

Hochschule Ostwestfalen-Lippe University of Applied Sciences

Hochschule Ostwestfalen-Lippe Fachbereich Umweltingenieurwesen und Angewandte Informatik Fachbereich Bauingenieurwesen

Verwertung des Prozesswassers aus der hydrothermalen Carbonisierung von organischen Abfällen

Abschlussbericht über ein Entwicklungsprojekt, gefördert unter dem Az: 27760 von der Deutschen Bundesstiftung Umwelt

von

Professor Dr.-Ing. Joachim Fettig Dipl.-Ing. Henrike Liebe Hochschulstandort Höxter Fachgebiet Wassertechnologie

Professor Dr.-Ing. Ute Austermann-Haun Dipl.-Ing. Jan-Felix Meier Hochschulstandort Detmold Fachgebiet Siedlungswasserwirtschaft

April 2013

Projektkennblatt der nen Bundesstiftung	g Umwelt	DBU
Referat 35	Fördersumme	124.957 €
Verwertung des Prozest von organischen Abfälle	swassers aus der hydroth n	ermalen Carbonisierung
Projektbeginn	Projektende	Projektphase(n)
15.12.2010	31.03.2013	
Hochschule Ostwestfalen	-Lippe	Tel 05271-687160
FB Umweltingenieurwese	n u. Angewandte Informatik	Fax 05271-687200
Fachgebiet Wassertechnc	ologie	Projektleitung
		Prof. Dr. Joachim Fettig
		Bearbeiter
37671 Höxter		DiplIng. Henrike Liebe
Hochschule Ostwestfalen	-Lippe	
FB Bauingenieurwesen		
Fachgebiet Siedlungswas	serwirtschaft	
32756 Detmold		
	Projektkennblatt der en Bundesstiftung Referat 35 Verwertung des Prozess von organischen Abfälle Projektbeginn 15.12.2010 Hochschule Ostwestfalen FB Umweltingenieurwese Fachgebiet Wassertechnom 37671 Höxter Hochschule Ostwestfalen FB Bauingenieurwesen Fachgebiet Siedlungswas 32756 Detmold	Projektkennblatt der der en Bundesstiftung Umwelt Referat 35 Fördersumme Verwertung des Prozesswassers aus der hydroth von organischen Abfällen Projektbeginn Projektende 15.12.2010 31.03.2013 Hochschule Ostwestfalen-Lippe FB Umweltingenieurwesen u. Angewandte Informatik Fachgebiet Wassertechnologie 37671 Höxter Hochschule Ostwestfalen-Lippe FB Bauingenieurwesen Fachgebiet Siedlungswasserwirtschaft 32756 Detmold

Zielsetzung und Anlaß des Vorhabens

Die Verwertungsmöglichkeiten für das Prozesswasser aus der Hydrothermalen Carbonisierung von Bioabfällen sollen in diesem Vorhaben in zwei miteinander verbundenen Teilprojekten untersucht werden, um alle Aspekte des Prozesswasseranfalls und seiner Behandlungsoptionen zu klären. Damit sollen die Voraussetzungen für einen Umgang mit dem Prozesswasser im technischen Maßstab geschaffen werden, bei dem als Ziele die stoffliche Nutzung des Prozesswassers und die energetische Optimierung seiner Behandlung im Vordergrund stehen.

Darstellung der Arbeitsschritte und der angewandten Methoden

Unterschiedliche Fraktionen organischer Abfälle sowie landwirtschaftliche Reststoffe werden vom Fachgebiet Abfallwirtschaft und Deponietechnik der Hochschule OWL in einem chargenbetriebenen Autoklaven carbonisiert und das anfallende Prozesswasser für die weiteren Untersuchungen bereitgestellt. Nach einer Analyse mit Hilfe von Summen-, Gruppen- und Einzelstoffparametern folgen Versuche zur anaeroben Behandlung. Zur Abschätzung der anaeroben Abbaubarkeit und zur Überprüfung der Biogasqualität werden zuerst Batch-Tests durchgeführt. Des Weiteren erfolgen kontinuierliche anaerobe Abbauversuche mit einem UASB- und einem Festbettreaktor im Labormaßstab. Da Vorversuche ergeben haben, dass die Abbauzeit relativ lang sein kann, wird evtl. noch auf andere Techniken zurückgegriffen, wie z.B. das anaerobe Belebungsverfahren. Ziel ist es, für das Prozesswasser das optimale anaerobe Reinigungsverfahren zu finden, dessen optimale Betriebsparameter zu ermitteln, die Prozessstabilität zu beurteilen und die Biogasausbeute zu optimieren. Nach einer erneuten Analyse des anaerob vorbehandelten Prozesswassers werden weitere Untersuchungen mit dem Ziel einer Gewinnung der Nährstoffe Stickstoff und Phosphor durchgeführt. Zur Nährstoffgewinnung werden die Verfahren der MAP-Fällung sowie Ammoniakstrippung betrachtet. Darüber hinaus sind die Optionen und Bedingungen für eine Nachbehandlung des anaerob gereinigten Prozesswassers durch eine aerobe biologische Stufe in Kombination mit physikalisch-chemischen Verfahren zu ermitteln. Zur Beurteilung der aeroben Abbaubarkeit wird eine kontinuierlich betriebene Laborkläranlage eingesetzt. Als Verfahren zur erforderlichen physikalisch-chemischen Nachreinigung ist die Adsorption an Aktivkohle vorgesehen, ggf. ergänzt durch eine Oxidation mit Ozon. Hierbei werden neben der Aufnahme von Isothermen auch Säulenversuche mit körniger Aktivkohle durchgeführt.

Deutsche Bundesstiftung Umwelt O An der Bornau 2 O 49090 Osnabrück O Tel 0541/9633-0 O Fax 0541/9633-190 O http://www.dbu.de

Ergebnisse und Diskussion

Das bei der Hydrothermalen Carbonisierung anfallende Prozesswasser ist mit organischen Stoffen hoch belastet, und seine Behandlung hat große Bedeutung für die technische Realisierung und die Wirtschaftlichkeit der Carbonisierung. Der wichtigste Befund des Projektes ist, dass die organischen Stoffe in HTC-Prozesswässern mit der vorgeschlagenen dreistufigen Verfahrenskombination aus anaerobem Abbau, aerober Nachreinigung und adsorptiver Schlussbehandlung mit körniger Aktivkohle zu über 99% eliminiert werden können. Auch die im Prozesswasser enthaltenen, mit Pentan extrahierbaren organischen Spurenstoffe lassen sich weitestgehend entfernen.

Als Einsatzstoffe in diesem Projekt wurden Biertreber, Rübenschnitzel und Speisereste gewählt, um ein möglichst breites Spektrum an organischen Abfällen abzudecken und darüber hinaus unterschiedliche Mengen und Zusammensetzungen an Nährstoffen im Prozesswasser zu untersuchen. Es konnte erfolgreich demonstriert werden, dass Nährstoffe aus dieser Matrix durch das Verfahren der MAP-Fällung bzw. durch die Strippung von Ammoniak mit hohen Wirkungsgraden zurückgewonnen werden können.

Durch die Gewinnung von Biogas in der anaeroben Stufe und seine Verwertung ist es möglich, die Energiebilanz der Prozesswasserbehandlung positiv zu gestalten, d.h. es kann ein Energieüberschuss erzielt werden. Einer direkten Umsetzung des Behandlungskonzeptes in den technischen Maßstab stehen jedoch noch einige Fragen entgegen, die nicht abschließend untersucht werden konnten.

Dies betrifft in erster Linie die anaerobe biologische Stufe, in der zwar gute Eliminationsleistungen erreicht werden, ein stabiler anaerober Abbau von Prozesswasser als Monosubstrat aber nur bei Verwendung eines Festbettreaktors und relativ geringen Raumbelastungen von maximal 5,5 kg CSB/(m³·d) möglich ist. Des Weiteren müssen die Prozesswässer für einen stabilen Reaktorbetrieb verdünnt werden, und die Ausbeute an Biogas liegt trotz guter Gasqualität deutlich unterhalb des theoretisch zu erwartenden Wertes. Deshalb sollte vordringlich die Auswirkung einer Zugabe von leichter abbaubaren Stoffen als Co-Substrat in dieser Stufe überprüft werden. Eine solche Betriebsweise ist an anderer Stelle schon erfolgreich angewendet worden.

Auch die aerobe Stufe kann nur mit Raumbelastungen kleiner 1,0 kg CSB/(m³·d) stabil betrieben werden. Ihre Optimierung muss aber immer im Zusammenhang mit der vorgeschalteten anaeroben Stufe erfolgen. Die spezifischen Kosten der Aktivkohlestufe sind in Bezug auf den Ertrag an Biokohle als relativ hoch anzusehen. Deshalb sollte angestrebt werden, eine Entlastung dieser Stufe durch eine Verringerung des Anteils an refraktären Stoffen im biologisch behandelten Prozesswasser zu erreichen.

Öffentlichkeitsarbeit und Präsentation

Ergebnisse des Vorhabens wurden bereits in mehreren Vorträgen der Fachöffentlichkeit vorgestellt:

- Fettig, J. und Liebe, H.: Analytik und physikalisch-chemische Behandlung von Prozesswässern aus der Hydrothermalen Carbonisierung - erste Ergebnisse. Seminar "Hydrothermale Carbonisierung von Biomasse - Ergebnisse und Perspektiven", Deutsche Bundesstiftung Umwelt, Osnabrück, 20.12.2011.

- Fettig, J., Liebe, H., Austermann-Haun, U. und Meier, J.-F.: Verwertung von Prozesswasser aus der Hydrothermalen Carbonisierung. Fachforum F 5: Ressourceneffizienz und Innovationen, Woche der Umwelt, Schloss Bellevue, Berlin, 05.- 06.06.2012.

- Fettig, J.: Verwertungsmöglichkeiten für HTC-Prozesswässer. 3. Sitzung des Fachausschusses Biokohle im Arbeitskreis für die Nutzbarmachung von Siedlungsabfällen (ANS e.V.), Höxter, 06.03.2013.

- Meier, Kretschmer, A.-K. und Austermann-Haun, U.: Anaerobe Behandlung von Prozesswässern aus der hydrothermalen Carbonisierung - erste Ergebnisse. Seminar "Hydrothermale Carbonisierung von Biomasse - Ergebnisse und Perspektiven", Deutsche Bundesstiftung Umwelt, Osnabrück, 20.12.2011.

Im Jahr 2013 sollen die Vorhabensergebnisse bei zwei Fachkongressen präsentiert werden.

Fazit

Zwei wesentliche Ziele des Projektes konnten erreicht werden: Zum einen wurde die Machbarkeit (Feasibility) des untersuchten dreistufigen Behandlungskonzeptes nachgewiesen, zum anderen wurden die Möglichkeiten zu einer stofflichen und energetischen Verwertung des Prozesswassers aufgezeigt.

Mit der vorgeschlagenen Verfahrenskombination lassen sich zukünftige Grenzwerte für die Behandlung von Prozesswässern aus der Carbonisierung von Bioabfällen, die derzeit aber noch nicht festliegen, aller Voraussicht nach einhalten.

Damit könnten technische Anlagen zur Hydrothermalen Carbonisierung bezüglich des Prozesswassers ressourcenschonend betrieben und die davon ausgehende Belastung der Umwelt minimiert werden.

Deutsche Bundesstiftung Umwelt • An der Bornau 2 • 49090 Osnabrück • Tel 0541/9633-0 • Fax 0541/9633-190 • http://www.dbu.de

Inhaltsverzeichnis

Inhalt	sverzeic	hnis	I
Tabel	lenverze	ichnis	IV
Abbilo	dungsve	rzeichnis	VIII
Abküı	zungsve	erzeichnis	XIV
Zusar	nmenfas	sung	XVIII
1	Einleit	ung	1
2	Herku	nft und Eigenschaften des Prozesswassers	4
2.1	Auswah	nl der Einsatzstoffe	4
2.2	Carbon	isierungsbedingungen	4
2.3	Analvse	enmethoden	8
24	Ergebni	isse der chemischen Analysen	0
2.4	Eigebii	isse der chemischen Analysen	9
2.5	Folgeru	ngen	12
3	Anaero	obe Abbauversuche	13
3.1	Materia	I und Methoden	13
	3.1.1	Zusammensetzung der HTC-Prozesswässer	13
	3.1.2	Verwendete anaerobe Biomasse	15
	3.1.3	Batch-Tests zur Bestimmung der Schlammaktivität und des anaeroben Abbaus	15
	3.1.3.1	Versuchsaufbau	16
	3.1.3.2	Versuchsdurchführung	16
	3.1.3.3	Versuchsplan – Batchtests	18
	3.1.4	Kontinuierliche anaerobe Abbauversuche	19
	3.1.4.1	Versuchsaufbau der anaeroben Reaktoren	19
	3.1.4.2	Versuchsplan – Kontinuierliche Laborversuche	21
	3.1.4.3	Probenahme	22
	3.1.4.4	Analytik	23
3.2	Ergebni	isse der Batchtest-Versuchsreihen	24

I

Hochs	schule OV	VL Inhaltsverzeichnis	
	321	Batchtest-Versuche mit Biertreber-Prozesswasser	24
	3.2.2	Batchtest-Versuche mit Rübenschnitzel-Prozesswasser	27
	3.2.3	Batchtest-Versuche mit Speisereste-Prozesswasser	29
	3.2.4	Zusammenfassung der Ergebnisse	32
3.3	Ergebi	nisse der kontinuierlichen anaeroben Abbauversuche	35
	3.3.1	Allgemeine Beobachtungen	35
	3.3.2	Betrieb und Vergleich beider Reaktoren	37
	3.3.3	Abbaubarkeit der HTC-Prozesswässer	45
	3.3.4	Maximale Raum-Zeit-Ausbeuten	47
	3.3.5	Einfluss des pH-Wertes auf die Biogasbildung	49
	3.3.6	CSB-Bilanz	50
	3.3.7	Feststoffbilanz	52
	3.3.8	Nährstoffverhältnisse	55
3.4	Folger	ungen	57
4	Aerok	be Nachbehandlung	58
4.1	Batch-	Tests zur aeroben Abbaubarkeit	58
4.2	Betrie	o einer kontinuierlichen aeroben Laborkläranlage	59
4.3	Chara	kterisierung des biologisch vorbehandelten Prozesswassers	63
4.4	Folger	ungen	64
5	Adso	rptive Schlussreinigung	65
5.1	Batch-	Tests zur Ermittlung von Gleichgewichtsparametern	65
5.2	Batch-	Tests zur Ermittlung von Kinetikparametern	68
5.3	Kolonr	nenversuche mit körniger Aktivkohle	71
5.4	Simula	ationsrechnungen zur Adsorption in Aktivkohle-Kolonnen	73
5.5	Folger	ungen	75
6	Nährs	stoffrückgewinnung	76
0.4			
6.1	Prozes	ss- und Abwässern	76
6.2	Abtren	nung von Phosphor und Ammonium-Stickstoff durch Fällung	77
6.3	Abtren	nung von Ammonium-Stickstoff durch Desorption	80
6.4	Folger	ungen	82

Hochs	schule OWL Inhaltsverzeichnis		
7	Stoff- und Energiebilanz der Verfahrenskor	nbination	83
7.1	Voraussetzungen und Festlegung der Prozesspara	ameter	83
7.2	Kohlenstoffbilanz		86
7.3	Größe und Energiebedarf der einzelnen Stufen		90
7.4	Energiebilanz		92
7.5	Betriebskosten der Adsorptionsstufe		95
7.6	Folgerungen		96
8	Bewertung und Verbreitung der Ergebnisse)	97
9	Fazit		99
Litera	aturverzeichnis		100
Anha	ang		107
A 1.	Versuchsreihen der anaeroben Batchtests		107
A 2.	Versuchsreihen der kontinuierlichen anaeroben Ab	bauversuche	109
	A 2.1 Versuchsergebnisse UASB-Reaktor		109
	A 2.1.1 Versuchsphase Biertreber		109
	A 2.1.2 Versuchsphase Rübenschnitzel		111
	A 2.1.3 Versuchsphase Speisereste		113
	A 2.2 Versuchsergebnisse Festbettreaktor		115
	A 2.2.1 Versuchsphase Biertreber		115
	A 2.2.2 Versuchsphase Rübenschnitzel		117
	A 2.2.3 Versuchsphase Speisereste		119
	A 2.3 Ergebnisse der CSB-Bilanzierung der Ana	aerobversuche	121
	A 2.4 Ergebnisse der Feststoffbilanzen		122

Tabellenverzeichnis

Tab. 2-1:	Übersicht über die Ansätze für die hydrothermale Carbonisierung	6
Tab. 2-2:	Übersicht über die relevanten HTC-Versuchsparameter	6
Tab. 2-3:	Analysenwerte für das HTC-Prozesswasser der drei ausgewählten Einsatzstoffe	9
Tab. 3-1:	Analysenwerte für das HTC-Prozesswasser der drei ausgewählten Einsatzstoffe nach Tuchfiltration	13
Tab. 3-2:	Staffelung der CSB-Zulaufkonzentrationen während der Versuchsphase Biertreber (10.10.2011-12.01.2012)	9 14
Tab. 3-3:	Staffelung der CSB-Zulaufkonzentrationen während der Versuchsphase Rübenschnitzel (10.0430.07.2012)	9 14
Tab. 3-4:	Staffelung der CSB-Zulaufkonzentrationen während der Versuchsphase Speisereste (31.0707.11.2012)	9 15
Tab. 3-5:	Verwendete Biomassen für Batchtests und kontinuierliche Versuche	15
Tab. 3-6:	Versuchsplan der Batchtestreihen	19
Tab. 3-7:	Zusammenstellung der Versuchsphasen und -ziele	21
Tab. 3-8:	Verlaufsplan der Versuchsphase Rübenschnitzel	22
Tab. 3-9:	Verlaufsplan der Versuchsphase Speisereste	22
Tab. 3-10:	Analysenplan – kontinuierliche anaerobe Abbauversuche	23
Tab. 3-11:	Übersicht - Analyseparameter und verwendete Methoden	24
Tab. 3-12:	Zusammensetzung des gebildeten Biogases in den Batchtestreihen mit Bier-treber-Prozesswasser	26
Tab. 3-13:	Spezifische Methanerträge, theoretische und gemessene Methangaserträge und η _{CSB} beider Versuchsansätze, Biertreber- Prozesswasser	26
Tab. 3-14:	Zusammensetzung des gebildeten Biogases der Batchtestreihen mit Rübenschnitzel-Prozesswasser	28
Tab. 3-15:	Spezifische Methanerträge, theoretische und gemessene Methangaserträge und η_{CSB} beider Versuchsansätze, Rübenschnitzel-Prozesswasser	29
Tab. 3-16:	Zusammensetzung des gebildeten Biogases der Batchtestreihen mit Speisereste-Prozesswasser	31
Tab. 3-17:	Spezifische Methanerträge, theoretische und gemessene Methangaserträge und η_{CSB} beider Versuchsansätze, Speisereste-Prozesswasser	32
Tab. 3-18:	Methangasproduktion und -gehalt der Versuchsansätze im Vergleich	32

