6,51
	CEM (20K,30S,50LL) CEM (20K,45S,35LL)			205	210	195	7,8	8,8	39,7	62,8	3,00	4,68

 Tabelle 38
 Ergebnisse der Feinbetonprüfungen mit unterschiedlichen Hüttensandqualitäten

Seite 87 von 106

w/z-Wert	Zement	Hüttensand-	Kalkstein	Fließmittel	Fließmittel	Ausbreitmaß P [mm] V		Ausbreitmaß Plastische [mm] Viskosität			keit	Karbonatisierungs tiefe [mm]		
[-]		quaiitat			[kg/m²]	10 min	30 min	60 min	[Pa.s]	2 d	7 d	28 d	140 d	1 a
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	CEM I 52,5 R	-	-	LZF	2,30	555	535	480	55	42,5	61,8	77,9	1,14	n. b.
	CEM I 42,5 N	-	-	LZF	1,00	545	460	400	62	29,8	45,1	57,7	1,19	n. b.
	CEM III/A	-	-	LZF	0,85	570	510	455	59	18,8	33,1	55,5	3,66	n. b.
0,50	CEM (50K,30S,20LL)	S1	LL 4200	ACE 391	1,50	600	560	505	62	14,8	30,6	51,8	1,19	n. b.
	CEM (35K,30S,35LL)	S1	LL 4200	ACE 391	0,88	545	585	455	61	8,2	18,5	35,2	n. b.	n. b.
	CEM (35K,45S,20LL)	S1	LL 4200	ACE 391	1,13	550	520	440	59	8,6	21,6	44,2	6,33	n. b.
	CEM (45K,35S,20LL)	S1	LL 4200	ACE 391	1,20	555	530	450	64	13,1	26,8	48,8	4,30	n. b.
	CEM I 52,5 R	-	-	ACE 391	8,50	540	490	440	164	65,1	87,5	106,8	0,19	n. b.
	CEM I 42,5 N	-	-	ACE 391	5,35	540	470	410	314	51,4	75,4	104,7	1,19	2,50
	CEM III/A	-	-	ACE 391	3,35	620	590	440	180	36,3	65,2	105,7	2,30	5,31
	CEM (65K,15S,20LL)	S1	LL 4200	ACE 391	5,70	580	545	415	213	41,6	68,0	95,5	1,20	n. b.
	CEM (50K,15S,35LL)	S1	LL 4200	ACE 391	3,33	540	500	470	275	34,7	54,0	78,5	3,92	n. b.
	CEM (50K,30S,20LL)	S1	LL 4200	ACE 391	3,75	585	560	470	219	32,1	61,2	82,9	1,15	n. b.
	CEM (35K,15S,50LL)	S1	LL 4200	ACE 391	2,50	550	555	510	298	21,3	35,9	56,9	2,18	4,96
	CEM (35K,30S,35LL)	S1	LL 4200	ACE 391	2,25	525	490	470	332	22,6	46,0	74,6	3,33	5,04
	CEM (35K,45S,20LL)	S1	LL 4200	ACE 391	2,60	550	570	535	262	22,0	50,0	78,5	3,33	3,09
	CEM (20K,30S,50LL)	S1	LL 4200	ACE 391	2,05	585	615	420	291	9,1	20,0	47,2	5,73	n. b.
0.25	CEM (20K,45S,35LL)	S1	LL 4200	ACE 391	2,00	560	560	420	418	9,6	36,4	58,0	3,59	5,87
0,55	CEM (20K,15S,65LL)	S1	LL 4200	ACE 391	2,00	590	550	470	250	8,8	18,5	34,7	7,56	10,75
	CEM (45K,35S,20LL)	S1	LL 4200	ACE 391	3,78	550	590	480	270	26,8	51,7	89,4	4,39	n. b.
	CEM (65K,15S,20LL)	S1	LL 4800	LZF	2,93	550	525	500	152	52,0	73,1	99,9	1,27	1,52
	CEM (50K,15S,35LL)	S1	LL 4800	LZF	1,88	540	510	425	267	38,8	50,5	73,8	1,81	2,98
	CEM (50K,30S,20LL)	S1	LL 4800	LZF	2,35	560	560	525	182	40,5	66,9	90,2	0,71	1,77
	CEM (35K,15S,50LL)	S1	LL 4800	LZF	2,05	595	540	530	188	22,6	39,8	60,0	3,89	6,72
	CEM (35K,30S,35LL)	S1	LL 4800	LZF	1,70	530	405	280	510	23,7	39,7	71,3	3,09	4,92
	CEM (35K,45S,20LL)	S1	LL 4800	LZF	2,30	600	590	405	326	24,3	43,8	88,6	2,32	3,76
	CEM (20K,30S,50LL)	S1	LL 4800	LZF	1,40	525	340	240	490	9,4	26,2	45,5	5,57	8,12
	CEM (20K,45S,35LL)	S1	LL 4800	LZF	1,53	535	430	250	544	10,5	35,1	59,2	4,79	6,21
	CEM (20K 15S 65LL)	S1	11 4800	ACE 391	1 88	535	495	485	304	78	17.5	35.0	7 97	11.50

 Tabelle 39
 Ergebnisse der Betonprüfungen mit Hüttensand S1

Tabelle 40 Ergebnisse der Betonprüfungen mit unterschiedlichen Hüttensandqualitäten

w/z-Wert	Zement	Hüttensand-	Kalkstein	Fließmittel	Fließmittel [kg/m³]	Ausbreitmaß [mm]			Plastische Viskosität	Dru	uckfestigkeit [N/mm²]		Karbonatisierungs- tiefe [mm]	
[-]		qualitat			[kg/m³]	10 min	30 min	60 min	[Pa.s]	2 d	7 d	28 d	140 d	1 a
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	CEM (50K,30S,20LL)	S1	LL 4200	ACE 391	1,50	600	560	505	62	14,8	30,6	51,8	n. b.	n. b.
	CEM (50K,30S,20LL)	S2	LL 4200	ACE 391	1,23	550	523	478	57	13,4	42,8	58,9	n. b.	n. b.
0.50	CEM (50K,30S,20LL)	S3	LL 4200	ACE 391	1,13	530	443	368	51	11,6	30,6	48,7	n. b.	n. b.
0,50	CEM (35K,30S,35LL)	S1	LL 4200	ACE 391	0,88	545	585	455	61	8,2	18,5	35,2	n. b.	n. b.
	CEM (35K,30S,35LL)	S2	LL 4200	ACE 391	0,80	530	470	350	75	15,6	26,2	39,9	n. b.	n. b.
	CEM (35K,30S,35LL)	S3	LL 4200	ACE 391	0,80	520	380	310	62	13,2	21,6	40,8	n. b.	n. b.
	CEM (35K,30S,35LL)	S1	LL 4200	ACE391	2,05	595	585	510	123	14,5	34,5	58,7	4,16	n. b.
0,40	CEM (35K,30S,35LL)	S2	LL 4200	ACE391	2,05	580	620	555	149	26,4	44,6	68,6	n. b.	n. b.
	CEM (35K,30S,35LL)	S3	LL 4200	ACE391	2,10	600	595	488	115	17,2	43,4	68,6	n. b.	n. b.
	CEM (35K,30S,35LL)	S1	LL 4200	ACE 391	2,25	525	490	470	332	22,6	46,0	74,6	n. b.	n. b.
	CEM (35K,30S,35LL)	S2	LL 4200	ACE 391	2,20	573	475	437	396	26,2	52,6	74,2	n. b.	n. b.
	CEM (35K,30S,35LL)	S3	LL 4200	ACE 391	2,33	570	495	440	427	27,4	51,3	83,2	n. b.	n. b.
0,35	CEM (35K,30S,35LL)	S1	LL 4200	BT3	1,25	560	398	350	546	20,0	46,0	75,2	n. b.	n. b.
	CEM (20K,30S,50LL)	S1	LL 4200	ACE 391	2,05	585	615	420	291	9,1	20,0	47,2	n. b.	n. b.
	CEM (20K,30S,50LL)	S2	LL 4200	ACE 391	2,25	630	610	380	454	15,1	40,6	58,5	n. b.	n. b.
	CEM (20K,30S,50LL)	S3	LL 4200	ACE 391	1,40	580	475	298	238	10,0	29,8	50,2	n. b.	n. b.

Bild 64 Zusammenhang zwischen Fein- und Normalbetondruckfestigkeit

Seite 89 von 106

Prüfung	Finheit	Zeitnunkt	B050-CEMI	B050-CEM III/A	B050-CEM	B040-CEM	B035-CEM
rititiding	Linion	Zonpurint	52,5 R	42,5 N	(50K,30S,20LL)-W	(35K,30S,35LL)-W	(20K,30S,50LL)-W
1	2	3	4	5	6	7	8
	[mm]	15 min	530	510	460	470	443
Ausbreitmaß	[mm]	30 min	500	450	430	365	345
	[mm]	60 min	510	420	375	315	260
	1. Messung	Pa.S	53,30	43,10	39,80	181,20	468,60
Plastische Viskosität	2. Messung	Pa.S	58,40	36,60	38,00	176,30	480,20
	Mittelwert	Pa.S	55,85	39,85	38,90	178,75	474,40
	°C	15 min	22,7	22,8	25,2	26,9	24,6
Frischbetontemperatur	°C	30 min	23,2	22,8	23,4	25,3	23,9
	°C	60 min	22,0	21,9	22,1	25,2	23,2
Luftporengehalt	Vol%	-	2,8	2,0	1,4	1,9	1,8
Fließmittel	[kg/m³]	-	1,76	0,82	0,58	1,20	1,44

Tabelle 41 Frischbetoneigenschaften der Betone mit Werkszementen

Seite 90 von 106

Parameter		Alter	Einheit	B050-CEM I 52,5 R	B050-CEM III/A 42,5 N	B050-CEM (50K,30S,20LL)-W	B040-CEM (35K,30S,35LL)-W	B035-CEM (20K,30S,50LL)-W
1	2	3	4	5	6	7	8	9
	f _{c,cube}	2 d	[N/mm²]	48,1	19,4	20,4	23,6	13,3
	f _{c,cube}	2 d	[N/mm²]	46,4	20,1	20,2	23,4	13,3
	f _{c,cube}	2 d	[N/mm²]	47,3	19,8	20,5	23,6	13,6
	f _{cm,cube}	2 d	[N/mm²]	47,3	19,7	20,4	23,5	13,4
	f _{c,cube}	7 d	[N/mm²]	61,7	38,9	36,6	42,7	36,7
	f _{c,cube}	7 d	[N/mm²]	62,1	41,6	37,3	42,9	35,9
	f _{c,cube}	7 d	[N/mm²]	59,7	43,8	37,4	44,5	35,9
	f _{cm,cube}	7 d	[N/mm²]	61,2	41,4	37,1	43,4	36,2
	f _{c,cube}	28 d	[N/mm²]	73,0	56,9	56,8	64,8	56,1
	f _{c,cube}	28 d	[N/mm²]	71,5	55,0	55,3	62,8	60,9
Duvelée etistusié	f _{c,cube}	28 d	[N/mm²]	75,5	53,3	55,8	63,0	60,9
Drucktestigkeit Würfel	f _{c,cube}	28 d	[N/mm²]	73,7	56,7	55,3	63,0	59,9
Waller	f _{c,cube}	28 d	[N/mm²]	75,5	52,9	54,2	65,2	58,8
	f _{c,cube}	28 d	[N/mm²]	73,4	53,3	55,6	63,4	59,7
	f _{cm,cube}	28 d	[N/mm²]	73,8	54,7	55,5	63,7	59,4
	f _{c,cube}	91 d	[N/mm²]	77,2	65,2	62,1	69,6	68,5
	f _{c,cube}	91 d	[N/mm²]	80,6	62,3	63,0	66,6	66,3
	f _{c,cube}	91 d	[N/mm²]	75,9	64,7	60,2	70,9	62,4
	f _{cm,cube}	91 d	[N/mm²]	77,9	64,1	61,8	69,0	65,7
	f _{cm,cube,wet}	2 d	[N/mm²]	43,5	18,2	18,7	21,6	12,3
	f _{cm,cube,wet}	7 d	[N/mm²]	56,3	38,1	34,1	39,9	33,3
	f _{cm,cube,wet}	28 d	[N/mm²]	67,9	50,3	51,1	58,6	54,6
	f _{cm,cube,wet}	91 d	[N/mm²]	71,7	58,9	56,8	63,5	60,5
	F1	28 d	[kN]	1022,2	831,2	815,2	935,8	785,5
	F2	28 d	[kN]	991,2	819,6	844,0	898,3	787,1
	F3	28 d	[kN]	1019,0	828,6	816,1	934,8	784,3
	F _m	28 d	[kN]	1010,8	826,5	825,1	923,0	785,6
Druckfestigkeit	A	-	[mm²]	17671	17671	17671	17671	17671
Zylinder	f _{c,cyl,dry,1}	28 d	[N/mm²]	57,8	47,0	46,1	53,0	44,4
	f _{c,cyl,dry,2}	28 d	[N/mm²]	56,1	46,4	47,8	50,8	44,5
	f _{c,cyl,dry,3}	28 d	[N/mm²]	57,7	46,9	46,2	52,9	44,4
	f _{cm,cyl,dry}	28 d	[N/mm²]	57,2	46,8	46,7	52,2	44,5
	f _{cm,cyl,wet}	28 d	[N/mm²]	52,6	43,0	43,0	48,1	40,9