Tab. 3-19:	SMA und η_{CSB} der Versuchsansätze im Vergleich	33
Tab. 3-20:	Spezifische Methanerträge der Versuchsansätze im Vergleich	34
Tab. 3-21:	Ideale Schlammbelastungen der Versuchsansätze im Vergleich	35
Tab. 3-22:	Versuchsphase Biertreber - Vergleich beider Reaktoren	37
Tab. 3-23:	Versuchsphase Rübenschnitzel - Vergleich beider Reaktoren	40
Tab. 3-24:	Versuchsphase Speisereste - Vergleich beider Reaktoren	42
Tab. 3-25:	Vergleich der Biogasproduktion in beiden Reaktoren	44
Tab. 3-26:	Vergleich der CH₄-Gehalte in beiden Reaktoren (n = Anzahl der Analys	sen)44
Tab. 3-27:	Übersicht – anaerobe Abbaubarkeit der eingesetzten HTC-Prozesswäs (Mittelwerte)	sser 46
Tab. 3-28:	Erreichte Raumbelastungen in den Versuchsphasen I, Biertreber und I Speisereste	ll, 47
Tab. 3-29:	Ergebnisse der CSB-Bilanzierungen für beide Reaktoren	51
Tab. 3-30:	Ergebnisse der Feststoff-Bilanzierungen für beide Reaktoren	53
Tab. 3-31:	Feststoffbilanz des UASB-Reaktors während der Versuchsphase Rübenschnitzel	55
Tab. 3-32:	Nährstoffverhältnisse im Speisereste-Prozesswasser am 21.09.2012	56
Tab. 3-33:	Nährstoffverhältnisse im Speisereste-Prozesswasser am 16.10.2012	56
Tab. 4-1:	CSB/BSB-Verhältnisse für nicht vorbehandelte HTC-Prozesswässer de drei ausgewählten Einsatzstoffe	er 59
Tab. 4-2:	CSB/BSB-Verhältnisse für anaerob vorbehandelte HTC-Prozesswässe der drei ausgewählten Einsatzstoffe	r 59
Tab. 5-1:	Fiktive Komponenten und deren Gemischanteile zur Beschreibung der Adsorptionsgleichgewichte der anaerob und aerob behandelten HTC- Prozesswässer	67
Tab. 5-2:	Mittlere effektive Diffusionskoeffizienten, Filmdiffusionskoeffizienten für eine Filtergeschwindigkeit von 0,8 m/h (entsprechend der Bedingung b Säulenversuch) sowie mittlere Molmassen der anaerob und aerob behandelten HTC-Prozesswässer	eim 69
Tab. 5-3:	Mittlere Oberflächendiffusionskoeffizienten sowie die zugehörigen Anfangs-konzentrationen der anaerob und aerob behandelten HTC- Prozesswässer	70
Tab. 5-4:	Vergleich von gemessenen und berechneten mittleren DOC-Beladunge der Aktivkohle in den Kolonnenversuchen bei Versuchsende	en 74
Tab. 5-5:	Mittlere DOC-Beladungen und spezifische Durchsatzleistungen der Aktivkohle bei einer Bettlänge von 6 m	75

Tab. 7-1:	CSB- und TOC-Konzentrationen in den HTC-Prozesswässern als Grundlage für die Bilanzierung der einzelnen Verfahrensstufen	83
Tab. 7-2:	Wassergehalt der Einsatzstoffe und spezifischer Prozesswasseranfall	84
Tab. 7-3:	Betriebsparameter der Anaerobstufe als Grundlage für die Bilanzierung	j 84
Tab. 7-4:	Spezifische Biogasproduktion und -zusammensetzung als Grundlage fü die Bilanzierung	ür 84
Tab. 7-5:	Betriebsparameter der Aerobstufe als Grundlage für die Bilanzierung	85
Tab. 7-6:	Kohlenstoffverteilung im Carbonisierungsprozess (Blöhse, 2013)	86
Tab. 7-7:	Kohlenstoffverbleib in der Anaerobstufe	86
Tab. 7-8:	Relative Kohlenstofffrachten in der Anaerobstufe (gerundet)	87
Tab. 7-9:	Kohlenstoffverbleib in der Aerobstufe	87
Tab. 7-10:	Relative Kohlenstofffrachten in der Aerobstufe (gerundet)	87
Tab. 7-11:	Kohlenstoffverbleib in der Adsorptionsstufe	88
Tab. 7-12:	Relative Kohlenstofffrachten in der Adsorptionsstufe (gerundet)	88
Tab. 7-13:	Anteile der einzelnen Stufen an der gesamten TOC-Elimination	90
Tab. 7-14:	Erforderliche Volumina des Anaerobreaktors	90
Tab. 7-15:	Erforderliche Volumina der aeroben Belebung	90
Tab. 7-16:	Täglicher Aktivkohlebedarf in der Adsorptionsstufe	91
Tab. 7-17:	Energiebedarf der aeroben Belebung	91
Tab. 7-18:	Bilanzierung von Ertrag und Bedarf an elektrischer Energie bei der Prozesswasserbehandlung	92
Tab. 7-19:	Energieverbleib bei der Prozesswasserbehandlung	92
Tab. 7-20:	Kosten für den Austausch beladener Aktivkohle	95
Tab. 7-21:	Spezifische Aktivkohlekosten bei der Prozesswasserbehandlung	95
Tab. A 1:	Ansatz der Batchtests mit Biertreber-Prozesswasser	107
Tab. A 2:	Ansatz der Batchtests mit Rübenschnitzel-Prozesswasser	107
Tab. A 3:	Ansatz der Batchtests mit Speisereste-Prozesswasser	108
Tab. A 4:	Analyseergebnisse der Gaschromatographie des gebildeten Biogases UASB-Reaktor (10.10.2011-12.01.2012)	im 110
Tab. A 5:	Analyseergebnisse der Gaschromatographie des gebildeten Biogases (10.10.2011-12.01.2012)	116
Tab. A 6:	CSB-Bilanzen, UASB-Reaktor – Detaillierte Darstellung der Ergebnisse	e121
Tab. A 7:	CSB-Bilanzen, Festbettreaktor – Detaillierte Darstellung der Ergebnisse	e121

VI

Tab. A 8:	Feststoffbilanz des UASB-Reaktors während der Versuchsphase	400
	Speisereste (31.0707.11.2012)	122
Tab. A 9:	Feststoffbilanz des Festbettreaktors während der Versuchsphase Rübenschnitzel 10.0430.07.2012)	123
Tab. A 10:	Feststoffbilanz des Festbettreaktors während der Versuchsphase	104
	Speisereste (31.0707.11.2012)(2)	124

Abbildungsverzeichnis

Abb. 2-1:	Exemplarische Darstellung des Temperaturprogramms bei der Carbonisierung, Einsatzstoff: BMBF-Standard (Blöhse, 2013)	5
Abb. 2-2:	HTC-Versuchsverlauf mit Biertreber als Einsatzstoff	7
Abb. 2-3:	HTC-Versuchsverlauf mit Rübenschnitzel als Einsatzstoff	7
Abb. 2-4:	Beispiel HTC-Versuchsverlauf mit Speiseresten	7
Abb. 2-5:	Ausfällungen bei der pH-Anhebung des HTC-Prozesswassers von Biertreber	10
Abb. 2-6:	GC-MS Chromatogramm für das HTC-Prozesswasser von Biertreber	11
Abb. 2-7:	GC-MS Chromatogramm für das HTC-Prozesswasser von Rübenschnitzeln	11
Abb. 2-8:	GC-MS Chromatogramm für das HTC-Prozesswasser von Speiserester	า12
Abb. 3-1:	Prinzipieller Versuchsaufbau der anaeroben Batch-Tests	16
Abb. 3-2:	Verfahrensschema des UASB-Reaktors	19
Abb. 3-3:	Verfahrensschema des anaeroben Festbettreaktors	20
Abb. 3-4:	Biogassummenlinien, erster Versuchsansatz Biertreber, B_{oTR} = 0,2-0,5 kg CSB/g oTR	25
Abb. 3-5:	Biogassummenlinien, zweiter Versuchsansatz Biertreber, B_{oTR} = 0,6-0,9 kg CSB/ g oTR) 25
Abb. 3-6:	Biogassummenlinien, erster Versuchsansatz Rübenschnitzel ohne Einstellung des pH-Wertes, B _{oTR} = 0,1-0,4 kg CSB/g oTR	27
Abb. 3-7:	Biogassummenlinien, zweiter Versuchsansatz Rübenschnitzel, Einstellu des pH-Wertes auf pH 7,0, B_{oTR} = 0,1-0,4 kg CSB/g oTR	ung 28
Abb. 3-8:	Biogassummenkurven, erster Versuchsansatz Speisereste, keine Einstellung des pH-Wertes, B _{oTR} = 0,1-0,4 kg CSB/g oTR	30
Abb. 3-9:	Biogassummenkurven, zweiter Versuchsansatz Speisereste, Einstellung des pH-Wertes auf pH 7,0, B_{oTR} = 0,1-0,4 kg CSB/g oTR	g 30
Abb. 3-10:	MAP-Ausfällungen an Ablaufstutzen, Rezirkulations-Vorlage, UASB- Reaktor	35
Abb. 3-11:	Mikroskopische Aufnahme von MAP-Ausfällungen in der Flüssigphase des UASB-Reaktors, 400-fache Vergrößerung	35
Abb. 3-12:	Filmbildung in Rohrleitungen	36
Abb. 3-13:	CSB-Reinigungsleistung des UASB-Reaktors während der Versuchsphase Biertreber	38

Hochschule O	WL Abbildungsverzeichnis	IX
Abb. 3-14:	CSB-Reinigungsleistung des Festbettreaktors während der Versuchsphase Biertreber	38
Abb. 3-15:	CSB-Reinigungsleistung des UASB-Reaktors während der Versuchsphase Speisereste	41
Abb. 3-16:	CSB-Reinigungsleistung des Festbettreaktors während der Versuchsphase Speisereste	41
Abb. 3-17:	Konzentration an organischen Säuren und CSB-Raumbelastung des UASB-Reaktors, Versuchsphase Speisereste	48
Abb. 3-18:	Konzentration an organischen Säuren und FOS/TAC-Verhältnis des UASB-Reaktors, Versuchsphase Speisereste	48
Abb. 3-19:	B _{R,CSB} , Biogasanfall und pH-Wert im UASB-Reaktor während der Versuchsphase Rübenschnitzel	49
Abb. 3-20:	B _{R,CSB} , Biogasanfall und pH-Wert im Festbettreaktor während der Versuchsphase Rübenschnitzel	49
Abb. 3-21:	Bilanzraum und maßgebliche Parameter	52
Abb. 3-22:	Akkumulierte TS- und oTS-Mengen des UASB-Reaktors während der Versuchsphase Rübenschnitzel	54
Abb. 3-23:	Akkumulierte TR- und oTR-Mengen des UASB-Reaktors während der Versuchsphase Rübenschnitzel	54
Abb. 4-1:	BSB-Test mit nicht vorbehandeltem Prozesswasser (links) und dem Ablauf des Anaerobreaktors in Detmold (rechts); Einsatzmaterial: Biertreber	58
Abb. 4-2:	BSB-Test mit nicht vorbehandeltem Prozesswasser (links) und dem Ablauf des Anaerobreaktors in Detmold (rechts); Einsatzmaterial: Rübenschnitzel	58
Abb. 4-3:	BSB-Test mit nicht vorbehandeltem Prozesswasser (links) und dem Ablauf des Anaerobreaktors in Detmold (rechts); Einsatzmaterial: Speisereste	58
Abb. 4-4:	Aufbau der kontinuierlichen aeroben Laborkläranlage	60
Abb. 4-5:	Zu- und Ablaufwerte des anaerob behandelten Prozesswassers von Bi treber in der aeroben Laborkläranlage	er- 60
Abb. 4-6:	Mikroskopische Aufnahmen des Belebtschlamms aus der Laborkläranla mit Glockentierchen (links) und Rädertierchen (rechts)	age 61
Abb. 4-7:	Zu- und Ablaufwerte des anaerob behandelten Prozesswassers von Rübenschnitzeln in der aeroben Laborkläranlage	62
Abb. 4-8:	Zu- und Ablaufwerte des anaerob behandelten Prozesswassers von Speise-resten in der aeroben Laborkläranlage	62

Abb. 4-9::	GC-MS Chromatogramme für anaerob (links) und anaerob+aerob (rech behandeltes HTC-Prozesswasser, Einsatzmaterial: Biertreber	ts) 63
Abb. 4-10:	GC-MS Chromatogramme für anaerob (links) und anaerob+aerob (rech behandeltes HTC-Prozesswasser, Einsatzmaterial: Rübenschnitzel	ts) 64
Abb. 4-11:	GC-MS Chromatogramme für anaerob (links) und anaerob+aerob (rech behandeltes HTC-Prozesswasser, Einsatzmaterial: Speisereste	ts) 64
Abb. 5-1:	Adsorptionsisothermen für HTC-Prozesswasser nach anaerober und aerober Vorreinigung für zwei Anfangskonzentrationen; Aktivkohle Norit ROW 0.8 S, Einsatzstoff Biertreber	t 65
Abb. 5-2:	Adsorptionsisothermen für HTC-Prozesswasser nach anaerober und aerober Vorreinigung für zwei Anfangskonzentrationen; Aktivkohle Norit ROW 0.8 S, Einsatzstoff Rübenschnitzel	t 66
Abb. 5-3:	Adsorptionsisothermen für HTC-Prozesswasser nach anaerober und aerober Vorreinigung für zwei Anfangskonzentrationen; Aktivkohle Norit ROW 0.8 S, Einsatzstoff Speisereste	t 66
Abb. 5-4:	Ergebnis der Adsorptionsanalyse für HTC-Prozesswasser nach anaerol und aerober Vorreinigung, Einsatzstoff Biertreber	ber 67
Abb. 5-5:	Ergebnis der Adsorptionsanalyse für HTC-Prozesswasser nach anaerol und aerober Vorreinigung, Einsatzstoff Rübenschnitzel	oer 68
Abb. 5-6:	Ergebnis der Adsorptionsanalyse für HTC-Prozesswasser nach anaerober und aerober Vorreinigung, Einsatzstoff Speisereste	68
Abb. 5-7:	Konzentrations-Zeit-Kurve für HTC-Prozesswasser nach anaerober und aerober Vorreinigung an Aktivkohle, Einsatzstoff Biertreber	l 69
Abb. 5-8:	Konzentrations-Zeit-Kurve für HTC-Prozesswasser nach anaerober und aerober Vorreinigung an Aktivkohle, Einsatzstoff Rübenschnitzel	l 70
Abb. 5-9:	Konzentrations-Zeit-Kurve für HTC-Prozesswasser nach anaerober und aerober Vorreinigung an Aktivkohle, Einsatzstoff Speisereste	ا 70
Abb. 5-10:	Aufbau der Anlage (Säule 1 und Säule 2) für die Aktivkohle- Kolonnenversuche	71
Abb. 5-11:	Durchbruchskurven für HTC-Prozesswasser nach anaerober und aerob Vorreinigung an Aktivkohle, Einsatzstoff Biertreber	er 72
Abb. 5-12:	Durchbruchskurven für HTC-Prozesswasser nach anaerober und aerob Vorreinigung an Aktivkohle, Einsatzstoff Rübenschnitzel	er 72
Abb. 5-13:	Durchbruchskurven für HTC-Prozesswasser nach anaerober und aerob Vorreinigung an Aktivkohle, Einsatzstoff Speisereste	er 72
Abb. 5-14:	Gemessene und berechnete Durchbruchskurven für HTC-Prozesswass nach biologischer Vorreinigung, Einsatzstoff Biertreber	er 73

Х

Abb. 5-15:	Gemessene und berechnete Durchbruchskurven für HTC-Prozesswass nach biologischer Vorreinigung, Einsatzstoff Rübenschnitzel	er 74
Abb. 5-16:	Gemessene und berechnete Durchbruchskurven für HTC-Prozesswass nach biologischer Vorreinigung, Einsatzstoff Speisereste	er 74
Abb. 5-17:	Simulierte Durchbruchskurve für HTC-Prozesswasser nach biologischer Vor-reinigung an Aktivkohle, Einsatzstoff Biertreber, bei einer Bettlänge von ins-gesamt 6 m und einer Fíltergeschwindigkeit von 0,8 m/h.	75
Abb. 6-1:	Verlauf der Phosphat- und Ammoniumkonzentration sowie der gebildete Feststoffe (AFS) in Prozesswasser nach pH-Anhebung, Einsatzstoff Biertreber	en 78
Abb. 6-2:	Gewichtsabnahme von synthetischem MAP als Funktion der Trocknung temperatur; Mittelwerte aus jeweils drei Einzelproben (Spatzier, 2012)	s- 78
Abb. 6-3:	Verlauf der Phosphat- und Ammoniumkonzentration sowie der gebildete Feststoffe (AFS) in Prozesswasser nach pH-Anhebung und Zugabe von Magnesiumoxid, Einsatzstoff Biertreber	en 1 79
Abb. 6-4:	Fällungsprodukte bei der Vorbehandlung von Biertreber-Prozesswasser durch pH-Anhebung und Zugabe von Magnesiumoxid: MAP als helles Salz (links), MAP mit organischen Anteilen (Mitte), eine kleine Menge zähen organischen Materials (rechts)	80
Abb. 6-5:	Verlauf der Ammoniumkonzentration in anaerob behandeltem Prozesswasser (Einsatzstoff Speisereste) nach Strippung mit N_2 bei 20 °C.	82
Abb. 7-1:	Fließbild des dreistufigen Behandlungsverfahrens für HTC-Prozesswäss	ser83
Abb. 7-2:	Kohlenstoffverbleib bei der Behandlung von HTC-Prozesswasser, Einsatzstoff: Biertreber	88
Abb. 7-3:	Kohlenstoffverbleib bei der Behandlung von HTC-Prozesswasser, Einsatzstoff: Rübenschnitzel	89
Abb. 7-4:	Kohlenstoffverbleib bei der Behandlung von HTC-Prozesswasser, Einsatzstoff: Speisereste	89
Abb. 7-5:	Verbleib der im Einsatzstoff enthaltenen Energie bei der Carbonisierung und der weiteren Behandlung des Prozesswassers, Einsatzstoff: Biertreber	93
Abb. 7-6:	Verbleib der im Einsatzstoff enthaltenen Energie bei der Carbonisierung und der weiteren Behandlung des Prozesswassers, Einsatzstoff: Rübenschnitzel	94
Abb. 7-7:	Verbleib der im Einsatzstoff enthaltenen Energie bei der Carbonisierung und der weiteren Behandlung des Prozesswassers, Einsatzstoff: Speisereste	94

Abb. A 1:	Betriebsverlauf des UASB-Reaktors während der Versuchsphase Biertreber (15.09.2011-12.01.2012)	109
Abb. A 2:	Konzentration an organischen Säuren und CSB-Raumbelastung des UASB-Reaktors, Versuchsphase Biertreber (15.09.2011-12.01.2012)	110
Abb. A 3:	Konzentration an organischen Säuren und FOS/TAC-Verhältnis des UASB-Reaktors, Versuchsphase Biertreber (15.09.2011-12.01.2012)	110
Abb. A 4:	Betriebsverlauf des UASB-Reaktors während der Versuchsphase Rübenschnitzel (10.0430.07.2012)	111
Abb. A 5:	CSB-Reinigungsleistung des Festbettreaktors während der Versuchsphase Rübenschnitzel 10.0430.07.2012)	112
Abb. A 6:	Konzentration an organischen Säuren und FOS/TAC-Verhältnis des UASB-Reaktors, Versuchsphase Rübenschnitzel (10.0430.07.2012)	112
Abb. A 7:	Biogaszusammensetzung im UASB-Reaktors während der Versuchsphase Rübenschnitzel (10.0430.07.2012)	112
Abb. A 8:	Betriebsverlauf des UASB-Reaktors während der Versuchsphase Speisereste (31.0707.11.2012)	113
Abb. A 9:	Biogaszusammensetzung im UASB-Reaktors während der Versuchsphase Speisereste (31.0707.11.2012)	114
Abb. A 10:	Betriebsverlauf des Festbettreaktors während der Versuchsphase Biertreber (15.09.2011-12.01.2012)	115
Abb. A 11:	Konzentration an organischen Säuren und CSB-Raumbelastung des Festbettreaktors, Versuchsphase Biertreber (15.09.2011-12.01.2012)	116
Abb. A 12:	Konzentration an organischen Säuren und FOS/TAC-Verhältnis des Festbettreaktors, Versuchsphase Biertreber (15.09.2011-12.01.2012)	116
Abb. A 13:	Betriebsverlauf des Festbettreaktors während der Versuchsphase II, Rübenschnitzel 10.0430.07.2012)	117
Abb. A 14:	CSB-Reinigungsleistung des UASB-Reaktors während der Versuchsphase Rübenschnitzel (10.0430.07.2012)	118
Abb. A 15:	Konzentration an organischen Säuren und FOS/TAC-Verhältnis des Festbettreaktors, Versuchsphase Rübenschnitzel 10.0430.07.2012)	118
Abb. A 16:	Biogaszusammensetzung im Festbettreaktor während der Versuchsph Rübenschnitzel 10.0430.07.2012)	nase 118
Abb. A 17:	Betriebsverlauf des Festbettreaktors während der Versuchsphase Speisereste (31.0707.11.2012)	119
Abb. A 18:	Konzentration an organischen Säuren und CSB-Raumbelastung des Festbettreaktors, Versuchsphase Speisereste (31.0707.11.2012)	120
Abb. A 19:	Konzentration an organischen Säuren und FOS/TAC-Verhältnis des Festbettreaktors, Versuchsphase Speisereste (31.0707.11.2012)	120

Abb. A 20:	Biogaszusammensetzung im Festbettreaktors während der Versuchsphase Speisereste (31.0707.11.2012)	120
Abb. A 21:	Akkumulierte TS- und oTS-Mengen des UASB-Reaktors während der Versuchsphase Speisereste (31.0707.11.2012)	122
Abb. A 22:	Akkumulierte TR- und oTR-Mengen des UASB-Reaktors während der Versuchsphase Speisereste (31.0707.11.2012)	122
Abb. A 23:	Akkumulierte TS- und oTS-Mengen des Festbettreaktors während der Versuchsphase Rübenschnitzel 10.0430.07.2012)	123
Abb. A 24:	Akkumulierte TR- und oTR-Mengen des Festbettreaktors während der Versuchsphase Rübenschnitzel 10.0430.07.2012)	123
Abb. A 25:	Akkumulierte TS- und oTS-Mengen des Festbettreaktors während der Versuchsphase Speisereste (31.0707.11.2012)	124
Abb. A 26:	Akkumulierte TR- und oTR-Mengen des Festbettreaktors während der Versuchsphase Speisereste (31.0707.11.2012)	124

Abkürzung	Erläuterung	Einheitenbeispiel
AFS	Abfiltrierbare Stoffe	mg/l
ASS	Absetzbare Stoffe	ml/l
B _{CSB,AN}	CSB Fracht im Ablauf des Reaktors über den Versuchszeitraum	g CSB
B _{CSB,ZU}	Zugeführte CSB-Fracht über den Versuchszeit- raum	g CSB
B _{d,CSB}	CSB Tagesfracht	kg CSB/d
BSB _{5,} BSB ₂₀	Biochemischer Sauerstoffbedarf in 5 (20) Tagen	mg/l
B _{R,CSB}	Raumbelastung	kg CSB/(m³⋅d)
B _{otr,CSB}	Schlammbelastung	kg CSB/(kg oTR·d)
С	Stoffkonzentration	mg/l
Ci	Konzentration des Gases (i) im Wasser	mol/l
CSB	Chemischer Sauerstoffbedarf	
C _{CSB,Z}	CSB-Konzentration im Zulauf	mg/l
C _{CSB,A}	CSB-Konzentration im Ablauf	mg/l
CSB _{CH4}	CSB in Methan	
C _{XXX}	Konzentration des Parameters XXX, in der homogenisierten Probe	mg/l
DOC	Gelöster organischer Kohlenstoff	mg/l
D _{S,eff}	Effektiver Oberflächendiffusionskoeffizient	m²/s
EGSB	Expanded Granular Sludge Blanket	
FS	Frischsubstanz	
FOS	flüchtige organische Säuren	
GC-MS	Massenspektrometer mit gaschromatographischem Detektor	
GR	Glührückstand	mg/l

Abkürzungsverzeichnis

GV	Glühverlust	%
НТС	Hydrothermale Carbonisierung	
HRT	Hydraulic Retention Time	d
IC®	Internal Circulation (interne Zirkulation durch Gas- lift) als Markenname eines EGSB-Reaktors	
K _H	Henry-Konstante	mol/(l·bar)
K _{H,CH4}	Henry-Konstante von Methan	mol/(l·bar)
Ki	Koeffizient der Freundlich-Isothermengleichung	
L	Kolonnenlänge	m
LF	Leitfähigkeit	mS/m
M _{Akk}	Akkumulierte oder ausgeschwemmte Feststoff- menge über einen bestimmten Zeitraum	g
M _{Akk,Ges}	Gesamte akkumulierte oder ausgeschwemmte Feststoffmenge	g
MAP	Magnesium-Ammonium-Phosphat	
M&A-Becken	Misch und Ausgleichsbecken	
M _{Feststoff}	Masse eines Feststoffes	g
M _{Feststoff,Ab}	Feststoffmasse, die den Reaktor verlassen hat	g
M _{Feststoff,Zu}	Feststoffmasse, die dem Reaktor zugeführt wurde	g
Mw	Molmasse	g/mol
m _N ³	Normkubikmeter	
max.	Maximalwert	
min.	Minimalwert (Q _{min} etc)	
ml _{STP}	ml Gas unter Normbedingungen (271 K, 1,013 bar)	
n	Stoffmenge	mol
n _i	Exponent der Freundlich-Isothermengleichung	
n _{CH4}	Anteil von Methangas am Gesamtgasvolumen	ml CH₄/ml Gas
N ₂	gasförmiger Stickstoff	
N _{anorg}	anorganischer Stickstoff	

N _{ges}	Gesamtstickstoff, Summe der Konzentrationen von Kjeldahl-, Nitrit- und Nitratstickstoff	
NH ₄ -N	Ammonium-Stickstoff	
n.n.	Nicht nachweisbar (z.B. Konzentration)	
NO ₂ -N	Nitrit-Stickstoff	
NO ₃ -N	Nitrat-Stickstoff	
OS	Originalsubstanz	
oTR	Organischer Trockenrückstand	g/l
oTS	Organische Trockensubstanz	g/l
PAtmosphäre	Atmosphärischer Umgebungsdruck	bar
P _{Ende}	Druck zum Versuchsende	bar
P _{ges}	Phosphor gesamt	
p _i	Partialdruck des Gases (i)	bar
рН	Negativer dekadischer Logarithmus der H ⁺ -Ionen- konzentration	
PO ₄ -P	Phosphat-Phosphor (ortho-Phosphat)	
Q _h	Volumenstrom	m³/h
Q _d	Täglicher Durchfluss	m³/d
q	Beladung der Aktivkohle	mg/g
RS	Rübenschnitzel	
SMA	spezifische Methanaktivität	kg CSB/kg oTR
SPR	Speisereste	
S _{XXX}	Konzentration des Parameters XXX in der filtrierten Probe (0,45 µm Membranfilter)	mg/l
TAC	totaler anorganischer Carbonat-Kohlenstoff	mg/l
T _N	Temperatur zur Festlegung des Normvolumens	273,15 K
ΤΝ _b	Gesamt-Stickstoff, gemessen mit dem Analysator Dimatoc 2000	mg/l
ТС	Gesamtkohlenstoff (Total Carbon)	mg/l
TIC	Gesamter anorganischer Kohlenstoff	mg/l

ТОС	Gesamter organischer Kohlenstoff	mg/l
t _R	Aufenthaltszeit	min
TR	Trockenrückstand	g/l
TS	Trockensubstanzgehalt	g/l
T _{Versuch}	Versuchstemperatur	К
UASB	Upflow Anaerobic Sludge Blanket	
UpM	Umdrehungen pro Minute	
V _{Ansatz,H2O}	Volumen des Inokulum	ml _{H2O}
V _{Gasraum}	Gasraum der Probeflasche	ml
V _{CH4}	Gasvolumen Methan	ml
V _{CH4,H2O}	Volumen des Gases (i) in Kontakt mit Wasser	ml _{Gas}
V _{m,CH4}	Molvolumen idealer Gase, hier: Methan	22,414 I _{Gas} /mol
V _{N,CH4}	Gasvolumen unter Normbedingungen	ml
V _{Versuch,CH4}	Gasvolumen unter Versuchsbedingungen	ml
Y	Yield (Biomassenertrag beim CSB-Abbau)	
X _{XXX}	Konzentration des Filterrückstandes, $X_{XXX} = C_{XXX} - S_{XXX}$	mg/l
% v.M.	Prozentsatz vom Messwert (relative Messgenauig- keit)	
Vol%	Volumenprozent	
$\beta_{L,eff}$	Effektiver Stoffübergangskoeffizient	m/s
η _{csb}	CSB-Eliminationsleistung	%
Рсн4	Gasdichte von Methan	l/mol

Zusammenfassung

Bei der hydrothermalen Carbonisierung fällt ein mit organischen Stoffen hoch belastetes Prozesswasser an, dessen Behandlung einen wesentlichen Einfluss auf die Wirtschaftlichkeit der Carbonisierung hat. Mit Hilfe von Versuchen im Labormaßstab wurde eine dreistufige Verfahrenskombination untersucht, bestehend aus einer anaeroben biologischen Vorbehandlung, einer aeroben biologischen Nachreinigung und einer adsorptiven Schlussbehandlung mit Aktivkohle. Dabei stand die Elimination der im Prozesswasser enthaltenen organischen Stoffe im Zentrum. Ergänzend wurde untersucht, inwieweit Nährstoffe aus dem Prozesswasser zurückgewonnen werden können.

Als Einsatzstoffe wurden Biertreber, Rübenschnitzel und Speisereste gewählt, um ein möglichst breites Spektrum an organischen Abfällen abzudecken. Die Untersuchung weiterer Prozesswässer war im Rahmen des Projektes nicht möglich, weil die kontinuierlichen biologischen Abbauversuche über Zeiträume von jeweils mehreren Monaten durchgeführt werden mussten, um stabile Betriebszustände bei unterschiedlichen Belastungen der Reaktoren zu erreichen.

Der wichtigste Befund des Projektes ist, dass die organischen Stoffe in HTC-Prozesswässern mit der vorgeschlagenen Verfahrenskombination zu über 99 % eliminiert werden können. Damit sind zukünftige Grenzwerte, die derzeit aber noch nicht festliegen, aller Voraussicht nach einzuhalten. Auch die im Prozesswasser enthaltenen, mit Pentan extrahierbaren organischen Spurenstoffe können weitestgehend entfernt werden.

Durch die Gewinnung von Biogas in der anaeroben Stufe und seine Verwertung kann bei der Prozesswasserbehandlung ein Energieüberschuss erzielt werden. Es konnte auch gezeigt werden, dass Nährstoffe, die in höheren Konzentrationen vorkommen, sich aus dieser Matrix durch die Verfahren der MAP-Fällung (bei Vorliegen von Ammonium-Stickstoff und Phosphat) bzw. der Ammoniakstrippung (bei Vorliegen nur von Ammonium-Stickstoff) zurückgewinnen lassen.

Einer direkten Umsetzung des Behandlungskonzeptes in den technischen Maßstab stehen jedoch noch einige Fragen entgegen, die in diesem Vorhaben nicht näher untersucht werden konnten. Insbesondere der Betrieb der anaeroben Stufe, in welcher der größte Teil der organischen Verbindungen eliminiert wird, bedarf noch einer Optimierung hinsichtlich der Raumbelastung und der Biogasausbeute. Dafür sollte vor allem die Zugabe von leichter abbaubaren Stoffen als Co-Substrat überprüft werden.

Auch bei den beiden anderen Stufen gibt es noch Optimierungspotenziale, die genutzt werden sollten, um die Betriebskosten der Behandlung zu verringern. Dies betrifft zum einen die maximale Raumbelastung des aeroben Reaktors und zum anderen die möglichst kostengünstige Entfernung der nicht abbaubaren organischen Stoffe nach den biologischen Behandlungsstufen.

Das Projekt wurde in Zusammenarbeit mit dem Fachgebiet Abfallwirtschaft und Deponietechnik der Hochschule Ostwestfalen-Lippe (Prof. Dr. H.-G. Ramke) durchgeführt und von der Deutschen Bundesstiftung Umwelt unter dem Aktenzeichen Az: 27760 gefördert.

1 Einleitung

Die hydrothermale Carbonisierung wird seit mehreren Jahren eingehend mit dem Ziel untersucht, alternative Verwertungswege für organische Reststoffe zu finden. Der Prozess läuft im wässrigen Medium ab, d.h. die organischen Einsatzstoffe werden als wässrige Suspension in einem Reaktor bei erhöhten Drücken und Temperaturen unter Luftabschluss umgesetzt. Nach dem Abkühlen ist der Großteil des Materials in kleine, poröse, braunkohlenartige Kügelchen umgewandelt worden, die durch Filtration aus dem Prozesswasser abgetrennt werden. Für dieses Produkt, bei der Gewinnung aus organischen Abfällen als Biokohle bezeichnet, gibt es stoffliche und thermische Verwertungsoptionen, die derzeit in verschiedenen Projekten weiter verfolgt werden. Nach Untersuchungen von Ramke et al. (2010a, 2010b) gehen bei der Carbonisierung organischer Siedlungsabfälle jedoch 15-25% des organischen Kohlenstoffs in die flüssige Phase über. Für die weitere Entwicklung des Prozesses bis zur Anwendungsreife ist es daher unabdingbar, Verwertungs- bzw. Entsorgungswege für das Prozesswasser zu finden.

Obwohl die hydrothermale Carbonisierung organischer Reststoffe von verschiedenen Arbeitsgruppen untersucht wird, hat das Prozesswasser bislang nur wenig Beachtung gefunden. Nach Aussagen der Fa. Loritus kann es problemlos in mechanischbiologischen Kläranlagen gereinigt werden (Loritus, 2013). Die Fa. AVA-CO2 geht von einem Prozesswasseranfall von 5 m³ je t Biokohle aus und merkt an, dass es mit verschiedenen organischen Stoffen sowie ggf. mit Schwermetallen belastet ist und die Behandlung entsprechend angepasst werden muss (AVA-CO2, 2011). Einzelheiten hierzu werden jedoch nicht mitgeteilt. Die Fa. Grenol stellt fest, dass ein Großteil der mineralischen Nährstoffe im Ausgangsmaterial in das Prozesswasser übergeht und schlägt vor, es nach einer Aufkonzentrierung zur Bewässerung bzw. Düngung einzusetzen (Grenol, 2013). Analysendaten und konkrete Rahmenbedingungen werden dabei aber nicht genannt.

Die Fa. Revatec baut Anlagen zur hydrothermalen und vapothermalen Carbonisierung. Sie weist auf die Erfordernis einer Prozesswasserbehandlung hin, wozu allerdings keine konkreten Daten vorgelegt werden (Revatec, 2013). Als Maßnahme zur Verringerung des Prozesswasseranfalls wird das Recycling des Wassers bei einer kontinuierlichen Prozessführung angegeben. Der Schwerpunkt der Fa. TerraNova Energy liegt auf der hydrothermalen Carbonisierung von Klärschlämmen (TerraNova, 2013). Auch von ihr werden keine Daten zu Prozesswasseranfall und -behandlung mitgeteilt.

Die Fa. SunCoal charakterisiert das Prozesswasser als stark organisch belastet. Als Entsorgungswege werden eine Einleitung in eine Kläranlage oder eine Aufbereitung vor Ort genannt (SunCoal, 2013). In einer früheren Firmenmitteilung wurde dagegen von einer begrenzten Abbaubarkeit des Prozesswassers berichtet und deshalb vorgeschlagen, die organischen Stoffe bei Drücken von 3-20 bar und Temperaturen von 120-200 °C unter Sauerstoffzufuhr teilweise zu mineralisieren bzw. in besser abbaubare Verbindungen zu überführen. Es gibt auch eine Patentanmeldung über die Anwendung einer solchen Nassoxidation zur Prozesswasserbehandlung (Kopinke et al., 2010). Von einer technischen Umsetzung des Konzeptes ist bislang jedoch noch nichts bekannt. Von Escala et al. (2011a) sind Analysendaten von HTC-Prozesswasser publiziert worden, die nicht nur Summenparameter umfassen. Ausgangsmaterial war Molke, und es wurden u.a. ein TOC-Wert von gut 7.000 mg/l, ein Gesamtphosphorgehalt von 237 mg/l und ein Gesamtstickstoffgehalt von 466 mg/l ermittelt. Daneben wurden auch 351 mg/l an Phenolen sowie 0,45 mg/l an Cyaniden gefunden. Der daraus abgeleitete Behandlungsbedarf für das Prozesswasser ist jedoch nicht näher betrachtet worden.

In einer eigenen Voruntersuchung (Ramke et al., 2010b) konnte gezeigt werden, dass die Prozesswässer aus der Carbonisierung von Siedlungsabfällen überwiegend sauer sind und ihre organische Belastung substrat- und prozessabhängig bei 10.000-40.000 mg/l für den Parameter BSB₅ und bei 14.000-70.000 mg/l für den Parameter CSB liegt. Aerobe Abbautests zeigten, dass sie gut biologisch abbaubar sind, wobei als Abbauleistung, bezogen auf den CSB, ein Wert von durchschnittlich 85% ermittelt wurde. Die in anderen Arbeiten ermittelten CSB/BSB₅-Verhältnisse waren dagegen mit Werten von 2,6 (Altensen und Richarts, 2010) bzw. 3 bis 5 (Clemens, 2011) etwas ungünstiger.

Bei der Carbonisierung von Siedlungsabfällen kamen Berge et al. (2011) mit 10.000-80.000 mg/l für den CSB auf vergleichbare hohe organische Belastungen wie Ramke et al. (2010b). Auch von ihnen wurde auf der Grundlage von BSB-Messungen eine gewisse aerobe Abbaubarkeit der Inhaltsstoffe vermutet.

Anaerobe Abbautests (Gärtests nach VDI 4630), durchgeführt im Fachgebiet für Abfallwirtschaft und Deponietechnik der Hochschule Ostwestfalen-Lippe, wiesen darauf hin, dass auch eine gute anaerobe Abbaubarkeit von HTC-Prozesswässern vorzuliegen scheint (Blöhse, 2011). Dies ist durch Untersuchungen von Stemann und Ziegler (2011) bestätigt worden. Damit ist die Option einer energetischen Verwertung der flüssigen Phase der HTC gegeben, die im laufenden Projekt eingehender untersucht wird.

Zu den abbaubaren Komponenten im Prozesswasser gehören u.a. flüchtige organische Säuren und Alkohole, die mit Hilfe angepasster HPLC-Methoden erfasst werden können. So haben Arends und Morondo Martin (2012) Ameisen- und Milchsäure mit jeweils mehr als 1 g/l und Methanol, 1,2-Propanol und 2,3-Butanol sogar mit jeweils mehr als 5 g/l nachgewiesen. In einer aktuellen Übersicht führen Weiner et al. (2012) Phenole und Furfurale als weitere wasserlösliche Komponenten auf, deren Konzentrationen sowohl vom Einsatzstoff als auch von den Reaktionsbedingungen abhängen.

Nach Hoekmann et al. (2011) handelt es sich bei den organischen Inhaltsstoffen überwiegend um Zucker und organische Säuren, wobei sich der Anteil der organischen Säuren mit steigender Reaktionstemperatur erhöht. Clemens (2011) berichtet vom Vorhandensein von Ameisensäure, Essigsäure, höheren organischen Säuren und Phenolen; Größenordnungen für die Konzentrationen werden jedoch nicht angegeben.

Nennenswerte Gehalte an Stickstoff und Phosphor sind in HTC-Prozesswässern für die Einsatzstoffe Bambus (Schneider et al., 2011) und Klärschlamm (Escala et al., 2011b) gefunden worden. Auch Glasner et al. (2011) berichten von Phosphorgehalten von bis zu 790 mg/l. Eine gezielte Rückgewinnung der Nährstoffe erfolgte in den genannten Arbeiten jedoch nicht.

Zielsetzung

Zielsetzung des Projektes war die Ermittlung einer für die Reinigung des Prozesswassers geeigneten, stabil zu betreibenden Verfahrenskombination, bei der auch die Möglichkeiten einer Abtrennung/Rückgewinnung der Pflanzennährstoffe Stickstoff und Phosphor berücksichtigt werden. Damit sollten die Voraussetzungen für den Umgang mit dem Prozesswasser im technischen Maßstab geschaffen werden, bei dem als Ziele seine stoffliche Nutzung sowie die energetische Optimierung seiner Behandlung im Vordergrund stehen.