 Tabelle 42
 Ergebnisse der Druckfestigkeit der Betone mit Werkszementen

Seite 91 von 106

Parameter		Einheit	B050-CEM I 52,5 R	B050-CEM III/A 42,5 N	B050-CEM (50K,30S,20LL)-W	B040-CEM (35K,30S,35LL)-W	B035-CEM (20K,30S,50LL)-W
1	2	3	4	5	6	7	8
	f _{cm,cyl,dry}	[N/mm²]	57,20	46,77	46,69	52,23	44,46
Druckfootigkoit	f _{cm,cyl,wet}	[N/mm²]	52,62	43,03	42,95	48,05	40,90
DIUCKIEStigkeit	f _{ck}	[N/mm²]	44,62	35,03	34,95	40,05	32,90
	1/3 f _{cm,cyl,dry}	[N/mm²]	19,07	15,59	15,56	17,41	14,82
	E-1	[N/mm²]	33490	34180	33010	37201	34690
E-Modul -	E-2	[N/mm²]	35071	34662	34591	37110	37116
gemessen	E-3	[N/mm²]	34434	34273	35462	35202	35186
-	E _{cm} (sekant)	[N/mm²]	33962	34226	34236	36202	34938
	E _{c0m}	[N/mm²]	35600	33289	33270	34537	32732
DIN 1045-1:2008	α _i	_	0,92	0,90	0,90	0,91	0,89
	E _{cm}	[N/mm²]	32738	29887	29864	31402	29228
DIN EN 1992-1-1	E _{cm}	[N/mm²]	36206	34084	34066	35232	33569

 Tabelle 43
 Mess- und Rechenwerte zum Elastizitätsmodul der Betone mit Werkszementen

Seite 92 von 106

Parameter			B050-CEM I 52,5 R	B050-CEM III/A 42,5 N	B050-CEM (50K,30S,20LL)-W	B040-CEM (35K,30S,35LL)-W	B035-CEM (20K,30S,50LL)-W
1	2	3	4	5	6	7	8
	Z-1	[kN]	263,2	263,6	253,8	319,4	243,8
	Z-2	[kN]	302,4	276,5	272,8	308,0	317,7
	Z-3	[kN]	286,5	270,1	310,6	268,6	328,1
	Höhe 1	[mm]	292,50	296,00	292,00	295,50	295,50
	Höhe 2	[mm]	297,00	296,00	297,00	297,00	297,00
Spaltzugfestigkeit	Höhe 3	[mm]	295,50	296,00	296,50	294,50	294,50
	Durchmesser	[mm]	150,00	151,00	152,00	153,00	154,00
	f _{ct,sp,1}	[kN]	3,82	3,78	3,69	4,59	3,50
	f _{ct,sp,2}	[kN]	4,32	3,96	3,90	4,40	4,54
	f _{ct,sp,3}	[kN]	4,11	3,87	4,45	3,87	4,73
	f _{ct,sp,m}	[kN]	4,09	3,87	4,01	4,29	4,63
	f _{cm,cyl,dry}	[N/mm²]	52,62	43,03	42,95	48,05	40,90
	f _{ck}	[N/mm²]	44,62	35,03	34,95	40,05	32,90
DIN EN 1992-1-1	f _{ctm}	[N/mm²]	3,77	3,21	3,21	3,51	3,08
	f _{ctk; 0,05}	[N/mm²]	2,64	2,25	2,25	2,46	2,16
	f _{ctk; 0,95}	[N/mm²]	4,91	4,18	4,17	4,57	4,00
	f _{ct,sp}	[N/mm²]	4,19	3,57	3,56	3,90	3,42

 Tabelle 44
 Mess- und Rechenwerte zur Spaltzugfestigkeit der Betone mit Werkszementen

Seite 93 von 106

A	lter	Schwinddehnung [mm/m]					
Betonalter [d]	Trock- nungsalter [d]	CEM I 52,5 R	CEM III/A 42,5 N	B050-CEM (50K,30S,20LL)-W	B040-CEM (35K:30S,35LL)-W	B035-CEM (20K,30S,50LL)-W	
1	2	3	4	5	6	7	
1	-	0,000	0,000	0,000	0,000	0,000	
7	0	0,011	-0,041	-0,003	-0,006	-0,008	
7,4	0,4	0,014	-0,035	0,002	-0,001	-0,007	
8	1	0,018	-0,029	0,007	0,004	-0,006	
10	3	0,057	-0,015	0,031	0,025	0,012	
14	7	0,095	-0,004	0,068	0,047	0,032	
21	14	0,151	0,019	0,096	0,075	0,054	
35	28	0,198	0,056	0,142	0,116	0,091	
40	33	0,217	0,070	0,160	0,134	0,103	
63	56	0,266	0,118	0,205	0,177	0,152	
68	61	0,273	0,125	0,212	0,183	0,157	
91	84	0,304	0,153	0,232	0,197	0,173	
96	89	0,307	0,156	0,236	0,200	0,176	
123	116	0,327	0,175	0,253	0,218	0,195	
151	144	0,350	0,196	0,269	0,234	0,207	
180	173	0,362	0,208	0,285	0,248	0,223	