Aufgabenstellung

Die Untersuchungen erfolgten in zwei miteinander verbundenen Teilprojekten, um alle Aspekte der Behandlungsoptionen klären zu können. Als Einsatzstoffe wurden drei verschiedene organische Abfälle ausgewählt, die auch ein unterschiedliches Spektrum an Nährstoffen im Prozesswasser erwarten lassen. Mit Hilfe von Batch- und kontinuierlichen Versuchen im Labormaßstab sollte das folgende Behandlungskonzept für das Prozesswasser untersucht werden:

- Anaerobe Reinigung
- Nährstoffrückgewinnung
- Aerobe Reinigung
- Physikalisch-chemische Nachbehandlung

Die Einsatzstoffe wurden vom Fachgebiet Abfallwirtschaft und Deponietechnik der Hochschule OWL in einem Autoklaven im Chargenbetrieb carbonisiert und das anfallende Prozesswasser für die weiteren Untersuchungen bereitgestellt. Nach einer Analyse unter Verwendung von Summen-, Gruppen- und Einzelstoffparametern sollten Versuche zur anaeroben Behandlung folgen. Zur Abschätzung der anaeroben Abbaubarkeit und zur Überprüfung der Biogasqualität wurden Batch-Tests durchgeführt, denen sich kontinuierliche anaerobe Abbauversuche mit einem UASB- und einem Festbettreaktor im Labormaßstab anschlossen. Ziel war es, für das Prozesswasser das optimale anaerobe Reinigungsverfahren zu finden, dessen Betriebsparameter zu ermitteln, die Prozessstabilität zu beurteilen und die Biogasausbeute zu optimieren.

Nach weiteren Analysen des anaerob vorbehandelten Prozesswassers sollten Untersuchungen mit dem Ziel einer Gewinnung der Nährstoffe Stickstoff und Phosphor durchgeführt werden. Zur Nährstoffabtrennung wurden die Verfahren der MAP-Fällung sowie der Ammoniakstrippung betrachtet. Danach waren die Optionen und Bedingungen für eine Nachbehandlung des anaerob gereinigten Prozesswassers durch eine aerobe biologische Stufe in Kombination mit physikalisch-chemischen Verfahren zu ermitteln. Für die Beurteilung der aeroben Abbaubarkeit wurde eine kontinuierlich betriebene Laborkläranlage eingesetzt. Als Verfahren zur erforderlichen physikalisch-chemischen Nachreinigung war die Adsorption an Aktivkohle vorgesehen, ggf. ergänzt durch eine Oxidation mit Ozon. Hierbei sollten neben der Aufnahme von Isothermen auch Säulenversuche mit körniger Aktivkohle durchgeführt werden.

2 Herkunft und Eigenschaften des Prozesswassers

2.1 Auswahl der Einsatzstoffe

Als Einsatzstoffe wurden zwei unterschiedliche organische Abfälle sowie ein landwirtschaftlicher Reststoff ausgewählt, die ein breites Spektrum an Nährstoffen im Prozesswasser erwarten ließen. Stellvertretend für industrielle organische Abfälle wurde **Biertreber** untersucht, der bei der Bierherstellung anfällt und sowohl hohe Phosphor- als auch hohe Stickstoffgehalte aufweist. Als kommunale organische Abfallfraktion kamen **Speisereste** zum Einsatz, die nach Einsammlung und Entfettung eine gewisse Homogenität besitzen und primär Stickstoff als Nährstoff enthalten. Den landwirtschaftlichen Reststoff stellten **Rübenschnitzel** aus der Zuckerherstellung dar, bei denen die Gehalte beider Nährstoffe relativ gering sind. Die Abfallstoffe wurden vom Fachgebiet Abfallwirtschaft und Deponietechnik der Hochschule OWL von den Erzeugern bezogen und im Chargenbetrieb carbonisiert.

2.2 Carbonisierungsbedingungen

Zur Erzeugung der HTC-Prozesswässer wurde eine reproduzierbare Standardvariante zur Carbonisierung der Einsatzstoffe angewendet. Die Methode wurde entwickelt, um das generelle Carbonisierungsverhalten verschiedener Biomassen vergleichend testen zu können. Sie beinhaltet ein intensives Temperaturprogramm, bei dem hohe Aufschlusstemperaturen von ca. 220 °C (Maximaltemperatur) angewendet werden. Die resultierende Verweilzeit oberhalb von 180 °C beträgt ca. fünf Stunden.

Versuchsbedingungen:

Reaktor	25 Liter Autoklav, ungerührt
Gesamtmasse Input	20 kg Frischsubstanz (FS)
TS-Gehalt Input	15 % (entspricht 3 kg Trockenmasse)
Regelgröße	Behältertemperatur (Innentemperatur, die am Temperaturfühler, der mittig in der Reaktionsmasse steckt, abgenommen wird.)

Temperaturprogramm:

- Die Aufheizphase erfolgt mit einer Heizleistung von 100 % bis zu einer Temperatur (Behältertemperatur) von 220 °C innerhalb der Reaktionsmasse.
- Ab Erreichen der Soll-Temperatur werden die Heizkreise automatisch heruntergeregelt.
- Die nachfolgende Reaktionsphase erfolgt bei einer Heizleistung von 10 %.

- Nach ca. 24 Stunden ist eine adäquate Behältertemperatur von < 50 °C erreicht und die Abkühlphase ist abgeschlossen.
- Es erfolgt die Druckentlastung (Ablassen der entstandenen HTC-Prozessgase).
- Danach wird der Reaktor geöffnet und das Probenmaterial, die sogenannte HTC-Suspension, entnommen.

Zur Bereitstellung der HTC-Prozesswässer erfolgt eine einfache Fest-Flüssig-Trennung der HTC-Suspension mittels Unterdruckfiltration.

In der Abbildung 2-1 wird ein exemplarischer Versuchsverlauf dieser Standardvariante gezeigt. Zur Erläuterung des Temperaturprogramms sind die einzelnen Phasen des Versuchs eingetragen.

Abb. 2-1: Exemplarische Darstellung des Temperaturprogramms bei der Carbonisierung, Einsatzstoff: BMBF-Standard (Blöhse, 2013)

Die Temperaturprofile bzw. -gradienten sind, ebenso wie die Entwicklung des Druckverlaufs, abhängig von der eingesetzten Substanz. Hierbei werden die Unterschiede maßgeblich auf die thermischen Eigenschaften (z.B. Wärmeleitfähigkeit) und das Reaktionsverhalten der verschiedenen Einsatzstoffe zurückgeführt. Beispiele der Carbonisierungsverläufe für die drei untersuchten Einsatzstoffe sind in den Abbildungen 2-2, 2-3 und 2-4 dargestellt. Ferner ist der Wassergehalt der Reaktionsmasse, der nicht immer auf genau 15 % FS, die standardisierte Versuchsbedingung, eingestellt werden kann, zu berücksichtigen (siehe auch Tabelle 2-1).

Verwendete Einsatzstoffe:

Biertreber Rückstände der Bierproduktion (ausgelaugtes Gerstenmalz)

Herkunft: Brauerei Allersheim, Holzminden und Brauerei Meierhof, Höxter-Ottbergen RübenschnitzelRückstände aus der Zuckerproduktion (getrocknete, nicht melassierte
Zuckerrübenschnitzel)

Herkunft: unbekannte Zuckerfabrik

Speisereste Lebensmittelreste (Großküchen- und Kantinenabfälle), hygienisiert und meist entfettet, Einsatz als Substrat für Biogasanlagen (Co-Vergärungsanlagen)

Herkunft: Biogasanlage Brakel-Beller

Wie anfangs beschrieben, soll der TS-Gehalt der Reaktionsmasse durch Verdünnen mit Wasser auf ca. 15 % FS eingestellt werden. Dies ist bei stark wasserhaltigen Einsatzstoffen wie Speiseresten nicht möglich. In Tabelle 2-1 sind die Versuchsansätze exemplarisch dargestellt. Bei Speiseresten wird lediglich ein TS-Gehalt der Reaktionsmasse von 7 - 8 % FS erreicht. Deshalb weichen die Versuchsparameter der Carbonisierung von Speiseresten (siehe Tabelle 2-2) im Temperaturprogramm etwas von den Parametern der anderen beiden Einsatzstoffe (Rübenschnitzel und Biertreber) ab.

Einsatzstoff	TS in der OS	Masse der OS	Verdünnungs- wasser	TS in der FS im Reaktor
	[%]	[kg]	[kg]	[%]
Biertreber	16 - 18	16,5	3,5	ca. 14
Rübenschnitzel	ca. 89	3,5	16,5	ca. 15
Speisereste	7 - 8	20,0	0,0	7 - 8

Tab. 2-1:	Übersicht über	die Ansätze	für die h	nydrothermale	Carbonisierung
-----------	----------------	-------------	-----------	---------------	----------------

TS – Trockensubstanz, FS – Frischsubstanz, OS – Originalsubstanz

In Tabelle 2-2 sind die maßgeblichen Versuchsparameter für die drei Einsatzstoffe aufgeführt. Die zeitlichen Verläufe der Parameter sind in den nachfolgenden Abbildungen 2-2, 2-3 und 2-4 dargestellt.

Tab. 2-2: Übersicht über die relevanten HTC-Versuchsparameter

Einsatzstoff	max. Temperatur	max. Druck	Verweilzeit bei >180 °C
	[°C]	[bar]	[h]
Biertreber	240	40	4,8
Rübenschnitzel	240	45	5,0
Speisereste	232	32	4,9

Abb. 2-2: HTC-Versuchsverlauf mit Biertreber als Einsatzstoff

Abb. 2-3: HTC-Versuchsverlauf mit Rübenschnitzel als Einsatzstoff

Abb. 2-4: Beispiel HTC-Versuchsverlauf mit Speiseresten

2.3 Analysenmethoden

Zur Bestimmung der Analysenparameter kamen folgende Methoden zur Anwendung:

Abfiltrierbare Stoffe (AFS) und Glührückstand (GR): Die Bestimmung erfolgte mittels Glasfaserfilter der Fa. WHATMAN in Anlehnung an das Verfahren DIN 38409 - H2-3. Der Filterrückstand wurde bei 105 °C im Trockenschrank getrocknet, nach dem Wiegen bei 500 °C geglüht und dann erneut gewogen.

pH-Wert: Hier kamen eine Einstab-Messelektrode SenTix 41 und das Messgerät Multi 340i der Fa. WTW zum Einsatz.

Leitfähigkeit (LF): Dieser Parameter wurde nach dem Verfahren DIN EN 27888 mit dem Messgerät Multi 340i der Fa. WTW bestimmt.

Chemischer Sauerstoffbedarf (CSB): Die CSB-Bestimmung erfolgte mit den MERCK-Küvettentests Nr. 1.14541 (Messbereich 25-1.500 mg/l) und 1.14555 (Messbereich 500-10.000 mg/l) nach entsprechender Verdünnung der Proben.

Gesamter organisch gebundener Kohlenstoff (TOC, DOC): Zur TOC-Bestimmung wurde der Labor-Analysator Dimatoc 2000 der Firma Dimatec eingesetzt. Die TOC-Messung erfolgt nach dem Prinzip der thermisch-katalytischen Oxidation mit nachgeschalteter NDIR-Detektion. Das Gerät nutzt zwei unabhängige Messkanäle, um den Gesamt-kohlenstoff TC und den anorganischen Kohlenstoff TIC zu messen. Der TOC wird nach der Differenzmethode bestimmt (TOC = TC - TIC). Der DOC-Wert ist das Ergebnis der TOC-Bestimmung in membranfiltrierten Proben (DIN EN 1484).

Gesamtstickstoff TNb: Zur TNb-Bestimmung wurde in Verbindung mit dem TOC-Analysator Dimatoc 2000 das Zusatzmodul DIMA-N eingesetzt. Die Detektion erfolgt nach der Chemolumineszenzmethode gemäß DIN EN 12260.

Ammonium-Stickstoff (NH₄-N): Hierfür kamen die Reagenzientests Nr. 1.14752 (Messbereich 0,1-2,7 mg/l) und 1.00683 (Messbereich 2,0-150 mg/l) der Fa. MERCK zum Einsatz.

Nitrat-Stickstoff (NO₃-N): Die Bestimmung erfolgte mit dem MERCK-Reagenzientest Nr. 1.14773 (Messbereich 1,1-20,3 mg/l).

Phosphat (PO₄-P): Dieser Parameter wurde mit den Reagenzientests Nr. 1.14848 (Messbereich 0,1-5,0 mg/l) und 1.00798 (Messbereich 1,0-100 mg/l) der Fa. MERCK erfasst.

Gesamt-Phosphor (P_{ges}): Die Analyse erfolgte analog zur Phosphatbestimmung mit vorgeschaltetem Mikrowellenaufschluss.

Biochemischer Sauerstoffbedarf (BSB₅): Die BSB-Bestimmung erfolgte gemäß der manometrischen (respirometrischen) Methode unter Verwendung eines OxiTop-Systems der Fa. WTW.

GC-MS Übersichtsanalyse und Kationenbestimmung: Diese Analysen wurden an ein externes Labor vergeben und mit Hilfe eines GC-MS Systems der Fa. Agilent bzw. mittels ICP-OES gemäß ISO 17294-2 durchgeführt.

2.4 Ergebnisse der chemischen Analysen

Gruppenparameter und Nährstoffe

In Tabelle 2-3 sind Analysenwerte für das HTC-Prozesswasser der drei ausgewählten Einsatzstoffe aufgeführt. Da die Carbonisierung im Batch-Betrieb erfolgt und die Einsatzstoffe nicht homogen sind, können die Zusammensetzung und das Konzentrationsniveau des Prozesswassers schwanken. Es wird hier wegen der geringen Zahl an Vollanalysen (3 bis 5 je Einsatzstoff) darauf verzichtet, eine statistische Auswertung vorzunehmen. Stattdessen werden die Schwankungsbreiten der einzelnen Parameter angegeben. Insbesondere bei den Stickstoff- und Phosphorkonzentrationen wurden die Messungen auch durch Matrixeffekte beeinträchtigt, so dass die Genauigkeit vor allem bei niedrigen Konzentrationen begrenzt war.

Wie Tabelle 2-3 zeigt, liegen die pH-Werte aller Prozesswässer mit pH = 4,3-4,4 im sauren Bereich. Den Leitfähigkeitswerten zufolge weisen sie unterschiedliche, aber relativ hohe Salzgehalte auf, die deutlich über dem Bereich des zur Carbonisierung verwendeten Trinkwassers liegen. Es kommt also bei den Carbonisierungsreaktionen auch zu einem nennenswerten Salzeintrag.

Die Belastung der Prozesswässer ist vor allem durch organische Stoffe bedingt. Die CSB-Werte liegen zwischen gut 33.000 mg/l und etwa 84.000 mg/l, wobei die niedrigen CSB/TOC-Verhältnisse von maximal 2,75 darauf hinweisen, dass der Sauerstoffanteil in den organischen Molekülen verhältnismäßig hoch sein muss.

Da es sich bei den Prozesswässern um Filtrate handelt, ist den Anteil an abfiltrierbaren Stoffen bei frischen Wässern vernachlässigbar klein. Bei der Lagerung kommt es jedoch nach einigen Tagen zur Bildung organischer Ausfällungen, wodurch der Anteil an gelösten Stoffen etwas verringert wird. Dieser Effekt zeigte sich bei den kontinuierlichen Versuchen zum anaeroben Abbau (siehe Kapitel 3), da hier das Prozesswasser teilweise mehrere Wochen zwischengelagert werden musste, und wird dort auch quantifiziert.

Parameter	Einheit		Einsatzstoff	
		Biertreber	Rübenschnitzel	Speisereste
рH	[-]	4,3	4,4	4,4
LF	[mS/cm]	8,15	4,61	24,7
C_{CSB}	[mg/l]	47.600 - 76.700	33.600 - 45.800	65.300 - 84.400
C _{TOC}	[mg/l]	18.500 - 29.800	14.700 – 17.200	24.400 - 31.700
CSB/TOC	[mg/l]	2,50 - 2,75	2,29 - 2,67	2,62 - 2,67
TNb	[mg/l]	3.720 - 4.150	815	2.290 - 2.460
C _{NH4-N}	[mg/l]	550 - 1.020	< 100	390 - 1220
C _{NO3-N}	[mg/l]	< 50	< 30	< 50
P _{ges}	[mg/l]	1.080 - 1.340	130	380
C _{PO4-P}	[mg/l]	990 - 1.340	100	160 - 240

Tab. 2-3: Analysenwerte für das HTC-Prozesswasser der drei ausgewählten Einsatzstoffe

Aus den an Einzelproben ermittelten Konzentrationen der Nährstoffe N und P lassen sich die folgenden molaren C : N : P-Verhältnisse abschätzen: Biertreber $\rightarrow 38$: 4,4 : 1; Rübenschnitzel $\rightarrow 314$: 17,4 : 1 und Speisereste $\rightarrow 183$: 21,7 : 1. Relativ gesehen weist das Prozesswasser des Biertrebers den höchsten P-Anteil auf. Das C : N-Verhältnis ist bei Biertreber und Speiseresten mit ca. 8,5 : 1 fast gleich, während bei Rübenschnitzeln der Kohlenstoffanteil dominiert (C : N = 18 : 1).

Kationen

Bei der pH-Anhebung des Prozesswassers aus der Carbonisierung von Biertreber wurde die Ausfällung von Salzen beobachtet. Abbildung 2-5 zeigt die ermittelten Trocken- und Glührückstände in Abhängigkeit vom pH-Wert, die darauf hindeuten, dass die Fällungsprodukte überwiegend anorganische Salze sind.

Im Prozesswasser wurden deshalb die Konzentrationen der Alkali- und Erdalkalimetalle bestimmt, für die sich folgende Werte ergaben: $C_{Ca} = 430 \text{ mg/l}$; $C_{Mg} = 410 \text{ mg/l}$; $C_{K} = 25 \text{ mg/l}$ und $C_{Na} = 50 \text{ mg/l}$. Aufgrund der hohen Gehalte an Calcium (molare Konzentration 10,8 mmol/l) und Magnesium (molare Konzentration 16,9 mmol/l) wurde vermutet, dass zu den Fällungsprodukten Calciumcarbonat und Calciumphosphate sowie Magnesiumammoniumphosphat (MAP) gehören. Diese Frage wird im Kapitel 6 näher betrachtet.

Abb. 2-5: Ausfällungen bei der pH-Anhebung des HTC-Prozesswassers von Biertreber

Organische Spurenstoffe

Bei der GC-MS Übersichtsanalyse werden alle mit Pentan extrahierbaren, mittel- bis schwerflüchtigen Verbindungen der Originalprobe erfasst, die sich unzersetzt verdampfen lassen. Die Erfassungsgrenze ist Substanz-spezifisch und liegt bei den meisten Stoffen bei 10-100 µg/l. Die Abbildungen 2-6 bis 2-8 zeigen die Chromatogramme für die HTC-Prozesswässer der drei untersuchten Einsatzstoffe. An Stoffgruppen wurden im Einzelnen nachgewiesen:

• Phthalate

- Pyrazine (insbesondere Methyl- und Dimethylpyrazin)
- Phenole (u.a. Methoxy-phenol und Ethyl-methoxy-phenol)
- BTEX-Aromaten
- weitere cyclische sauerstoffhaltige Verbindungen
- nicht näher zuordbare aliphatische und aromatische Kohlenwasserstoffe

Abb. 2-6: GC-MS Chromatogramm für das HTC-Prozesswasser von Biertreber

Abb. 2-7: GC-MS Chromatogramm für das HTC-Prozesswasser von Rübenschnitzeln

Abb. 2-8: GC-MS Chromatogramm für das HTC-Prozesswasser von Speiseresten

2.5 Folgerungen

- Die organische Belastung des Prozesswassers liegt bei allen Einsatzmaterialien bei mehreren 10.000 mg/l CSB. Das CSB/TOC-Verhältnis von maximal 2,75 weist auf einen relativ hohen Sauerstoffanteil in den organischen Verbindungen hin.
- 2. Je nach Einsatzstoff finden sich Nährstoffe sowohl in geringen Konzentrationen als auch mit Gehalten von mehreren 100 mg/l N bzw. P.
- 3. Der Salzgehalt ist um einen Faktor 8-12 höher als im eingesetzten Frischwasser. Bei den Kationen können nennenswerte Mengen an Calcium und Magnesium vorkommen.
- 4. Mit den mittel- bis schwerflüchtigen, als unzersetzt verdampfbar erfassten organischen Spurenstoffen kann nur ein Bruchteil von einigen 10 mg/l aller organischen Einzelsubstanzen identifiziert werden.

3 Anaerobe Abbauversuche

3.1 Material und Methoden

3.1.1 Zusammensetzung der HTC-Prozesswässer

Tab. 3-1 gibt die Ergebnisse der in Detmold zu Versuchsbeginn durchgeführten Analysen für das Prozesswasser der drei ausgewählten Einsatzstoffe wieder. Die Zusammensetzungen und das Konzentrationsniveau des Prozesswassers können durch die Einsatzstoffe und die im Batch-Betrieb erfolgte Carbonisierung schwanken. Wegen der geringen Zahl an Vollanalysen (1 bis 3 je Einsatzstoff) wird auf eine statistische Auswertung verzichtet. Stattdessen werden die Schwankungsbreiten der einzelnen Parameter angegeben. Insbesondere bei den Stickstoff- und Phosphorkonzentrationen wurden die Messungen auch durch Matrixeffekte beeinträchtigt, so dass die Genauigkeit vor allem bei niedrigen Konzentrationen begrenzt war.

			Substrat	
Parameter	Einheit	Biertreber	Rübenschnitzel	Speisereste
n	-	1	3	3
C _{CSB}	[g/l]	47,6	46,3-48,7	72,0-73,8
S _{CSB}	[g/l]	46,8	45,8-48,3	71,4-73,4
S _{NO3-N}	[mg/l]	n.n.	139-148	69-613
S _{NO2-N}	[mg/l]	141	0,311-0,429	0,470-0,712
S _{NH4} -N	[mg/l]	1.031	0,118-39	325-924
C _{TKN}	[mg/l]	3.800	269-503	1.667-2.362
C _{TNb}	[mg/l]	3.941	408-649	2.260-2.444
C _{org. N}	[mg/l]	2.769	249-503	743-1.866
C _{Pges}	[mg/l]	973	26,7-29,2	147-156
Leitfähigkeit	[mS/cm]	8,5	4,9-5,0	14,4-14,6
pH-Wert	[-]	4,80	3,89-3,95	4,02-4,95
X _{TS}	[g/l]	-	0-1,0*	n.n.
X _{ots}	[g/l]	-	0-0,9*	n.n.
X _{TR}	[g/l]	-	21,1-39,7*	31,9-37,3
v	[g/l]	-	18-24,5*	24,1-29,4
∧ ₀TR	[%]	-	61-88*	75-79
CSB:N:P-Verhältnis	-	800:66:17	800:9,5:0,5	800:26:1,8

Tab. 3-1:	Analysenwerte für das HTC-Prozesswasser der drei ausgewählten I	Einsatz-
	stoffe nach Tuchfiltration	

n.n. = nicht nachweisbar, n = Anzahl der Analysen

* Werte basieren auf den zurückgerechneten wöchentlichen Analysenwerten des verdünnten Rohabwassers Weil es in allen HTC-Prozesswässern zu dauerhaft anhaltenden Ausfällungen kam, wurden die verwendeten HTC-Prozesswässer vor den abwassertechnischen Analysen und dem Einsatz in den Versuchsreaktoren durch einen Tuchfilter einer Kammerfilterpresse von groben Feststoffen befreit.

Die Analysenwerte zeigen in allen drei Fällen ein organisch hoch belastetes Prozesswasser. Die C_{CSB}/S_{CSB} -Verhältnisse zeigen, dass der CSB nahezu vollständig in gelöster Form vorliegt. Die CSB : N : P-Verhältnisse bei den Prozesswässern aus Biertreber und Speiseresten zeigen ein für den anaeroben Abbau gravierenden Überschuss an Stickstoff und Phosphor. Für das Prozesswasser aus Rübenschnitzeln zeigt das Nährstoffverhältnis einen Phosphormangel. Deswegen wurde dem Prozesswasser stöchiometrisch Phosphor zugegeben.

Während der Versuche wurden die Prozesswässer nur mit Leitungswasser verdünnt eingesetzt und so die Belastung der Reaktoren bei immer konstantem Zufluss (1,08 l/d) variiert. Den CSB im Zulauf während der Versuchsphase Biertreber zeigt Tab. 3-2.

Zeitraum	C_{CSB} im Zulauf	Verdünnung
	[mg/l]	Prozesswasser [I] + Leitungswasser [I]
14.1028.10.2011	10.000	1 + 3,8
29.1019.12.2011	15.000	1 + 2,2
20.1221.12.2011	20.000	1 + 1,4
22.1227.12.2011	25.000	1 + 0,9
28.1230.12.2011	35.000	1 + 0,36
31.12.2011-06.01.2012	30.000	1 + 0,59
07.0112.01.2012	25.000	1 + 0,9

Tab. 3-2:Staffelung der CSB-Zulaufkonzentrationen während der Versuchsphase
Biertreber (10.10.2011-12.01.2012)

Die CSB-Werte im Zulauf während der Versuche mit Prozesswasser aus Rübenschnitzeln zeigt Tab. 3-3.

Tab. 3-3: Staffelung der CSB-Zulaufkonzentrationen während der Versuchsphase Rübenschnitzel (10.04.-30.07.2012)

Zeitraum	C _{CSB} im Zulauf	Verdünnung
	[mg/l]	Prozesswasser [I] + Leitungswasser [I]
10.0426.04.2012	10.000	1 + 3,7
26.04 30.07.2012	15.000	1 + 2,1

Die Tab. 3-4 zeigt den CSB im Zulauf bei der Untersuchung von Speisereste-Prozesswasser.
Zeitraum	C _{CSB} im Zulauf	Verdünnung
	[mg/l]	Prozesswasser [I] + Leitungswasser [I]
31.0710.08.2012	8.000	1 + 8
10.0820.08.2012	10.000	1 + 6
20.0825.08.2012	10.000	1 + 6
25.0809.09.2012	12.500	1 + 4,8
09.0918.09.2012	15.000	1 + 3,8
18.0902.10.2012	17.500	1 + 3,1
02.1020.10.2012	20.000	1 + 2,6
20.1031.10.2012	15.000	1 + 3,8
31.1007.11.2012	10.000	1 + 6,2

Tab. 3-4:	Staffelung der CSB-Zulaufkonzentrationen während der Versuchsphase
	Speisereste (31.0707.11.2012)

3.1.2 Verwendete anaerobe Biomasse

Einen Überblick über die verwendete Biomasse und deren Charakteristika gibt Tab. 3-5. Die Biomassen fanden sowohl in den kontinuierlichen anaeroben Abbauversuchen als auch in den anaeroben Batchtests Verwendung.

|--|

Versuchsphase	Verwendete Biomasse T		oTI	२
		[g/l]	[g/l]	[%]
Biertreber (10.10.2011 -12.01.2012)	granulierte anaerobe Biomasse aus dem UASB-Reaktor eines Fruchtsaftherstellers	76,8	62,1	81
Rübenschnitzel (10.0430.07.2012) und Speisereste (31.0707.11.2012)	granulierte anaerobe Biomasse aus dem UASB-Reaktor eines Fruchtsaftherstellers	76,8	59,5	78

3.1.3 Batch-Tests zur Bestimmung der Schlammaktivität und des anaeroben Abbaus

Bei Batch-Tests handelt es sich um Versuche, bei denen eine Biomasse einmalig mit einem Substrat unter definierten Rahmenbedingungen beaufschlagt wird. Die wichtigsten Rahmenbedingungen sind die Temperatur und die gewählten Schlammbelastungen. Ziele von Batchtests können sein, eine Beurteilung der anaeroben Abbaubarkeit, des Biogasertrags, der Biomassenaktivität sowie eine qualitative Beurteilung der anaeroben Abbaugeschwindigkeit zu ermöglichen.

3.1.3.1 Versuchsaufbau

Die Batch-Tests zur Beurteilung der Schlammaktivität erfolgten nach Vorgaben der ATV-DVWK IG-5.1 (2004) und VDI 4630. Beispiele für die Durchführung von anaeroben Batchtests geben Urban (2009) und Angelidaki et al. (2006). Der Versuchsaufbau wurde für die Bestimmung der Schlammaktivität (Schlammaktivitätstests) sowie für die Ermittlung der idealen Schlammbelastung der kontinuierlichen anaeroben Abbauversuche verwendet.

Bei dem Versuchsaufbau handelt es sich im Wesentlichen um ein papierloses Schreibersystem mit separaten Drucksystemen. Ein Drucksystem besteht aus einer Weithalsflasche und einem Industriedrucksensor, der mit dem papierlosen Schreiber über Steuerleitungen verbunden ist. Abb. 3-1 zeigt den prinzipiellen Versuchsaufbau.

Abb. 3-1: Prinzipieller Versuchsaufbau der anaeroben Batch-Tests

3.1.3.2 Versuchsdurchführung

<u>Voranalytik</u>

Im Rahmen der Voranalytik eines Batch-Versuches mussten aus der Biomasse und dem verwendeten Substrat verschiedene Parameter bestimmt werden. Aus der Biomasse wurden der Trockenrückstand, Glühverlust und pH-Wert, aus dem Substrat der C_{CSB} und S_{CSB} sowie der pH-Wert bestimmt. Um eine Auszehrung des Schlamms zu erreichen, sollte dieser 2-7 Tage im Klimaschrank aufbewahrt werden. Die Aufenthaltszeit von 7 Tagen sollte nicht überschritten werden (Urban, 2009).

Durchführung

Zur Durchführung der Batch-Tests wurden jeweils fünf Doppelansätze für einen bestimmten Zeitraum angesetzt. Die fünf Doppelansätze teilten sich immer auf in einen Doppelsatz als Blindwert (Nullansatz) sowie vier verschiedene Substratkonzentrationen. Die Wahl der Schlammbelastung ist vom eingesetzten Substrat abhängig. Die Schlammbelastung beim Einsatz kommunaler Prozesswässer wird üblicherweise mit 0,05-0,25 kg CSB/kg oTR, für Industrieabwasser üblicherweise mit 0,15-0,5 kg CSB/kg oTR angenommen. Wenn keine Referenzwerte vorliegen, ist die Schlammbelastung sinnvoll zu schätzen. Erfahrungsgemäß haben sich Schlammbelastungen von 0,2; 0,3; 0,4 und 0,5 kg CSB/kg oTR für einen ersten Batchansatz bewährt. Die verwendete Biomasse wurde nach jedem durchgeführten Batchtest aufgefangen und für den nächsten Ansatz wiederverwendet. Eine Grundversorgung der Biomasse mit Spurenelementen wurde sichergestellt. Die Zugabe der Spurenelemente erfolgte einmalig zu Beginn der Versuche. Verwendet wurde das Produkt Nutromex Plus (Produktcode 232) der Firma Omex Agriculture Ltd. Lincolnshire, UK.

Nach Befüllen der Flaschen mit Schlamm und Substrat wurden Temperatur und pH-Wert gemessen und anschließend der Gasraum der Batch-Reaktoren mit Stickstoff gespült und die Drucksensoren installiert. Die Batch-Reaktoren wurden über den gesamten Versuchszeitraum bei einer konstanten Temperatur (38 °C) im Thermostatschrank (Firma Lovibond) aufbewahrt. Die Durchmischung erfolgte manuell durch leichtes Aufschütteln.

Die Versuchsdauer ist abhängig von der Abbaubarkeit des Substrats, der damit verbundenen Länge der Adaptions- und Versäuerungsphase sowie dem Einsetzen der stabilen Methanphase (Urban, 2009). Spätestens als die Gasproduktion auf die Grundatmung gesunken war und somit kaum ein Druckanstieg verzeichnet wurde (Plateauphase), konnten die Batch-Tests beendet werden. Das entstandene Gas wurde im Anschluss an die Versuche mittels Gaschromatographie auf seine Zusammensetzung untersucht.

<u>Auswertung</u>

Der Anfall von Biogas in den Konstant-Volumen-Reaktoren wurde kontinuierlich über den Druckanstieg gemessen und aufgezeichnet. Die Berechnung des CH₄-Gasanfalls erfolgte computergestützt über den ermittelten Druck und das bekannte Reaktorvolumen. Dabei wurde aus dem gemessenen Druck und dem bekannten Volumen des Reaktionsgefäßes unter Verwendung der Gasgesetze das Gasvolumen bei Normbedingungen STP (Standard Temperature and Pressure; 0 °C, 1.013 mbar) errechnet. Die CH₄-Gasmenge ergab sich aus der Summe des Volumenanteils Methan in der Gasphase und des Volumenanteils Methan in der Flüssigphase. Aus der ermittelten Methangasmenge und der Biogaszusammensetzung (GC-Analyse) wurde über die stöchiometrische Beziehung, nach der beim Abbau von 1 g CSB 350 ml Methan entstehen (ATV-DVWK-IG 5.1, 2002), der abgebaute CSB und, da der Biomassengehalt bekannt war, die Aktivität in kg CSB/(kg oTS·d) ermittelt. In den Berechnungen wurde der S_{CSB} des Schlammwassers sowie die Biogasproduktion aus der verwendeten Biomasse (Blindwertansätze) berücksichtigt.

Berechnungsansätze

Die Berechnung des Volumenanteils des Methans in der Gasphase erfolgte mit folgender Formel (Urban, 2009):

$$\begin{split} V_{CH_4} &= V_{Gasraum} \times \frac{p_{Ende}}{p_{Atmospäre}} \times \frac{Vol. - \% \ CH_4}{100} & \text{Formel 3-1} \\ \text{mit:} & V_{CH4} &= \text{gebildetes CH}_4 \text{ in ml} \\ V_{Gasraum} &= \text{Gasraum der Probeflasche in ml} \\ p_{Ende} &= \text{Druck zum Versuchsende in bar} \\ p_{Atmosphäre} &= \text{Umgebungsdruck in bar} \\ Vol. - \% \ CH_4 &= \text{Anteil des CH}_4 \text{ am Gesamtgasvolumen in \%} \end{split}$$

Das Volumen an Methan in der flüssigen Phase wurde über den ermittelten Druck im Versuchsgefäß nach dem Gesetz von Henry und Dalton bestimmt. Dieses Gesetz besagt, dass die Konzentration eines Gases in einer Flüssigkeit direkt proportional zum Partialdruck des entsprechenden Gases über der Flüssigkeit ist. Die Proportionalität wird durch die Henry-Konstante ausgedrückt. Im ersten Schritt wurde der Partialdruck des Methans nach folgender Formel ermittelt.

$$p_{i} = p_{Ende} \times \left[\frac{Vol. - \% CH_{4}}{100} \right]$$

mit: p_{i} = Partialdruck des Gases (i) in bar

= Druck zum Versuchsende in bar p_{Ende} Vol.-% CH₄ = Anteil des CH₄ am Gesamtgasvolumen in %

Anschließend wurde nach dem Gesetz von Henry und Dalton die Konzentration von Methan in der flüssigen Phase ermittelt:

$$C_i = K_H \times p_i$$
 Formel 3-3
mit: C_i = Konzentration des Gases (i) im Wasser in mol/l

= Partialdruck des Gases (i) in bar pi

= Henry-Konstante = 0,00116 mol/(I * bar) bei 35 °C K_H

Der Volumenanteil des Methans in der flüssigen Phase wurde über die ermittelte Konzentration, das Molvolumen des Gases und das Volumen des Inokulum nach folgender Formel berechnet.

$$V_{CH_4H_2O} = C_i \times V_{m_iCH_4} \times V_{Ansatz,H_{2O}}$$
Formel 3-4
mit: $V_{CH_4H_2O}$ $V_{CH_4H_2O}$ = = Volumen des Gases (i) in der flüssigen Phase in mlGas
 C_i = Konzentration des Gases (i) in H₂O in mol/I_{H2O} nach Henry und Dalton
 V_{CH_4} V_{miCH4} = Molvolumen des Gases (i) = 22,414 I_{Gas}/mol
 $V_{Ansatz,H2O}$ = Volumen des Inokulum in mI_{H2O}

Die Umrechnung der ermittelten Werte in das Gasvolumen bei Normbedingungen erfolgte nach dem Gesetz von Gay Lussac mit folgender Formel (Urban, 2009):

$$V_{N,CH_4} = V_{Versuch,CH_4} \times \frac{T_N}{T_{Versuch}}$$

mit:

Formel 3-5

$V_{N,CH4}$	= Gasvolumen unter Normbedingungen ml
$V_{Versuch,CH4}$	= Gasvolumen unter Versuchsbedingungen in ml
T _N	= Temperatur für Normvolumen = 273,15 K
T _{Versuch}	= Temperatur unter Versuchsbedingungen in K

3.1.3.3 Versuchsplan – Batchtests

Es wurden sechs Batchtestreihen durchgeführt, jeweils zwei mit jedem der drei Prozesswässer. Die Tab. 3-6 zeigt den Versuchsplan. Für die Batchtests wurde die gleiche Biomasse genutzt, welche auch in den kontinuierlichen Abbauversuchen Anwendung fand (siehe Kapitel 3.1.2). Die Biomasse wurde nach jedem Versuchsdurchlauf aufgefangen und wieder verwendet.

	Biertreber	Rübenschnitzel	Speisereste
1. Ansatz			
Zeitraum	10.0205.03.2012 (24 d)	31.0519.06.2012 (19 d)	11.0909.10.2012 (28 d)
Schlammbelastungen [kg CSB/kg oTR]	0,2-0,5	0,1-0,4	0,1-0,4
2. Ansatz			
Zeitraum	1927.03.2012 (8 d)	0227.07.2012 (25 d)	0227.11.2012 (25 d)
Schlammbelastungen [kg CSB/kg oTR]	0,6-0,9	0,1-0,4	0,1-0,4

Tab. 3-6: Versuchsplan der Batchtestreihen

3.1.4 Kontinuierliche anaerobe Abbauversuche

3.1.4.1 Versuchsaufbau der anaeroben Reaktoren

Zur Durchführung der kontinuierlich betriebenen anaeroben Abbauversuche wurden ein UASB- und ein anaerober Festbettreaktor eingesetzt. Das Grundfließbild des UASB-Versuchsreaktors ist in Abb. 3-2, das des anaeroben Festbettversuchsreaktors in Abb. 3-3 zu sehen. Über den 18monatigen Versuchszeitraum wurden nacheinander zwei Generationen von Reaktoren verwendet. Die Reaktoren, die zu Anfang der Versuche zur Verfügung standen (1. Generation), wurden durch Versprödung des Plexiglases unbrauchbar. Aus diesem Grunde wurden zu Beginn des Jahres 2012 zwei neue Reaktoren konzipiert und gebaut (2. Generation). Der UASB- und Festbettreaktor der ersten Generation wiesen jeweils ein Reaktorvolumen (Nettovolumen) von 2,86 I auf; die Reaktoren der zweiten Generation hatten ein Volumen von jeweils 3,74 I.

Abb. 3-2: Verfahrensschema des UASB-Reaktors

Abb. 3-3: Verfahrensschema des anaeroben Festbettreaktors

Die Festbettreaktoren beider Generationen wurden mit Füllkörpermaterial der Fa. Envimac, Oberhausen (Produktname: Pallringe, Ausmaße 15 x 15 mm) befüllt. Die Füllkörper wurden in einer losen Schüttung von 2,74 I eingebaut, was in etwa 100 % der Wassersäule entsprach. Das Füllmaterial wies nach Herstellerangaben eine spezifische Oberfläche von 350 m²/m³ auf. Die spezifische innere Oberfläche betrug rechnerisch 0,96 m².