 Tabelle 45
 Schwinddehnungen der untersuchten Betone

Seite 94 von 106

		Kriechverformung [mm/m]				
		CEM I 52,5 R	CEM III/A 42,5 N	B050-CEM (50K,30S,20LL)-W	B040-CEM (35K,30S,35LL)-W	B035-CEM (20K,30S,50LL)-W
Kriechlast [N/mm³]					
Betonalter [d]	Zeit nach Belastung	19,4	15,2	16,2	16,2	15,2
	[d]					
1	2	3	4	5	6	7
35	0	0,000	0,000	0,000	0,000	0,000
36	1	0,083	0,048	0,057	0,044	0,046
37	2	0,112	0,060	0,073	0,057	0,053
42	7	0,181	0,081	0,108	0,080	0,073
49	14	0,234	0,098	0,131	0,105	0,092
63	28	0,300	0,122	0,158	0,126	0,108
86	51	0,377	0,136	0,196	0,156	0,135
91	56	0,394	0,138	0,206	0,168	0,139
118	83	0,453	0,175	0,219	0,174	0,164
145	111	0,493	0,190	0,228	0,190	0,183
175	140	0,531	0,210	0,273	0,229	0,194

 Tabelle 46
 Kriechverformung der untersuchten Betone

Bild 65 Gegenüberstellung der Mess- und Rechenwerte des Schwindversuchs

Bild 66 Gegenüberstellung der Mess- und Rechenwerte des Kriechversuchs

Probe:	B020-CE	:MI52,5			
28 d	Probe 1				
	Fläch	ne Nr.			
Stelle	1	2			
1	0,75	1,67			
2	0,86	0,83			
3	0,43	0,50			
4	0,43	1,00			
5	1,18	0,50			
6	2,68	0,83			
7	0,11	1,00			
8	0,43	0,67			
9	2,57	0,67			
10	1,39	0,67			
11	1,93	0,83			
12	1,71	0,83			
13	3,11	1,50			
14	1,71	1,17			
15	2,68	1,00			
16	1,93	1,33			
17	3,00	2,00			
18	0,32	0,83			
19	2,79	3,00			
20	0,75	2,17			
Mittel:	1,54	1,15			

 Tabelle 47
 Messwerte zur Bestimmung der Karbonatisierungstiefe des Betons B050-CEM I 52,5 R

 Probe: B050-CEM I 52,5 R

Mittlere Karbonatisierungstiefe nach 28d:

1,34 mm

56 d	Probe	1-1	Probe 1-2		
		Fläch	e Nr.		
Stelle	1	2	3	4	
1	1,05	1,24	1,56	1,51	
2	2,30	1,24	1,39	0,56	
3	1,25	2,65	1,04	1,48	
4	1,05	1,06	1,56	1,27	
5	2,09	3,00	1,39	1,27	
6	1,25	1,41	1,56	1,06	
7	1,05	2,12	2,08	0,85	
8	1,46	2,30	2,43	1,27	
9	2,93	1,06	1,04	1,69	
10	1,05	1,77	0,87	1,48	
11	1,46	2,30	0,69	1,48	
12	1,88	1,24	1,21	1,69	
13	1,67	2,47	0,87	2,54	
14	1,46	3,53	0,35	2,33	
15	1,25	1,24	1,39	2,12	
16	2,09	0,94	0,69	0,64	
17	1,88	1,64	0,52	0,64	
18	2,72	2,11	0,69	1,27	
19	1,25	3,99	0,87	1,06	
20	1,05	4,22	0,69	1,69	
Mittel:	1,61	2,08	1,14	1,40	

Mittlere Karbonatisierungstiefe nach 56d:

Rote, blaue und kursive Werte sind nicht in Bestimmung des Mittelwertes berücksichtigt.

1,56 mm

Tabelle 48 Messwerte zur Bestimmung der Karbonatisierungstiefe des Betons B050-CEM III/A 42,5 N

Probe: B050-CEM III/A 42,5 N							
28 d	Prol	be 1	Prol	be 2			
	Fläche Nr						
Stelle	1	2	3	4			
1	7,10	4,94	4,81	4,94			
2	7,34	3,76	4,51	5,88			
3	8,57	6,58	4,96	5,64			
4	9,30	5,17	4,21	5,64			
5	10,52	4,47	4,58	5,64			
6	5,14	7,52	5,73	4,70			
7	8,08	7,76	4,81	4,70			
8	6,61	8,23	6,19	4,70			
9	3,92	6,82	6,88	6,58			
10	4,90	7,05	6,65	5,88			
11	3,92	7,52	6,65	5,41			
12	4,90	7,52	7,57	6,58			
13	3,18	7,52	5,96	5,17			
14	5,38	6,35	7,57	7,05			
15	3,67	4,94	5,27	6,58			
16	3,92	4,23	6,42	7,76			
17	7,34	5,17	6,65	7,29			
18	7,34	5,17	5,04	5,17			
19	8,57	5,17	5,96	7,99			
20	8,32	3,76	4,58	7,29			
Mittel:	6.40	5.98	5.75	6.03			

Mittlere Karbonatisierungstiefe nach 28d:

6,04 mm

56 d	Prob	e 1-1	Prob	e 1-2	Prob	e 2-1	Prob	e 2-2
				Fläch	ne Nr.			
Stelle	1	2	3	4	5	6	7	8
1	6,37	9,07	10,52	9,12	7,23	6,60	8,19	8,62
2	7,96	10,20	9,35	10,52	7,23	8,19	8,91	8,85
3	7,05	10,20	11,69	9,35	6,07	7,96	8,43	9,55
4	7,74	10,43	9,12	9,82	6,30	10,01	7,95	10,25
5	8,19	9,07	10,76	8,88	7,23	9,10	7,95	8,39
6	7,51	7,48	7,72	6,78	7,93	6,37	10,11	7,46
7	7,74	7,48	7,25	6,78	5,60	6,37	7,46	6,76
8	9,10	6,80	7,25	7,25	7,23	6,37	8,91	6,99
9	9,78	8,16	5,61	7,71	7,93	6,82	9,63	8,16
10	11,83	7,71	6,08	6,54	6,07	7,73	7,46	6,52
11	9,78	6,80	5,14	4,91	5,83	5,69	5,78	3,03
12	7,28	7,26	5,61	4,21	4,90	5,23	4,33	3,03
13	7,51	5,44	7,01	4,44	3,50	5,46	5,78	5,59
14	7,96	6,58	6,78	4,67	3,73	5,69	5,06	6,99
15	7,28	11,11	4,68	4,91	3,97	6,60	5,30	7,69
16	6,14	5,90	4,44	3,74	6,07	9,55	8,43	6,99
17	6,14	8,16	4,91	7,95	7,70	10,24	7,70	8,39
18	5,01	8,62	5,85	7,25	7,47	10,46	9,87	6,06
19	6,14	6,80	6,55	4,44	7,47	8,87	7,95	7,92
20	7,96	9,75	6,31	8,18	9,33	14,79	8,67	9,32
Mittel:	7,51	8,15	6,89	6,87	6,44	7,54	7,69	7,81
Mittlere K	arbonatis	ierungstie	fe nach 5	6d:	7,36	mm		

Tabelle 49 Messwerte zur Bestimmung der Karbonatisierungstiefe des Betons B050-CEM (50K,30S,20LL)

Probe: B050-CEM (50K,30S,20LL)-W

110001				
28 d	Probe 1			
	Fläche Nr			
Stelle	1	2		
1	7,71	7,30		
2	6,66	5,21		
3	6,31	5,21		
4	7,36	6,95		
5	7,36	6,26		
6	8,76	4,52		
7	9,11	6,26		
8	8,06	8,34		
9	7,01	6,95		
10	7,36	5,56		
11	7,71	6,26		
12	7,01	7,30		
13	7,01	6,60		
14	5,61	7,30		
15	7,01	5,91		
16	8,06	7,30		
17	7,36	6,95		
18	8,76	7,99		
19	7,36	7,30		
20	8,06	9,04		
Mittel:	7,48	6,73		

Mittlere Karbonatisierungstiefe nach 28d:

7,10 mm

56 d	Prob	e 1-1	Prob	e 1-2	Prob	e 2-1	Prob	e 2-2
				Fläch	e Nr.			
Stelle	1	2	3	4	5	6	7	8
1	6,63	5,97	7,97	8,30	6,62	6,06	5,95	7,72
2	6,13	6,44	9,47	7,56	7,33	9,21	5,23	7,24
3	9,12	7,40	8,22	8,05	6,38	12,36	6,18	7,24
4	8,45	7,64	8,97	11,71	8,27	11,15	6,42	7,97
5	11,44	6,68	9,47	10,98	8,27	7,27	6,66	9,17
6	8,45	7,40	9,47	8,05	10,16	9,45	10,23	7,72
7	7,46	7,64	7,72	7,56	9,92	9,21	12,13	8,45
8	8,95	7,16	7,23	7,08	8,51	7,27	10,23	10,62
9	9,61	6,92	6,98	7,81	9,92	7,75	8,56	10,62
10	8,95	6,68	7,23	6,83	9,69	9,21	7,37	10,86
11	5,47	9,31	5,98	10,73	4,73	7,75	7,61	8,21
12	5,64	9,79	5,48	9,03	5,67	7,03	5,95	7,48
13	5,64	11,22	4,48	9,27	7,09	6,78	6,42	7,48
14	5,64	7,88	6,73	8,30	6,85	7,51	5,47	5,31
15	5,14	6,92	6,23	8,05	4,73	6,06	5,95	5,55
16	3,81	4,77	8,22	6,34	6,38	3,88	5,47	6,28
17	5,47	5,97	11,46	6,59	5,44	4,12	5,71	3,86
18	5,30	5,73	8,47	5,12	7,33	5,57	6,42	5,79
19	5,47	6,92	8,97	4,64	6,38	5,33	5,71	6,52
20	4,31	4,54	9,97	5,86	5,20	7,03	5,95	6,03
Mittel:	6,61	6,93	7,94	7,69	7,24	7,03	6,71	7,51

Mittlere Karbonatisierungstiefe nach 56d: 7,21 mm

Tabelle 50 Messwerte zur Bestimmung der Karbonatisierungstiefe des Betons B040-CEM (35K,30S,35LL)

Probe: B040-CEM (35K,30S,35LL)-W

Probe 1						
Fläche Nr.						
1	2					
3,50	3,48					
3,50	3,14					
2,80	3,14					
4,55	4,88					
3,15	4,18					
6,65	7,32					
8,40	6,97					
7,70	5,57					
7,35	5,92					
5,60	6,97					
7,35	8,01					
6,65	5,57					
7,00	6,62					
6,65	7,32					
7,35	8,71					
5,60	7,32					
7,35	6,62					
6,30	7,32					
7,00	8,36					
7,00	6,62					
6,93	7,01					
	Prol Prol Fläche Nr 1 3,50 3,50 2,80 4,55 3,15 6,65 8,40 7,70 7,35 5,60 7,35 6,65 7,00 6,65 7,35 5,60 7,35 6,60 7,35 6,60 7,35 6,60 7,35 6,60 7,35 6,60 7,35 6,60 7,35 6,60 7,35 6,60 7,35 6,60 7,35 6,60 7,35 6,60 7,35 6,60 7,35 6,60 7,35 6,65 7,00 6,65 7,35 6,60 7,00 7,35 6,60 7,00					

Mittlere Karbonatisierungstiefe nach 28d:

6,97 mm

56 d	Prob	e 1-1	Prob	e 1-2	Prob	e 2-1	Prob	e 2-2
				Fläch	e Nr.			
Stelle	1	2	3	4	5	6	7	8
1	5,31	5,87	6,58	7,74	7,78	6,67	6,08	9,86
2	9,36	6,75	7,07	6,49	6,56	8,15	6,81	11,31
3	10,62	7,34	8,04	6,99	7,53	7,41	6,32	12,03
4	9,36	7,92	9,75	5,99	6,07	8,39	7,05	8,18
5	9,10	7,04	11,94	6,74	9,23	9,63	7,30	9,38
6	10,62	7,92	10,24	7,49	7,05	6,67	7,05	5,29
7	9,10	7,92	6,82	8,98	8,50	7,16	9,00	5,53
8	5,82	10,57	10,24	8,49	9,23	8,15	10,22	6,98
9	7,84	10,57	8,77	9,23	7,29	7,41	9,24	6,25
10	5,31	9,39	7,07	14,47	7,78	6,67	7,54	6,50
11	8,85	8,22	9,02	10,23	8,02	7,65	7,78	7,70
12	8,85	7,63	6,34	8,24	8,02	8,39	6,57	6,98
13	8,35	9,10	7,07	7,49	8,02	10,86	7,78	6,98
14	8,09	8,22	6,09	7,74	7,78	11,36	6,57	7,94
15	8,35	7,04	9,75	7,49	6,80	7,41	7,54	7,94
16	4,81	5,87	8,53	6,49	8,26	7,16	6,32	6,98
17	5,56	5,58	5,85	4,99	6,07	7,41	6,32	8,66
18	4,30	6,16	6,82	6,74	7,78	5,18	7,78	6,98
19	5,31	6,46	5,36	5,49	4,62	7,41	6,81	7,70
20	5,56	5,28	6,82	6,74	6,56	6,42	8,03	6,74
Mittel:	7,52	7,54	7,70	7,36	7,45	7,78	7,41	7,57

Mittlere Karbonatisierungstiefe nach 56d: 7,54 mm

Tabelle 51 Messwerte zur Bestimmung der Karbonatisierungstiefe des Betons B035-CEM (20K,30S,50LL)

Probe: B035-CEM (20K,30S,50LL)-W

110001							
28 d	Probe 1						
Fläche Nr.							
Stelle	1	2					
1	5,59	4,86					
2	5,24	6,24					
3	5,59	5,20					
4	4,89	5,55					
5	4,89	4,86					
6	7,33	7,98					
7	7,33	7,63					
8	8,38	7,28					
9	7,33	8,67					
10	8,73	9,02					
11	6,29	6,94					
12	5,24	6,59					
13	5,24	5,55					
14	5,59	5,90					
15	5,94	8,67					
16	7,68	8,32					
17	7,68	7,28					
18	9,08	9,02					
19	8,03	7,28					
20	9,43	7,98					
Mittel:	7,29	7,61					

Mittlere Karbonatisierungstiefe nach 28d:

7,45 mm

56 d	Prob	e 1-1	Prob	e 1-2	Prob	e 2-1	Probe 2-2			
				Fläch	ne Nr.					
Stelle	1	2	3	4	5	6	7	8		
1	9,92	9,83	8,58	9,46	9,95	9,88	9,70	9,18		
2	9,19	11,46	8,83	9,94	8,98	10,12	6,86	9,89		
3	10,16	10,06	8,34	10,19	8,74	10,36	11,83	11,30		
4	9,19	11,46	9,32	10,19	8,25	9,64	11,12	11,06		
5	12,09	9,59	9,32	9,46	8,98	10,36	10,65	10,59		
6	12,09	10,53	10,54	11,64	10,68	11,08	10,65	9,89		
7	10,40	10,30	11,77	10,91	9,23	10,12	9,94	11,30		
8	10,64	11,46	11,28	11,88	9,71	10,36	11,36	11,53		
9	10,88	10,76	10,54	11,40	11,17	10,36	11,12	9,89		
10	11,37	11,00	11,77	11,88	12,38	11,08	11,12	11,53		
11	10,16	11,00	11,53	10,19	9,71	9,39	11,12	11,06		
12	11,12	9,59	12,02	10,43	10,44	9,15	11,36	11,30		
13	10,16	10,06	10,05	8,73	9,95	9,88	10,41	11,06		
14	11,61	10,76	10,79	11,64	10,68	9,39	8,76	7,53		
15	11,37	10,76	11,28	9,46	12,14	10,60	9,23	8,71		
16	10,88	10,06	10,54	8,97	9,47	9,15	11,60	9,41		
17	9,67	10,06	10,54	11,16	8,25	7,71	9,70	9,41		
18	10,40	9,13	8,83	9,22	9,47	8,67	10,18	9,89		
19	9,67	9,36	12,51	9,94	8,25	7,95	9,70	9,89		
20	11,37	10,76	8,83	10,19	9,47	8,19	9,70	12,71		
Mittel:	10,62	10,40	10,36	10,34	9,80	9,67	10,31	10,36		
Mittlere K	arbonatis	ierungstie	fe nach 5	6d:	10,23	mm				

Mittlere Karbonatisierungstiefe nach 56d:

Mischung				Beto	on B1, v	v/z = 0,	50			Beton B3, w/z = 0,35					
		B050	B050-CEM (50K,30S,20LL)-W				B035-CEM (20K,30S,50LL)-W								
		-10 W	0 W	+10 W	+20 W	-10 W	0 W	+10 W	+20 W	-10 W	0 W	+10 W	+20 W		
	1	2	3	4	5	6	7	8	9	10	11	12	13		
	Art		CEN	1 III/A		(CEM (50/20/3	0)	(CEM (20/50/3	D)		
ent	Gesamtgehalt [kg/m3]		32	20				320				390			
Ш.	Klinker [kg/m³]		160				78								
Ze	Kalkstein [kg/m ³]		0					64		195					
	Hüttensand [kg/m ³]				96				117						
w/z-	Wert [-]		0,50				0,35								
Was	ssergehalt [kg/m3]	150	160	170	180	150	160	170	180	127	137	147	157		
Zem	nentleim [l/m³]	255 - 290													
Fliel	Smittel ACE391 [kg/m ³]	0,83	0,60	0,25	0,00	1,25	0,95	0,43	0,08	2,35	1,53	1,28	0,98		
Ges	teinskörnung [kg/m³]						18	91							
Qua	rzsand W3 [kg/m³]						6	7							
Rhe	insand [kg/m ³]	513													
Rhe	inkies 2/8 [kg/m ³]						47	75							
Rhe	inkies 8/16 [kg/m ³]						83	36							

Toballa E2	Miashungsontwürfe zur Versuchersihe Debuetheit	(Andorung dog Woggergeholts)
	IVIISCHUNGSENIWUNE ZUR VERSUCHSTEINE RODUSTHEIT (Anderund des wasserdenails)