Allgemeine Reaktorausrüstung

Das Substrat (Prozesswasser) wurde bei beiden Reaktoren in einem abgedeckten und kontinuierlich durchmischten Vorlagebehälter vorgelegt. Die Vorlage diente gleichzeitig als Vorversäuerung. Die Aufenthaltszeit des Prozesswassers in der Vorlage betrug mindestens einen Tag. Die Vorlage wurde in einem Vorraum bei einer Temperatur von 22-24 °C aufgestellt.

Die Substratdosierung beider Versuchsreaktoren wurde jeweils mit einer Schlauchpumpe (Firma Watson-Marlow, Rommerskirchen, Typ 101 U/R) gestaltet. Der Ablauf wurde in beiden Fällen über eine nach dem Heber-Prinzip funktionierende Auslaufeinrichtung sichergestellt; so konnten Biogasverluste durch den Ablauf sicher vermieden werden. Beide Reaktoren wurden mit einer Rezirkulation in Form einer Schlauchpumpe (Firma Heidolph, Kelheim, Typ PD 5001) ausgestattet. Die Aufstromgeschwindigkeit in Folge von Zulauf und Rezirkulation betrug im UASB-Reaktor 1 m/h, im Festbettreaktor 0,6 m/h.

Jeder Reaktor verfügte über ein eigenes Gassammelsystem. Das gefasste Biogas wurde aus beiden Reaktoren entfernt und über eine Gasuhr (Milligascounter, Fa. Dr.-Ing. Ritter Apparatebau GmbH & Co. KG, Bochum) quantitativ erfasst und die ermittelte Gasmenge mit Hilfe eines PC aufgezeichnet. Anschließend wurde das Gas in einem Gasbeutel für die qualitative Gasanalyse gesammelt.

Biomassegehalt in den Reaktoren

Die Charakteristika der verwendeten Biomasse sind in Kapitel 3.1.2 gegeben. Zu Beginn der Versuchsphase Biertreber stellte sich heraus, dass die zunächst eingefüllte Biomasse den Anforderungen nicht genügte. Deswegen wurde am 10.10.2011 die Biomasse in beiden Reaktoren gewechselt (siehe Tab. 3-5). Jeder Reaktor wurde mit genau 1,5 I

Biomasse teilgefüllt, die zuvor an das Biertreber-Prozesswasser adaptiert wurde. Die neue Biomasse wies eine fast vollständige Granulation und einen sehr geringen Anteil an Flocken auf. Die mittlere Pelletgröße lag bei 4,0 mm. Aus diesem Grund wurde nicht mit einem Austrag von Biomasse aus den Reaktoren gerechnet. Zu Beginn der Versuchsphase Biertreber lag in jedem Reaktor ein TR-Gehalt von 40,3 g/l und ein oTR-Gehalt von 32,6 g/l (81 %) vor.

Die Biomasse beider Versuchsreaktoren wurde zu Beginn der Versuchsphase Rübenschnitzel ausgetauscht. Jeder Reaktor wurde mit genau 1,5 I pelletisierter, anaerober Biomasse teilgefüllt. Das verbliebene Reaktorvolumen wurde mit Trinkwasser aufgefüllt. In jedem Reaktor lag ein TR-Gehalt von 30,9 g/l und ein oTR-Gehalt von 23,9 g/l (78 %) vor. Nach Beendigung der Versuchsphase Rübenschnitzel wurde die Biomasse in beiden Reaktoren beibehalten, so dass die Charakteristika der Biomasse für die Versuchsphase Speisereste übernommen werden konnte.

3.1.4.2 Versuchsplan – Kontinuierliche Laborversuche

Einen Überblick über die Versuchsphasen und deren Ziele gibt Tab. 3-7.

Versuchsphase	Zeitraum	Dauer [d]	Ziele
Biertreber	15.09.2011- 12.01.2012	95	Ermittlung der maximalen Raum-Zeit- Ausbeute
Rübenschnitzel (RS)	10.04.2012- 30.07.2012	111	Ermittlung der Abhängigkeit von pH- Wert zu Raum-Zeit-Ausbeute bzw. Biogasproduktion
Speisereste (SPR)	31.07.2012- 07.11.2012	100	Ermittlung der maximalen Raum-Zeit- Ausbeute

Tab. 3-7: Zusammenstellung der Versuchsphasen und -ziele

Den eigentlichen Versuchsphasen gingen eine Adaptionsphase (05.05.-24.06.2011) und die Vorversuche (24.06.-15.09.2011) voraus. In der Adaptionsphase wurden beide Reaktoren initialisiert und die Biomassen an das neue Prozesswasser adaptiert. Dieses Vorgehen erschien sinnvoll, weil davon auszugehen war, dass HTC-Prozesswässer auf Grund ihrer Zusammensetzungen eine hemmende Wirkung auf die anaerobe Biomasse ausüben können (Herbert, 2011). Die Ergebnisse der beiden ersten Phasen werden von Kretschmer (2012) detailliert beschrieben, in dieser Arbeit aber nicht weiter behandelt.

Da die Gasproduktion, die zum Ende der Vorversuche zum Stillstand kam, mit dem Wechsel auf das Biertreber-Prozesswasser nicht wieder einsetzte, wurde am 10.10.2011 die anaerobe Biomasse beider Reaktoren durch bereits adaptierte Biomasse ersetzt. Daher ist der Zeitraum vom 15.09 bis zum 10.10.2011 in den folgenden Betrachtungen nicht enthalten. Ziel dieser Versuchsphase war es, durch eine schrittweise Steigerung der CSB-Raumbelastung die maximale mögliche Raum-Zeit-Ausbeute der Reaktoren zu ermitteln. Dabei wurde eine Steigerung von 5 g CSB/I im Zulauf der Reaktoren bei einer stabilen CSB-Eliminationsleistung von > 80 % über einen Zeitraum von 2 Wochen geplant. Die Versuchsphase Rübenschnitzel wurde in drei Phasen aufgeteilt (siehe Tab. 3-8).

Bezeichnung der Phase	Zeitraum	Dauer [d]	Erläuterung
RS 1	10.04 30.04.2012	21	Einfahrphase (Adaption und Austrag des Verdünnungswassers)
			Analysenergebnisse werden im Folgenden nicht weiter betrachtet.
RS 2	30.04 22.06.2012	53	keine pH-Wert-Einstellung im System
RS 3	22.06 30.07.2012	38	pH-Wert-Anhebung des Zulaufs auf neut- ralen Bereich von pH 6,5-7,0

|--|

Direkt im Anschluss an die Versuchsphase Rübenschnitzel folgte die Versuchsreihe Speisereste. Sie erstreckte sich vom 31.07.-07.11.2012 (100 d) und ließ sich ebenfalls in drei Phasen aufteilen (siehe Tab. 3-9).

Bezeichnung der Phase	Zeitraum	Dauer [d]	Erläuterung
SPR 1	31.07 20.08.2012	21	Einfahrphase (Adaption und Austrag des Verdünnungswassers)
			Analysenergebnisse werden im Folgenden nicht weiter betrachtet.
SPR 2	20.08 19.10.2012	60	Sukzessive Steigerung der Raumbelas- tung
SPR 3	19.10 07.11.2012	19	Abfahrphase (Reduzierung der Belastung, um Reaktor für weitere Versuche zu ent- lasten)

Tab. 3-9: Verlaufsplan der Versuchsphase Speisereste

Ziel dieser Versuchsphase war es, die maximal mögliche Raum-Zeit-Ausbeute bei einem möglichst stabilen Prozess zu ermitteln. Darum wurde nach Abschluss der Phase SPR 1 in der Phase SPR 2 die CSB-Raumbelastung sukzessive gesteigert. Dabei wurde eine Steigerung von 2,5 g CSB/l im Zulauf der Reaktoren bei einer stabilen CSB-Eliminationsleistung von > 80 % über einen Zeitraum von 2 Wochen geplant. Anschließend folgte die Phase SPR 3, in der die Raumbelastung wieder zurückgenommen wurde, um eine Schädigung der Biomasse zu verhindern.

3.1.4.3 Probenahme

Tab. 3-10 zeigt den Analysenplan für die Ermittlung der Reinigungsleistung und die Steuerung der anaeroben Versuchsanlagen. Die Probenahme erfolgte zweimal wöchentlich, vorwiegend montags und freitags, stichprobenartig im Zu- und Ablauf der Reaktoren.

Messintervall	Parameter	Probenahme- und Messort
Täglich	pH-Wert	Reaktorkopf des UASB-Reaktors so- wie im Ablauf des Festbettreaktors.
	Temperatur	In zwei Höhen in jedem Reaktor (Drahtfühler). Temperaturermittlung erfolgte über Mittelwertbildung.
	Gasanfall	Gasfangsystem im Kopfteil
2x wöchentlich	C _{CSB}	Zu- und Ablauf der Reaktoren
	$X_{TS}, X_{oTS}, X_{TR}, X_{oTR}$	Zu- und Ablauf der Reaktoren
	FOS/TAC (organische Säuren)	Ablauf der Reaktoren
2x pro	C _{TNb}	Zu- und Ablauf der Reaktoren
Versuchsreihe	C _{NH4-N}	
	C _{NO3-N}	
	C _{NO2-N}	
	C _{PO4-P}	
Nach Bedarf	GC-Analyse (CH ₄ , CO ₂ , H ₂ S und N ₂)	Biogas, diskontinuierlich nach Gas- anfall
	S _{CSB}	Zu- und Ablauf der Reaktoren

Tab. 3-10: Analysenplan – kontinuierliche anaerobe Abbauversuche

Nach Aussage von Herbert (2011) kann davon ausgegangen werden, dass es über den Versuchszeitraum zu keinem nennenswerten Zuwachs von Biomasse kommen wird. Um den Biomassegehalt in den Reaktoren über den gesamten Versuchszeitraum so hoch und konstant wie möglich zu halten, wurde auf eine Bestimmung des Biomasse-Gehaltes (TR und oTR) in den Reaktoren verzichtet.

3.1.4.4 Analytik

Bei allen nasschemischen Analysen handelte es sich um Küvettentests der Firma Hach Lange GmbH, Düsseldorf. Alle verwendeten Küvettentests sind in Tab. 3-11 aufgeführt. Für den Aufschluss wurde das Hochtemperaturthermostat HT 200 S, für die photometrische Auswertung die Spektralphotometer Lasa 100 und DR 3900 der Firma Hach Lange GmbH, Düsseldorf verwendet.

Der **pH-Wert** wurde mit dem Multi 340i /Set der Firma WTW (Wissenschaftlich-Technische Werkstätten GmbH, Weilheim) gemessen.

Die **Temperaturen** wurden mit dem Thermometer-Set Qtemp 600 der Firma VWR International GmbH, Darmstadt, ermittelt.

Die **Gaszusammensetzung** wurde mit dem Gaschromatographen GC-2014 der Firma SHIMADZU bestimmt.

Regelmäßige Bestimmungen der **Prozessstabilität** erfolgten nach dem FOS/TAC-Verfahren.

Tab. 3-11:	Übersicht - /	Analyseparameter	und verwendete	Methoden
------------	---------------	------------------	----------------	----------

Parameter	Küvettentest/Methode
Chemischer Sauerstoffbedarf (CSB)	LCK 514; Messbereich: 100 bis 2.000 mg/l O_2 LCK 014; Messbereich: 1.000 bis 10.000 mg/l O_2 LCK 914; Messbereich: 5-60 g/l O_2
Gesamt-Stickstoff (TN _b)	LCK 338; Messbereich: 20 bis 100 mg/l N
Nitrat-Stickstoff (NO ₃ -N)	LCK 339; Messbereich: 0,23 bis 13,50 mg/l NO ₃ -N LCK 340; Messbereich: 5 bis 35 mg/l NO ₃ -N
Nitrit-Stickstoff (NO ₂ -N)	LCK 341; Messbereich: 0,015-0,6 mg/l NO ₂ -N LCK 342; Messbereich: 0,6-6,0 mg/l NO ₂ -N
Ammonium-Stickstoff (NH ₄ -N)	LCK 302; Messbereich: 47-130 mg/l NH ₄ -N LCK 303; Messbereich: 2,0-47 mg/l NH ₄ -N LCK 304; Messbereich: 0,015-2 mg/l NH ₄ -N LCK 305; Messbereich: 1,0-12 mg/l NH ₄ -N
Gesamt-Phosphat-Phosphor (PO ₄ -P)	LCK 348; Messbereich: 0,5 bis 5,0 mg/l PO ₄ -P LCK 350; Messbereich: 2 bis 20 mg/l PO ₄ -P
Organische Säuren	LCK 365 ; Messbereich: 50-2500 mg/l
Trockenrückstand (TR)	Methode DIN EN 12880 (Feb. 2001)
Organischer Trockenrückstand (oTR)	Methode DIN EN 12879 (Feb. 2001)
Abfiltrierbare Stoffe (AFS) Trockensubstanzgehalt (TS)	Methode DIN 38409, Teil 2 (März 1987)

3.2 Ergebnisse der Batchtest-Versuchsreihen

3.2.1 Batchtest-Versuche mit Biertreber-Prozesswasser

Die Ansätze für die Batchtests mit Prozessabwasser aus Biertrebern sind im Anhang in Tab. A 1 beschrieben. Die Schlammbelastungen des ersten Ansatzes betrugen 0,2-0,5 kg CSB/kg oTR, die des zweiten Ansatzes 0,6-0,9 kg CSB/kg oTR. Abb. 3-4 zeigt die Biogassummenkurven der Ansätze mit einer Schlammbelastung von 0,2-0,5 g CSB/g oTR, Abb. 3-5 die der Ansätze mit einer Schlammbelastung von 0,6-0,9 g CSB/g oTR. Die Biogassummenkurven sind als Mittelwerte der Doppelbestimmungen über den jeweiligen Versuchszeitraum dargestellt.

Abb. 3-4: Biogassummenlinien, erster Versuchsansatz Biertreber, $B_{\sigma TR}$ = 0,2-0,5 kg CSB/g oTR

Abb. 3-5: Biogassummenlinien, zweiter Versuchsansatz Biertreber, B_{oTR} = 0,6-0,9 kg CSB/ g oTR

Der Verlauf der Gassummenkurven lassen keine Störung der Biogasbildung erkennen. Des Weiteren zeigt sich, dass der Abbau bzw. Umbau des Substrates bei Schlammbelastungen von 0,2-0,3 kg CSB/kg oTR nach ca. 300 h weitgehend abgeschlossen war. Hochschule OWL

Die Tab. 3-12 zeigt die Zusammensetzung des entstandenen Biogases der Ansätze. Es ist ersichtlich, dass bei Schlammbelastungen von 0,3-0,5 kg CSB/kg oTR mit 56-58 Vol.-% CH₄ die beste Biogasqualität erreicht wurde.

	2. Ansatz						
B _{oTR,CSB}	CH_4	CO_2	H_2S	B _{otr,CSB}	CH_4	CO_2	H_2S
[kg CSB/kg oTR]	[%]	[%]	[%]	[kg CSB/kg oTR]	[%]	[%]	[%]
0,20	54,67	45,34	0	0,60	49,49	50,51	0
0,30	57,19	42,81	0	0,70	48,04	51,96	0
0,40	58,27	41,74	0	0,80	47,24	52,76	0
0,50	55,93	44,08	0	0,90	46,19	53,82	0

Tab. 3-12:	Zusammensetzung des	gebildeten	Biogases	in den	Batchtestreihen	mit B	Bier-
	treber-Prozesswasser						

Tab. 3-13 zeigt neben der spezifischen Methanaktivität (SMA) die spezifischen Methanerträge. Ebenfalls mit aufgeführt sind die theoretisch möglichen sowie die tatsächlich gemessenen Methanerträge aus dem Substrat und die CSB-Eliminationsleistung im Vergleich.

Tab. 3-13:	Spezifische	Methanerträge,	theoretische	und	gemessene	Methangaserträge
	und η_{CSB} bei	ider Versuchsan	sätze, Biertret	ber-P	rozesswasse	r

B _{otr,CSB}	SMA	Spez. Me- thanertrag	Theoretischer Methanertrag	Gemessener Methanertrag	η _{CSB}
[kg CSB/ kg oTR]	[g CSB/ (g oTR*d)]	[ml CH₄/ g CSB]	[ml _{stp}]	[ml _{stp}]	[%]
0,20	0,02	284,2	193,8	156,6	58,2
0,30	0,03	273,8	342,6	267,5	60,2
0,40	0,03	300,5	388,8	333,8	58,3
0,50	0,04	276,4	417,2	329,7	49,2
0,60	0,07	301,5	206,5	177, 9	33,2
0,70	0,06	311,0	177,2	78,7	27,1
0,80	0,07	307,1	210,0	184,1	26,3
0,90	0,05	305,7	222,5	193,8	23,8

Aufschluss über die Aktivität der Biomasse gibt die spezifische Methanaktivität (SMA). Anhand der ermittelten Werte wird deutlich, dass die SMA bis zu einer Schlammbelastung von 0,8 kg CSB/kg oTR anstieg, jedoch bei einer Schlammbelastung von 0,9 kg CSB/kg oTR auf einen Wert von 0,05 kg CSB/kg oTR absank.

Der im Mittel erzielte Methanertrag aus dem Substrat betrug ca. 306 ml CH₄/g CSB und wich damit vom theoretischen spez. Methanertrag von 350 ml CH₄/g CSB ab. Mit ca. 60 % wurde die maximale Eliminationsleistung bei einer Schlammbelastung von 0,3 kg CSB/kg oTR erreicht. Mit steigender Schlammbelastung sank diese weiter ab.

3.2.2 Batchtest-Versuche mit Rübenschnitzel-Prozesswasser

Die Ansätze für die Batchtests mit Prozessabwasser aus Biertrebern sind im Anhang in Tab. A 2 beschrieben. Abb. 3-6 zeigen die Biogassummenkurven der Ansätze als Mittelwerte der Doppelbestimmungen über den jeweiligen Versuchszeitraum. Die pH-Werte der Ansätze wurden nicht eingestellt und lagen zwischen 4,7 und 6,4. Die Abb. 3-7 zeigt die Biogassummenkurven der Ansätze, bei denen der pH-Wert zu Versuchsbeginn auf 7,0 eingestellt wurde.

Da die Batchtests mit Prozesswasser aus Biertrebern gezeigt hatten, dass die CSB-Eliminationsleistung bei Schlammbelastungen > 0,4 g CSB/g oTR absank, wurden für die Ansätze mit Prozesswasser aus Rübenschnitzeln niedrigere Schlammbelastungen von 0,1-0,4 g CSB/g oTR gewählt.

Aus Abb. 3-6 ist zu entnehmen, dass im ersten Versuchsansatz bei einer Schlammbelastung von 0,1 und 0,2 kg CSB/kg oTR die Haupt-Biogasbildung sofort nach Versuchsstart einsetzte, wobei der Ansatz mit B_{oTR,CSB} 0,2 kg CSB/kg oTR mit Abstand die höchste Biogasproduktion zeigte. Der Biogasbildung der Ansätze B_{oTR,CSB} 0,3 und 0,4 kg CSB/kg oTR hingegen ging eine länger anhaltende Lag-Phase voraus. Dies deutet auf eine Hemmung der Bakterien hin und ist auf den niedrigen pH-Wert (pH 4,7-6,4) zurückzuführen.

Abb. 3-6: Biogassummenlinien, erster Versuchsansatz Rübenschnitzel ohne Einstellung des pH-Wertes, B_{oTR} = 0,1-0,4 kg CSB/g oTR

Abb. 3-7: Biogassummenlinien, zweiter Versuchsansatz Rübenschnitzel, Einstellung des pH-Wertes auf pH 7,0, $B_{\sigma TR}$ = 0,1-0,4 kg CSB/g oTR

Bei allen Proben des zweiten Versuchsansatzes setzte die Biogasproduktion kurze Zeit nach Versuchsbeginn ein. Der Verlauf der Gassummenkurven lässt keine Störung der Biogasbildung erkennen. Der anaerobe Abbau des Substrates war bei den Schlammbelastungen von 0,1 und 0,2 kg CSB/kg oTR etwa zeitgleich nach ca. 120-170 h weitgehend abgeschlossen. Bei einer Schlammbelastung von 0,3 kg CSB/kg oTR war dies nach ca. 16 Tagen erreicht. Bei der Schlammbelastung von 0,4 kg CSB/kg oTR zeigte sich bis zum Ende der Versuchsreihe eine konstante Gasbildung, deren Ende nicht erfasst wurde.

Die Tab. 3-14 gibt die Zusammensetzung des entstandenen Biogases beider Versuchsansätze wieder. Beim ersten Versuchsansatz wurde die beste Biogasqualität mit ca. 50 % CH_4 bei Schlammbelastungen von 0,1 bis 0,3 kg CSB/kg oTR erzielt. Die konstant höhere Biogasqualität im zweiten Versuchsansatz mit ca. 60 Vol.-% CH_4 ist mit einer teilweisen Bindung von CO_2 an NaOH (Bildung von Natriumhydrogenkarbonat) zu erklären.

	1. Ve	ersuchsans	atz	2. Ve	2. Versuchsansatz		
B _{otr,CSB}	CH_4	CO ₂	H_2S	CH_4	CO_2	H_2S	
[kg CSB/kg oTR]	[%]	[%]	[%]	[%]	[%]	[%]	
0,10	53,81	46,20		58,90	41,10	0	
0,20	54,87	45,13	0	58,50	41,50	0	
0,30	50,02	49,98	0	61,79	38,17	0,05	
0,40	41,92	58,08	0	60,79	39,20	0,02	

Tab. 3-14: Zusammensetzung des gebildeten Biogases der Batchtestreihen mit Rübenschnitzel-Prozesswasser

Tab. 3-15 zeigt die SMA, die spezifischen Methanerträge, die theoretischen und tatsächlich gemessenen Methanerträge sowie die CSB-Eliminationsleistung im Vergleich.

$B_{\text{otr,CSB}}$	SMA	Spez. Me- thanertrag	Theoretischer Methanertrag	Gemessener Methanertrag	η _{CSB}
[kg CSB/ kg oTR]	[g CSB/ (g oTR·d)]	[ml CH₄/ g CSB]	[ml CH₄/ [ml _{STP}] g CSB]		[%]
1. Versuchsa	nsatz				
0,10	0,01	200,0	79,9	46,0	59,4
0,20	0,05	315,3	136,8	123,2	56,4
0,30	0,01	341,6	123,0	120,0	30,2
0,40*	0,01	855,3*	32,4	76,4	6,6
2. Versuchsa	nsatz				
0,10	0,01	328,6	147,8	138,8	63,2
0,20	0,02	309,8	221,6	196,8	60,5
0,30	0,03	314,0	360,5	323,4	60,6
0,40	0,03	304,8	480,8	418,7	56,1

Tab. 3-15: Spezifische Methanerträge, theoretische und gemessene Methangaserträge und η_{CSB} beider Versuchsansätze, Rübenschnitzel-Prozesswasser

* Messwert wegen Messfehler verworfen

Im ersten Versuchsansatz wurden bei Schlammbelastung > 0,2 kg CSB/kg oTR schlechtere SMA-Werte ermittelt, was auf die Hemmung der Biologie infolge des zu niedrigen pH-Wertes zurückzuführen ist. Im zweiten Versuchsansatz konnten mit steigender Schlammbelastung bis hin zu einer Schlammbelastung von 0,4 kg CSB/kg oTR steigende SMA-Werte erzielt werden.

Die in Tab. 3-15 dargestellten Werte bezüglich des spezifischen Methanertrags (ml CH₄/ g CSB) zeigen, dass diese alle, mit Ausnahme des Ansatzes $B_{\sigma TR,CSB}$ = 0,1 kg CSB/kg oTR im ersten Versuchsansatz, nahe unterhalb des theoretischen spez. Methanertrages von 350 ml CH₄/g CSB lagen. Der im Mittel erzielte Methanertrag aus dem Substrat im ersten Versuchsansatz betrug ca. 286 ml CH₄/g CSB, im zweiten Versuchsansatz lag dieser bei ca. 315 ml CH₄/g CSB. Die konstantesten Methangaserträge wurden im zweiten Versuchsansatz erzielt.

Tab. 3-15 zeigt, dass die CSB-Eliminationsleistung in beiden Versuchsansätzen mit steigender Schlammbelastung absinkt. Die maximale Eliminationsleistung wurde in beiden Versuchsansätzen bei einer Schlammbelastung von 0,1 kg CSB/kg oTR erreicht. Im Gegensatz zum ersten Versuchsansatz wies der zweite nur eine vergleichsweise geringe Streuung der CSB-Eliminationsleistungen der verschiedenen Ansätze auf.

3.2.3 Batchtest-Versuche mit Speisereste-Prozesswasser

Die Ansätze für die Batchtests mit Prozessabwasser aus Speiseresten sind im Anhang in Tab. A 3 beschrieben. Abb. 3-8 und Abb. 3-9 zeigen die Biogassummenkurven der

Ansätze 1 und 2 als Mittelwerte der Doppelbestimmungen über den jeweiligen Versuchszeitraum. Wieder wurde der erste Ansatz ohne vorherige pH-Wert-Einstellung angesetzt. Die pH-Werte der Inokula betrugen 5,3-6,5. Die Proben des zweiten Ansatzes wurden auf einen pH-Wert von 7,0 eingestellt.

Abb. 3-8: Biogassummenkurven, erster Versuchsansatz Speisereste, keine Einstellung des pH-Wertes, B_{oTR} = 0,1-0,4 kg CSB/g oTR

Abb. 3-9: Biogassummenkurven, zweiter Versuchsansatz Speisereste, Einstellung des pH-Wertes auf pH 7,0, B_{oTR}= 0,1-0,4 kg CSB/g oTR

Beide Versuchsansätze zeigten zwar das gleiche Gasbildungsverhalten, wobei aber die Proben des ersten Ansatzes eine geringere Gesamtbiogasausbeute aufwiesen. Mit steigender Schlammbelastung stieg auch die Gasproduktion. So wurde in beiden Versuchsansätzen die höchste Biogasausbeute bei einer Schlammbelastung von 0,4 kg CSB/kg oTR erzielt. Im zweiten Versuchsansatz (pH-Wert eingestellt) konnte nicht nur eine höhere Gasausbeute, sondern auch ein schnellerer anaerober Abbau beobachtet werden. Bei einer Schlammbelastung von 0,4 kg CSB/kg oTR dauerte es im ersten Versuchsansatz knapp 300 h, im zweiten Versuchsansatz dagegen nur 200 h bis zum Erreichen des vollständigen anaeroben Abbaus (Plateauphase).

Die Tab. 3-16 zeigt die Zusammensetzung des entstandenen Biogases beider Versuchsansätze.

	1. Ansa I	tz ohne pH Einstellung	-Wert-	2. Ansa Ei	tz mit pH-V instellung	Vert-
B _{otr,csb}	CH₄	CO ₂	H_2S	CH_4	CO ₂	H_2S
[kg CSB/kg oTR]	[%]	[%]	[%]	[%]	[%]	[%]
0,10	57,00	43,01	0	60,19	39,81	0
0,20	58,27	41,73	0	63,55	36,45	0
0,30	60,37	39,63	0	64,97	35,03	0
0,40	61,06	38,94	0	66,73	33,28	0

Tab. 3-16: Zusammensetzung des gebildeten Biogases der Batchtestreihen mit Speisereste-Prozesswasser

Die Biogasqualität unterschied sich innerhalb und zwischen den beiden Versuchsansätzen nur wenig. Wie schon bei den Batchtest mit Rübenschnitzel-Prozesswasser führte die Bildung von Natriumhydrogenkarbonat durch die pH-Wert-Einstellung zu Versuchsbeginn zu einem leicht höheren mittleren Methangehalt (64 Vol.-% CH₄) im zweiten Versuchsansatz. Im ersten Versuchsansatz lag dieser im Mittel bei 59 Vol.-% CH₄. In beiden Versuchsansätzen konnte bei einer Schlammbelastung von 0,4 kg CSB/kg oTR mit > 60 % Vol. CH₄ die beste Biogasqualität erreicht werden.

Tab. 3-17 zeigt die SMA, die spezifischen Methanerträge, die theoretischen und tatsächlich gemessenen Methanerträge sowie die CSB-Eliminationsleistung im Vergleich.

Die höchste SMA wurde im ersten Versuchsansatz bei einer Schlammbelastung von 0,2 CSB/kg oTR und im zweiten Versuchsansatz bei einer Schlammbelastung von 0,2 bis 0,4 kg CSB/kg oTR erreicht. Dabei wurden im zweiten Versuchsansatz im Mittel deutlich höhere SMA erreicht als im ersten. Der mittlere spezifische Methanertrag im ersten Versuchsansatz lag mit ca. 280 ml CH₄/g CSB weit unterhalb des theoretischen Wertes, wohingegen der mittlere Methanertrag des zweiten Versuchsansatzes mit ca. 320 ml CH₄/g CSB sich diesem annäherte. Auch bei der Verwendung von Prozesswasser aus Speiseresten zeigte sich, dass die CSB-Eliminationsleistung mit steigender Schlammbelastung versuchsansätzen bei einer Schlammbelastung von 0,4 kg CSB/kg oTR erreicht.

B _{otr,CSB}	SMA	Spez. Me- thanertrag	Theoretischer Methanertrag	Gemessener Methanertrag	η _{CSB}			
[kg CSB/ kg oTR]	[g CSB/ (g oTR·d)]	[ml CH₄/ g CSB]	[ml _{STP}]	[ml _{stp}]	[%]			
1. Versuchsansatz ohne pH-Wert-Einstellung								
0,10	0,03	286,9	77,1	63,4	74,0			
0,20	0,05	252,3	135,9	97,9	80,8			
0,30	0,04	291,6	232,6	193,7	83,2			
0,40	0,03	289,0	323,9	130,7	83,1			
2. Versuchsansa	tz mit pH-Wert-	Einstellung						
0,10	0,03	338,1	97,4	94,1	77,3			
0,20	0,06	328,5	188,1	176,5	82,9			
0,30	0,05	309,6	275,8	244,0	84,3			
0,40	0,06	318,4	391,2	355,9	84,9			

Tab. 3-17: Spezifische Methanerträge, theoretische und gemessene Methangaserträge und η_{CSB} beider Versuchsansätze, Speisereste-Prozesswasser

3.2.4 Zusammenfassung der Ergebnisse

Es wurden nacheinander sechs Batchtest-Reihen mit den drei HTC-Prozesswässern durchgeführt, wobei jedes Prozesswasser zweimal untersucht wurde. Für die Ansätze mit Biertreber-Prozesswasser wurden Schlammbelastungen von 0,2-0,9 kg CSB/kg oTR gewählt. Die Proben mit Rübenschnitzel- und Speisereste-Prozesswasser wurden mit Schlammbelastungen zwischen 0,1-0,4 kg CSB/kg oTR angesetzt. Dabei wurden die Inokula des jeweils zweiten Versuchsansatzes zu Beginn auf pH 7,0 eingestellt, wohingegen bei den Inokula des jeweils ersten Versuchsansatzes keine pH-Wert-Einstellung erfolgte.

Die Tab. 3-18 führt neben dem gemessenen Methanertrag die Bandbreite des CH_4 -Gehaltes aller Ansätze, die CH_4 -Gehalte bei bester Biogasqualtät (CH_4 -Gehalt_{max}) und deren Schlammbelastung auf.

	Einhoit	Piortrobor	Rübens	chnitzel	Speisereste		
	LIIIIeit	DIEI (I EDEI	Ansatz 1	Ansatz 2	Ansatz 1	Ansatz 2	
Versuchsdauer	[d]	24/8*	19	25	28	25	
Gemessener Methanertrag (Bandbreite)	[ml _{stp}]	150-340	45-125	140-420	65-260	90-350	
CH₄-Gehalt (Bandbreite)	[% Vol.]	46-58	41-55	59-62	57-61	60-67	
CH ₄ -Gehalt _{max}	[% Vol.]	56-58	55	62	61	67	
$B_{oTR,CSB}$ bei CH_4 -Gehalt _{max}	[kg CSB/ kg oTR]	0,3-0,5	0,2	0,3	0,4	0,4	

Tab. 3-18: Methangasproduktion und -gehalt der Versuchsansätze im Vergleich

* 24 d für die Versuche mit B_{oTR,CSB} von 0,2-0,5 kg CSB/kg oTR und 8 d für die Versuche mit B_{oTR,CSB} von 0,6-0,9 kg CSB/kg oTR

Die höchste Methangasproduktion wurde bei Rübenschnitzel-Prozesswasser mit Einstellung des pH-Wertes gemessen. Im Vergleich zum Ansatz ohne vorherige pH-Wert-Einstellung ist die Methangasproduktion mehr als doppelt so hoch. Die Resultate bei der Verwendung von Speisereste-Prozesswasser sind ganz ähnlich. Die besten Biogasqualitäten wurden beim Einsatz von Speisereste-Prozesswasser erzielt, gefolgt von Rübenschnitzel- und Biertreber-Prozesswasser, das die schlechteste CH₄-Ausbeute aufwies. Auffällig bei Rübenschnitzel- und Speisereste-Prozesswasser ist der höhere CH₄-Gehalt jeweils in den beiden zweiten Versuchsansätzen. Dies ist mit der Bildung von Natriumhydrogenkarbonat durch die Dosierung von NaOH zur pH-Wert-Einstellung zu Versuchsbeginn zu erklären.

Tab. 3-19 zeigt die spezifischen Methanaktivitäten (SMA) und die CSB-Eliminationswirkungsgrade der einzelnen Versuchsansätze im Vergleich.

B	Biortro	hor	Rübenschnitzel				Speisereste			
D ₀ TR,CSB	Dieitre	DEI	Ansatz 1		Ansatz 2		Ansatz 1		Ansatz 2	
	SMA	η_{CSB}	SMA	η_{CSB}	SMA	η_{CSB}	SMA	η_{CSB}	SMA	η_{CSB}
[kg/kg]	[g/(g·d)]	[%]	[g/(g·d)]	[%]	[g/(g·d)]	[%]	[g/(g·d)]	[%]	[g/(g·d)]	[%]
0,1	-		0,01	59	0,01	63	0,03	74	0,03	77
0,2	0,02	58	0,05	56	0,02	60	0,05	81	0,06	83
0,3	0,03	60	0,01	30	0,03	61	0,04	83	0,05	84
0,4	0,03	58	0,01	7	0,03	56	0,03	83	0,06	85
0,5	0,04	49	-	-	-	-	-	-	-	-
0,6	0,07	33	-	-	-	-	-	-	-	-
0,7	0,06	27	-	-	-	-	-	-	-	-
0,8	0,07	26	-	-	-	-	-	-	-	-
0,9	0,05	24	-	-	-	-	-	-	-	-

Tab. 3-19: SMA und η_{CSB} der Versuchsansätze im Vergleich

Bei der Verwendung von Biertreber-Prozesswasser stieg die SMA mit steigender Schlammbelastung an. Mit einer SMA von 0,07 kg CSB/kg oTR wurde bei einer Schlammbelastung von 0,8 kg CSB/kg oTR das Maximum erreicht. Im Gegensatz zur SMA sank die CSB-Eliminationsleistung mit steigender Schlammbelastung. Die maximale Eliminationsleistung von 60,2 % wurde bei einem Wert von 0,3 kg CSB/kg oTR erreicht.

Bei den Proben mit Rübenschnitzel-Prozesswasser konnte die höchste SMA im ersten Versuchsansatz mit 0,05 kg CSB/kg oTR bei einer Schlammbelastung von 0,2 CSB/kg oTR, und im zweiten Versuchsansatz mit 0,03 kg CSB/kg oTR bei einer Schlammbelastung von 0,3 und 0,4 kg CSB/kg oTR erreicht werden. Dabei wurden im zweiten Versuchsansatz im Mittel deutlich höhere SMA erreicht als im ersten. Während im ersten Versuchsansatz mit steigender Schlammbelastung der CSB-Eliminationsleistung deutlich absank, konnte im zweiten Versuchsansatz mit Einstellung des pH-Wertes eine annähernd gleichbleibende CSB-Elimination beobachtet werden. Dies deutet auf eine Hemmung der Biologie durch einen zu niedrigen pH-Wert im ersten Versuchsansatz hin.

Die ermittelten SMA bei der Verwendung von Speisereste-Prozesswasser glichen im Grunde denen der Versuche mit Rübenschnitzel-Prozesswasser. So wurde im ersten Versuchsansatz mit 0,05 g CSB/(g oTR·d) die höchste spezifische Methanaktivität (SMA) bei einer Schlammbelastung von 0,2 CSB/kg oTR und im zweiten Versuchsansatz mit 0,05-0,06 g CSB/(g oTR·d) bei einer Schlammbelastung von 0,2 bis 0,4 kg CSB/kg oTR erreicht. Dabei wurden im zweiten Versuchsansatz im Mittel deutlich höhere SMA erreicht als im ersten. Anders verhielt es sich mit der CSB-Eliminationsleistung. Diese stieg in beiden Versuchsansätzen mit steigender Schlammbelastung an. Die maximale Eliminationsleistung mit jeweils > 80 % wurde in beiden Versuchsansätzen bei einem $B_{oTR,CSB}$ von 0,4 kg CSB/kg oTR erreicht.

Nach Angelidaki et al. (2006) ist bei Verwendung von Natriumacetat als Substrat bei einer erzielten SMA von 0,1 kg CSB/kg oTR von einer gering aktiven Biomasse auszugehen. Wird hingegen hochaktive Biomasse, wie zum Beispiel granulierte Biomasse aus einem Hochleistungsreaktor, verwendet, so ist eine SMA von 0,5 kg CSB/kg oTR zu erwarten. Da bei den durchgeführten Versuchen nur das HTC-Prozesswasser eingesetzt wurde, ist ein direkter Vergleich der erzielten Ergebnisse mit den Angaben von Angelidaki et al. (2006) nicht möglich. Es lässt aber den Schluss zu, dass die verwendete Biomasse bei Verwendung von HTC-Prozesswasser relativ inaktiv ist.

Tab. 3-20 zeigt die spezifischen Methanerträge (ml CH₄/g CSB) aller Versuchsansätze. Bei der Verwendung von Biertreber-Prozesswasser fällt auf, dass mit steigender Schlammbelastung auch die spezifischen Methanerträge stiegen. Die höchsten spezifischen Methanerträge konnten bei der Verwendung von Rübenschnitzel-Prozesswasser (Ansatz 1, ohne pH-Wert-Einstellung) bei einer Schlammbelastung von 0,3 kg CSB/kg oTR mit 342 ml CH₄/g CSB und bei der Verwendung von Speisereste-Prozesswasser (pH-Wert eingestellt) bei einer Schlammbelastung von 0,1 kg CSB/kg oTR mit 338 ml CH₄/g CSB ermittelt werden.

B _{otr,CSB}	Biertreber	Rübens	chnitzel	Speisereste		
		Ansatz 1	Ansatz 2	Ansatz 1	Ansatz 2	
[kg/kg]	[ml CH₄/ g CSB]					
Mittelwert	295	286	314	280	324	
0,1	-	200,0	328,6	286,9	338,1	
0,2	284,2	315,3	309,8	252,3	328,5	
0,3	273,8	341,6	314,0	291,6	309,6	
0,4	300,5	855,3*	304,8	289,0	318,4	
0,5	276,4	-	-	-	-	
0,6	301,5	-	-	-	-	
0,7	311,0	-	-	-	-	
0,8	307,1	-	-	-	-	
0,9	305,7	-	-	-	-	

Tab. 3-20: Spezifische Methanerträge der Versuchsansätze im Vergleich

* Messwert wegen Messfehler verworfen

Die Tab. 3-21 zeigt unter Berücksichtigung der ermittelten Ergebnisse für die Parameter CSB-Eliminationsleistung, SMA und Biogasqualität die idealen CSB-Schlammbelastungen für die einzelnen HTC-Prozesswässer Die Schlammbelastungen für Prozesswasser aus Rübenschnitzeln und Speiseresten konnten nur erreicht werden, weil die Ansätze zuvor auf einen pH-Wert von 7,0 eingestellt wurden. Ohne Einstellung des pH-Wertes würden beide Prozesswässer eine schlechtere anaerobe Abbaubarkeit mit entsprechend geringerer Schlammbelastung aufweisen.