 Tabelle 53
 Mischungsentwürfe zur Versuchsreihe Robustheit (Änderung der Frischbetontemperatur)

			Be	eton B1,	w/z = 0,	50		Beton B3, w/z = 0,35					
Mis	chung	B050-C	EM III/A	42,5 N	В (50К,	050-CE 30S,20L	M .L)-W	B035-CEM (20K,30S,50LL)-W					
		+10 °C	+20 °C	+30 °C	+10 °C	+20 °C	+30 °C	+10 °C	+20 °C	+30 °C			
	1	2	3	4	5	6	7	8	9	10			
	Art	(CEM III//	Ą	CEN	/ (50/20	/30)	CEN	Л (20/50	/30)			
ent	Gesamtgehalt [kg/m3]		320			320			390				
Ш.	Klinker [kg/m³]	160				160		78					
Ze	Kalkstein [kg/m ³]	0				64			195				
	Hüttensand [kg/m3]		160			96			117				
w/z-	Wert [-]		0,50			0,50		0,35					
Wa	ssergehalt [kg/m³]		160			160		137					
Zen	nentleim [l/m ³]		270 ± 5										
Flie	ßmittel ACE391 [kg/m ³]	0,75	0,60	0,60	0,80	0,95	0,65	2,05	1,53	1,65			
Ges	teinskörnung [kg/m³]		1891										
Qua	rzsand W3 [kg/m³]	67											
Rhe	einsand [kg/m³]	513											
Rhe	inkies 2/8 [kg/m ³]		475										
Rhe	inkies 8/16 [kg/m ³]					836							

Seite 102 von 106

Parameter	Bezeich	Finheit	Alter			E	Beton B3, w/z = 0,35								
	nung	Linnen		B050-CEM III/A 42,5 N				B050-CEM (50K,30S,20LL)-W				B035-CEM (20K,30S,50LL)-W			
				-10 W	0 W 0	+10 W	+20 W	-10 W	0 W 0	+10 W	+20 W	-10 W	0 W 0	+10 W	+20 W
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Luftporengehalt	LP	[%]	-	1,6	1,15	1,5	0,5	1,75	1,05	0,95	0,4	1,5	1,4	1,2	0,75
	а	mm	15 min	490	450	495	475	500	500	500	490	560	460	510	460
Ausbreitmaß	а	mm	30 min	460	365	400	395	490	495	465	405	520	450	490	415
	а	mm	60 min	405	350	385	395	490	455	440	385	440	360	430	360
	t	°C	15 min	20,4	19,7	19,9	20,2	21,3	19,8	20,4	20,4	21,5	19,7	21,3	21,3
Frischbetontemperatur	t	°C	30 min	19,2	19,2	18,9	19,4	20,2	19,6	19,9	19,8	20,8	19,2	20,7	20,6
	t	°C	60 min	18,9	18,8	18,5	18,7	19,2	18,6	19,2	19,2	20,4	18,9	20,3	20,2
plastische Viskosität	μ	Pa.s	15 min	100	98	35	29	90	64	40	40	444	474	220	172
Fließmittel	FM	kg/m ³	-	0,83	0,60	0,25	0,00	1,25	0,95	0,43	0,08	2,35	1,53	1,28	0,98
Druckfootigkoit Würfel	f _{cm,cube}	[N/mm ²]	2 d	19,11	20,18	16,32	15,35	22,64	20,34	16,58	13,44	18,06	13,80	10,06	7,89
Drucklesligkeit wuller	f _{cm,cube}	[N/mm ²]	28 d	63,04	56,40	53,89	52,68	70,09	63,35	54,26	45,30	68,14	60,51	48,26	39,24
Karbonatisierungstiefe	X _{c,28d}	[mm]	28 d	8,00	8,77	9,00	10,70	7,44	7,55	7,98	10,30	8,86	9,55	11,50	12,28
(ACC)	x _{c,56d}	[mm]	56 d	8,62	9,50	11,43	13,55	8,17	9,20	10,10	11,78	9,40	10,00	12,24	13,17

Tabelle 54 Ergebnisse zur Versuchsreihe Robustheit (Änderung des Wassergehalts)

Tabelle 55 Ergebnisse zur Versuchsreihe Robustheit (Änderung der Frischbetontemperatur)

Parameter	Bezeich	Finheit	Alter			Beton B3, w/z = 0,35						
Parameter	nung			B050-	CEM III/A 4	2,5 N	B050-CE	M (50K,30S	,20LL)-W	B035-CEM (20K,30S,50LL)-W		
				+10 °C	+20 °C	+30 °C	+10 °C	+20 °C	+30 °C	+10 °C	+20 °C	+30 °C
1	2	3	4	5	6	7	8	9	10	11	12	13
Luftporengehalt	LP	[%]	-	1,4	1,15	1,5	1,2	1,05	1,6	1,2	1,4	1,3
	а	mm	15 min	490	450	500	520	500	550	525	460	575
Ausbreitmaß	а	mm	30 min	470	365	445	460	495	500	570	450	490
	а	mm	60 min	465	350	395	440	455	440	570	360	440
	t	°C	15 min	13,7	19,7	26,6	15,7	19,8	26,1	15,9	19,7	25,5
Frischbetontemperatur	t	°C	30 min	14,4	19,2	21,7	15,8	19,6	21,9	15,9	19,2	21,5
	t	°C	60 min	15,1	18,8	18,9	15,9	18,6	19,7	15,9	18,9	19,6
plastische Viskosität	μ	Pa.s	15 min	131	98	94	112	64	52	454	474	355
Fließmittel	FM	kg/m ³	-	0,75	0,60	0,60	0,80	0,95	0,65	2,05	1,53	1,65
Druckfostiakoit Würfol	f _{cm,cube}	[N/mm ²]	2 d	14,53	20,18	21,79	17,19	20,34	16,90	11,13	13,80	19,13
	f _{cm,cube}	[N/mm ²]	28 d	57,48	56,40	56,65	64,75	63,35	48,29	65,94	60,51	62,31
Karbonatisierungstiefe	x _{c,28d}	[mm]	28 d	7,68	8,77	6,83	7,82	7,55	7,88	8,17	9,55	0,00
(ACC)	x _{c,56d}	[mm]	56 d	8,41	9,50	9,17	9,27	9,20	12,41	11,24	10,00	10,06

Bild 67 Bewehrungsplan für Typ II Balken

Bild 68 Bewehrungsplan für Typ III Balken

Bild 69 Bewehrungsplan für Typ IV Balken

Seite 105 von 106

			Beton B1		Beton B2	Beton B3						
Mis	chung	B050-CEM I	B050-CEM III/A	B050-CEM	B040-CEM	B035-CEM						
		52,5 R	42,5 N	(50K,30S,20LL)-W	(35K,30S,35LL)-W	(20K,30S,50LL)-W						
	1	2	3	4	5	6						
Art		CEM I 52,5 R	CEM III/A 42.5 N	CEM (50/20/30)	CEM (35/35/30)	CEM (20/50/30)						
lent	Gesamtgehalt [kg/m³]	320	320	320	365	390						
en	Klinker [kg/m³]	320	160	160	128	78						
	Kalkstein [kg/m ³]	0	0	64	128	195						
	Hüttensand [kg/m ³]	-	160	96	110	117						
w/z-	Wert [-]	0,50	0,50	0,50	0,40	0,35						
Wa	ssergehalt [kg/m³]	160	160	160	146	136,5						
Flie	ßmittel ACE391 [kg/m ³]	1,76	0,82	0,58	1,20	1,44						
Zen	nentleim [l/m ³]			270 ± 5								
Qua	rzsand W3 [kg/m³]			67								
Rhe	insand [kg/m³]	513										
Rhe	inkies 2/8 [kg/m ³]	475										
Rhe	inkies 8/16 [kg/m ³]			836								

 Tabelle 56
 Mischungsentwürfe der bilanzierten Betone

Tabelle 57 Basisdaten Ökobilanzierung

			01-11-	D	Wirkungsgrößen											
Beschreibung		Quelle	sfaktor	einheit	GWP [kg CO2-Äqv]	ODP [kg R11-Äqv]	AP [kg SO2-Äqv]	EP [kg PhosÄqv]	POCP [kg Ethen-Äqv]	ADP _{el} [kg Sb-Äqv]	ADP _{fos} [MJ]	PEern [MJ]	PEnern [MJ]	SE [MJ]	GE [MJ]	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Zuschlag	DE: Kies (Körnung 2/32) PE	GaBi5	1	kg ka	2,327E-03	6,091E-12	6,361E-06	8,194E-07	6,630E-07	2,541E-10	2,488E-02	3,721E-03	3,039E-02	2,598E-05	3,413E-02	
	CEM I 42.5	GaBi5	1	kg ka	2,411E-03	3.985E-10	9.717E-04	1,217E-04	1.014E-04	1.376E-06	2,576E-02	2.190E-01	2.931E+00	3.118E+00	6.268E+00	
Zement	CEM I 52,5	GaBi5	1	kg	8,162E-01	4,857E-10	1,005E-03	1,246E-04	1,038E-04	1,368E-06	2,771E+00	2,658E-01	3,207E+00	3,118E+00	6,590E+00	
	CEM III/A 42,5 ¹⁾ - ohne Allokation	Netzwerk	1	kg	4,123E-01	3,226E-10	5,113E-04	6,301E-05	5,379E-05	2,261E-05	1,385E+00	1,345E-01	1,652E+00	1,559E+00	3,345E+00	
	CEM III/A 42,5 ¹⁾ - mit Allokation	Datenprojekt Zement, [21]	1	kg	4,653E-01	2,647E-10	7,137E-04	8,720E-05	1,573E-04	1,217E-06	k. A.	k. A.	k. A.	k. A.	4,284E+00	
	DE Durchschnittszement ²⁾ - ohne Allokation	- EPD VDZ und [21]	1	kg	6,917E-01	1,500E-08	8,300E-04	1,200E-04	1,000E-04	1,300E-06	1,901E+00	6,580E-02	2,451E+00	1,742E+00	4,259E+00	
	DE Durchschnittszement ²⁾ - mit Allokation		1	kg	7,065E-01	1,498E-08	8,867E-04	1,268E-04	1,290E-04	-4,690E-06	k. A	k. A	k. A	k. A	4,521E+00	
	DE: Quarzmehl	GaBi5	1	kg	2,855E-01	1,106E-09	4,540E-04	5,691E-05	3,959E-05	2,16393E-08	3,242228532	5,415E-01	4,151E+00	6,608E-04	4,693E+00	
	Hüttensand gemahlen - ohne Allokation		1	kg	8,400E-03	1,595E-10	1,735E-05	1,445E-06	3,775E-06	4,385E-05	0,000E+00	3,250E-03	9,740E-02	0,000E+00	1,007E-01	
Betonzusatzstoffe	Hüttensand gemahlen - mit Allokation	FEII3, VD2, LGEE, [21]	1	kg	1,143E-01	4,371E-11	4,222E-04	4,983E-05	2,107E-04	1,067E-06	k. A	k. A	k. A	k. A	1,977E+00	
	DE: Kalkstein Mehl (CaCO ₃ ; getrocknet) PE	GaBi5	1	kg	2,611E-02	6,733E-11	6,413E-05	8,988E-06	6,017E-06	1,82446E-09	0,32539444	3,886E-02	3,852E-01	5,439E-05	4,242E-01	
Betonzusatzmittel	Fließmittel	EFCA/GaBi5/LCEE	1	kg	1,354E-01	4,666E-11	5,469E-04	3,441E-05	9,657E-05	4,59465E-08	18,17849258	2,641E-02	1,822E+01	1,515E-03	1,825E+01	
Wasser	als ökobilanz neutral angesetzt (Ausnahme: Indikator Wassernutzung)	-	1	kg	0,000E+00	0,000E+00	0,000E+00	0,000E+00	0,000E+00	0,000E+00	0,000E+00	0,000E+00	0,000E+00	0,000E+00	0,000E+00	

¹⁾ Hüttensand = ca. 50% v. Z.

 $^{2)}$ K = 74,5%, S = 14%, LL = 5%, V = 1% v. Z.