Tab. 3-21: Ideale Schlammbelastungen der Versuchsansätze im Ve	ergleich
--	----------

	Einheit	Prozesswasser aus					
		Biertreber	Rübenschnitzel	Speisereste			
B _{otr,CSB}	[kg CSB/kg oTR·d]	0,3-0,4	0,3	0,4			

Tab. 3-21 zufolge liegt die ideale Schlammbelastung für einen anaeroben Abbau von HTC-Prozesswässern also zwischen 0,3-0,4 kg CSB/(kg oTR·d).

3.3 Ergebnisse der kontinuierlichen anaeroben Abbauversuche

3.3.1 Allgemeine Beobachtungen

MAP-Ausfällungen

Bei der Verwendung von Biertreber-Prozesswasser konnte die spontane Bildung von MAP-Kristallen, vor allem in der Vorlage der Rezirkulation, festgestellt werden. Abb. 3-10 zeigt die Ausfällungen am Ablaufstutzen der Vorlage des UASB-Reaktors. Die Ausfällungen konnten auch in der Flüssigphase der Reaktoren, hauptsächlich des UASB-Reaktors, festgestellt werden (siehe Abb. 3-11).

Abb. 3-10: MAP-Ausfällungen an Ablaufstutzen, Rezirkulations-Vorlage, UASB-Reaktor

Abb. 3-11: Mikroskopische Aufnahme von MAP-Ausfällungen in der Flüssigphase des UASB-Reaktors, 400-fache Vergrößerung

Kohleausfällungen im Prozesswasser – Probleme mit dem Reaktorbetrieb

Allen HTC-Prozesswässern gemein war das kontinuierliche Ausfallen von schwarzen, kohleartigen Partikeln. Die Ausfällungen entstanden auch nach längerem Lagern und nach mehrfacher Filterung des Prozesswassers durch einen Tuchfilter (Kammerfilterpresse). Nach Aussage von Blöhse (2011) handelt es sich bei einem Teil dieser Ausfällungen aller Wahrscheinlichkeit nach um Kohle, die durch anhaltende Polymerisation aus den Prozesswasserbestandteilen entsteht. In den Reaktoren und Schläuchen führten diese Ausfällungen zur Entstehung eines hochviskosen, schwarz-braunen Filmes an Reaktor- und Schlauchwandungen (siehe Abb. 3-12). Dieser Film führte, vor allem in den Zulaufleitungen beider Versuchsanlagen, zu regelmäßigen Verblockungen, so dass tägliche Rückspülungen der Zulaufleitungen erforderlich waren.

Abb. 3-12: Filmbildung in Rohrleitungen

Die Filmbildung konnte sowohl im temperierten Reaktorraum als auch im nicht temperierten Vorraum (Standort der Vorlage) beobachtet werden. Die Entstehung des Films war pH-Wert-abhängig. So bewirkte ein Absinken des pH-Wertes in den Reaktoren auf pH < 6,9 ein teilweise bis vollständiges Auflösen des Films. Der extrahierte Film eines Reaktorschlauches wurde auf den Gehalt an organischen Bestandteilen (Glühverlust) untersucht. Das Ergebnis zeigte, dass ca. zwei Drittel des Films organischen und ein Drittel anorganischen Ursprungs waren. Da Kohle hauptsächlich organische Bestandteile aufweist, ist zu vermuten, dass der beschriebene Film zu einem nennenswerten Teil aus HTC-Kohle besteht.

Beobachtungen Vorlage

Im Vorlagebehälter der Versuchsanlagen konnte ein wiederkehrender Schimmelbefall und das Ausfallen von schwarzen Kohlepartikeln beobachtet werden. Gleichzeitig wurde im Vorlagebehälter eine Abnahme des gelösten CSB über die Zeit festgestellt. Dabei kam es bei einem Anfangs-CSB < 10 g/l zu einem täglichen Verlust von ca. 2 g/l. Bei höheren CSB-Werten in der Vorlage (> 10 g/l) lag die tägliche Abnahme des gelösten CSB bei ca. 1 g/l. Versuche zur Schimmelbildung haben gezeigt, dass die CSB-Abnahme nur zu einem gewissen Teil damit zusammenhängt. Es wird vermutet, dass die beschriebenen Ausfällungen ebenfalls einen nennenswerten Teil dazu beigetragen haben.

3.3.2 Betrieb und Vergleich beider Reaktoren

Versuchsphase Biertreber

In der Versuchsphase Biertreber sollte durch eine schrittweise Steigerung der CSB-Raumbelastung die maximal mögliche Raum-Zeit-Ausbeute der Reaktoren ermittelt werden. Tab. 3-22 vergleicht die wichtigsten Parameter und Ergebnisse für den UASB- und den Festbettreaktor in der Versuchsphase Biertreber. Eine grafische Darstellung dieser Daten ist für den UASB-Reaktor in Anhang A 2.1 und für den Festbettreaktor in Anhang A 2.2 gegeben.

Aufgrund von Verblockungen des Zulaufs, verursacht durch Ausfällungen, wurden dem UASB-Reaktor über die Versuchsdauer von 95 Tagen ca. 25 I weniger Prozesswasser zugeführt als dem Festbettreaktor. Daraus resultiert auch die höhere mittlere CSB-Fracht im Festbettreaktor. Bei fast gleichem mittleren pH-Wert unterlag der UASB-Reaktor größeren Schwankungen des pH-Wertes.

Parameter	Finheit		UASB-R	eaktor	Festbettreaktor			
raiameter		n	Mittelwert	Bandbreite	n	Mittelwert	Bandbreite	
Messphasendauer	d	-	95		I		95	
pH-Wert	-	42	6,95	6,23-8,08	42	6,97	6,63-7,77	
Q _{ZU}	l/d	25	0,50	0,09-1,14	27	0,73	0,17-1,17	
Hydraulische Auf- enthaltszeit	d	25	9,3 2,5-31,8		27	4,8	2,5-16,8	
Gesamtdurchsatz Prozesswasser	I	25	43,83*			69,13*		
C _{CSB,Z}	mg/l	25	17.476	5.910-35.200	27	17.476	5.910-35.200	
C _{CSB,AN}	mg/l	26	4.331	835-14.300	27	5.373	1.046-15.100	
η _{csb}	%	25	74	51-91	27	64	34-89	
B _{d,CSB}	g/d	25	8,47	0,70-38,53	27	11,7	1,1-29,8	
B _{R,CSB}	kg/(m³⋅d)	25	2,97	0,24-13,49	27	4,09	0,39-10,42	
B _{otr,CSB}	kg/(kg·d)	25	0,09	0,01-0,41	27	0,13	0,01-0,32	
Gasanfall	ml _{STP} /d	65	87	0-2.144	67	618	11-2.006	
Gesamtgasanfall	ml _{STP}	65	8.565*		67	51.690*		

Tab. 3-22:	Versuchsphase Biertreber	- Vergleich beider Reaktoren
------------	--------------------------	------------------------------

* Summe, n = Anzahl der Analysen

Die Abb. 3-13 und 3-14 zeigen den CSB im Zu- und Ablauf sowie die CSB-Eliminationsleistung beider Reaktoren in der Versuchsphase Biertreber.

Abb. 3-13: CSB-Reinigungsleistung des UASB-Reaktors während der Versuchsphase Biertreber

Abb. 3-14: CSB-Reinigungsleistung des Festbettreaktors während der Versuchsphase Biertreber

Den Abbildungen ist zu entnehmen, dass der CSB im Zulauf beider Reaktoren über den Versuchszeitraum von anfänglich 6.000 mg/l bis auf 35.000 mg/l angehoben wurde. Die Raumbelastung stieg dementsprechend im UASB-Reaktor von 0,2 auf 13,5 kg CSB/(m³·d) an, entsprechend einer maximalen Schlammbelastung von 0,41 kg CSB/(kg oTR·d). Im Festbettreaktor stieg die Raumbelastung von 0,4 auf 10,4 kg CSB/(m³·d), entsprechend einer Schlammbelastung von 0,32 kg CSB/(kg oTR·d).

Der CSB-Eliminationsleistung schwankte in beiden Reaktoren, vor allem aber im Festbettreaktor. Der mittlere CSB-Eliminationsleistung lag im UASB-Reaktor mit 74 % um 10 % höher als im Festbettreaktor mit 64 %, trotzdem machte die mittlere tägliche Gasausbeute von ca. 87 ml_{STP}/d im UASB-Reaktor nicht einmal 15 % des mittleren täglichen Gasertrages des Festbettreaktors aus (ca. 618 ml_{STP}/d).

Versuchsphase Rübenschnitzel

Die Tab. 3-23 vergleicht die wichtigsten Parameter und Ergebnisse für beide Reaktoren in der Versuchsphase Rübenschnitzel. Eine grafische Darstellung dieser Daten sind für den UASB-Reaktor in Anhang A 2.1 und für den Festbettreaktor in Anhang A 2.2 gegeben. Hier ging es darum zu klären, welchen Einfluss der pH-Wert des Prozesswassers auf die Reaktorleistung hat. In der Phase RS 2 wurde keinerlei pH-Wert-Einstellung vorgenommen; der pH-Wert in der Vorlage lag zwischen 4,0 und 5,2. In der Phase RS 3 hingegen wurde der pH-Wert in der Vorlage auf 6,5 bis 7,0 eingestellt und so der pH-Wert in den

Reaktoren angehoben. Um die Einflüsse durch die Raumbelastung zu minimieren, wurden beide Reaktoren mit einer konstanten Raumbelastung von 4 kg CSB/(m³·d) gefahren. Aus diesem Grund sind die Raum- und Schlammbelastungen sowie die CSB-Eliminationsleistungen beider Reaktoren in beiden Messphasen annähernd gleich. Auch wurde in diesen Phasen in beiden Reaktoren annähernd die gleiche Menge an Prozesswasser durchgesetzt.

In der Phase RS 2 lag der mittlere pH-Wert im Festbettreaktor mit 6,85 um 0,1 niedriger als im UASB-Reaktor mit pH=6,94. Auch streute der pH-Wert im Festbettreaktor mit 6,62-7,78 deutlich mehr als im UASB-Reaktor mit 6,76-7,52.

				Phase R	S 2			Phase RS 3			
Parameter	Einheit	_	UASB-Reaktor		Festbettreaktor			UA	SB-Reaktor	Festbettreaktor	
			Mittel	Bandbreite	Mittel	Bandbreite		Mittel	Bandbreite	Mittel	Bandbreite
Messphasendauer	d	-		5	3				3	7	
pH-Wert	-	53	6,94	6,76-7,52	6,85	6,62-7,78	38	7,64	7,26-8,12	7,49	7,00-7,83
Q _{ZU}	l/d	15	0,81	0,73-1,04	0,88	0,40-1,11	11	0,82	0,53-1,03	0,71	0,47-0,99
Hydraulische Auf- enthaltszeit	d	15	4,8	3,6-8,8	4,5	3,4-9,3	11	4,8	3,6-7,1	5,5	3,8-7,9
Gesamtdurchsatz Prozesswasser	l/Messphase	15		42,65*		46,43*		31,02*		27,12*	
C _{CSB,Z}	mg/l	14	14.639	13.600-15.600	14.639	13.600-15.600	11	14.328	12.700-16.500	14.328	12.700-16.500
C _{CSB,AN}	mg/l	14	4.491	3.532-4.989	4.806	3.989-5.608	11	4.861	4.566-5.133	4.950	4.661-6.054
η_{CSB}	%	14	69	64-77	67	63-74	11	66	63-71	65	59-69
B _{d,CSB}	g/d	14	11,6	6,7-15,4	12,8	6,2-16,6	11	11,7	7,0-14,2	10,1	7,1-13,8
B _{R,CSB}	kg/(m³·d)	14	3,11	1,79-4,12	3,41	1,67-4,44	11	3,12	1,88-3,80	2,71	1,89-3,68
B _{otr,CSB}	kg/(kg·d)	14	0,13	0,07-0,17	0,14	0,07-0,19	11	0,13	0,08-0,16	0,11	0,08-0,15
Gasanfall	ml _{STP} /d	53	1.176	187-2.361	2.980	130-3.933	38	762	74-1.230	1.810	15-3.360
Gesamt-Gasanfall	ml _{s⊤P} / Phase	53	58.274*		149.151*		38	28.931*		68.631*	

Tab. 3-23: Versuchsphase Rübenschnitzel - Vergleich beider Reaktoren

* Summe, n = Anzahl der Analysen

Die mittlere tägliche Biogasausbeute in der Phase RS 2 war im Festbettreaktor mit ca. 2,98 I/d fast 60 % höher als im UASB-Reaktor mit ca. 1,78 I/d. In der Phase RS 3 lag der mittlere pH-Wert im Festbettreaktor mit pH 7,49 um 0,2 niedriger als im UASB-Reaktor mit pH 7,64. Die Streuung des pH-Wertes war bei beiden Reaktoren annähernd gleich, wohl aber lagen die ermittelten pH-Werte im UASB mit pH 7,26 bis 8,12 höher als im Festbettreaktor mit pH-Werte im UASB mit pH 7,26 bis 8,12 höher als im Festbettreaktor mit pH-Werten von 7,49 bis 7,83. Mit einem mittleren täglichen Biogasanfall von ca. 1,81 I/d lag die Biogasausbeute im Festbettreaktor auch in dieser Phase um ca. 60 % höher als im UASB-Reaktor mit einer Gasausbeute von ca. 0,76 I/d.

Versuchsphase Speisereste

Tab. 3-24 stellt die wichtigsten Parameter des UASB- und des Festbettreaktors in der Versuchsphase Speisereste gegenüber. Detailliertere grafische Darstellungen der wichtigsten Parameter sind für den UASB-Reaktor in Anhang A 2.1 und für den Festbettreaktor in Anhang A 2.2 gegeben. In der Phase SPR 2 wurde die Raumbelastung sukzessive gesteigert, um die optimale und maximale Raumbelastung der beiden Reaktoren zu ermitteln. In der Phase SPR 3 wurde die Raumbelastung beider Reaktoren schrittweise zurückgefahren. Abb. 3-15 und Abb. 3-16 zeigen den CSB im Zu- und Ablauf sowie den CSB-Eliminationsleistung beider Reaktoren während der Versuchsphase Speisereste.

Abb. 3-15: CSB-Reinigungsleistung des UASB-Reaktors während der Versuchsphase Speisereste

Abb. 3-16: CSB-Reinigungsleistung des Festbettreaktors während der Versuchsphase Speisereste

		Phase SPR 2						Phase SF	PR 3			
Parameter	Einheit	n	UASB-Reaktor		Fes	stbettreaktor	n	UAS	SB-Reaktor	Festbettreaktor		
		11	Mittel	Bandbreite	Mittel	Bandbreite		Mittel	Bandbreite	Mittel	Bandbreite	
Messphasendauer	d	-		6	60				1	9		
pH-Wert	-	60	7,19	6,78-7,66	6,88	6,68-7,22	19	7,38	7,06-7,94	6,99	6,89-7,12	
Q _{ZU}	l/d	17	0,89	0,59-1,27	1,01	0,65-1,35	5	0,90	0,84-1,05	0,96	0,92-1,04	
Hydraulische Auf- enthaltszeit	d	17	4,4	2,9-6,4	3,8	2,8-5,8	5	4,2	3,6-4,5	3,9	3,6-4,1	
Gesamtdurchsatz Prozesswasser	l/Messphase	17	53,20*		60,86*		5	15,15*		16,26*		
C _{CSB,Z}	mg/l	17	17.011	10.700-21.600	17.011	10.700-21.600	5	13.288	9.100-16.100	13.288	9.100-16.100	
C _{CSB,AN}	mg/l	17	3.055	1.770-5.502	2.853	1.587-4.905	5	4.489	3.454-5.124	3.330	2.542-4.206	
η _{сѕв}	%	17	82	73-88	83	76-88	5	65	60-69	75	72-78	
B _{d,CSB}	g/d	17	14,9	6,8-26,0	16,9	9,6-26,0	5	11,9	7,9-16,0	12,7	8,9-16,0	
B _{R,CSB}	kg/(m³·d)	17	4,00	1,81-6,95	4,54	2,56-6,95	5	3,19	2,12-4,29	3,41	2,37-4,27	
B _{otr,CSB}	kg/(kg·d)	17	0,17	0,08-0,29	0,19	0,11-0,29	5	0,13	0,09-0,18	0,14	0,10-0,18	
Gasanfall	ml _{STP} /d	60	991	127-2.304	4.928	1.320-6.857	19	235	90-597	4.016	2.503-5.031	
Gesamt-Gasanfall	ml _{s⊤P} / Phase	60	58.977*		293.992*		19	4.024*		76.134*		

Tab. 3-24: Versuchsphase Speisereste - Vergleich beider Reaktoren

* Summe, n = Anzahl der Analysen

Durch den unterschiedlichen Prozesswasserdurchsatz variierten die mittleren CSB-Frachten, die den Reaktoren in der Phase SPR 2 zugeführt wurden. In der Spitze konnten aber beide Reaktoren mit 26 g CSB/d belastet werden. Die maximal erreichte Raumbelastung in beiden Reaktoren lag bei 6,95 kg CSB/(m³·d). Die mittlere Raumbelastung lag im Festbettreaktor mit 4,54 kg CSB/(m³·d) etwas höher als im UASB-Reaktor mit 4,00 kg CSB/(m³·d). Der mittlere pH-Wert von 6,88 im Festbettreaktor lag deutlich unterhalb des mittleren pH-Wertes von 7,19 im UASB-Reaktor. Die pH-Werte im Festbettreaktor mit einer Bandbreite von 6,89-7,12 streuten nicht nur deutlich geringer als im UASB-Reaktor (pH = 7,06-7,94), sondern lagen auch deutlich niedriger. Die mittleren CSB-Eliminationsleistungen sowie die Schwankungsbreiten waren in beiden Reaktoren nahezu gleich. Trotzdem wurde mit einer mittleren täglichen Biogasproduktion ca. 4,93 l/d im Festbettreaktor 80 % mehr Biogas produziert als im UASB-Reaktor mit einer Biogasproduktion von ca. 0,99 l/d.

In der Phase SPR 3 verhielten sich beide Reaktoren ähnlich wie in der Phase SPR 2. Bei annähernd gleichem Prozesswasserdurchsatz wurden beide Reaktoren mit der gleichen CSB-Fracht beaufschlagt, was zu annähernd gleichen CSB-Raumbelastungen führte. So wurde die Raumbelastung in beiden Reaktoren sukzessive über die Phasendauer von 19 Tagen von anfänglich ca. 4,3 kg CSB/(m³·d) auf ca. 2,3 kg CSB/(m³·d), zurückgenommen. Der mittlere pH-Wert von 6,99 im Festbettreaktor lag, wie schon in der Hauptversuchsphase, deutlich unterhalb des mittleren pH-Wertes von 7,38 im UASB-Reaktor. Auch die Bandbreite der pH-Werte im Festbettreaktor streute nicht nur deutlich geringer als im UASB-Reaktor, sondern lag auch deutlich niedriger. Die mittlere CSB-Eliminationsleistung war im Festbettreaktor mit 75 % um 10 % höher als im UASB-Reaktor mit 65 %. Die mittlere tägliche Biogasproduktion des Festbettreaktors lag in dieser Phase mit ca. 4,02 l/d aber um 95 % höher als im UASB-Reaktor mit ca. 0,24 l/d.

Wie Abb. 3-16 und ATV-DVWK IG-5. zu entnehmen ist, sank in beiden Reaktoren mit der Steigerung der Raumbelastung die CSB-Eliminationsleistung konstant. Besonders auffällig ist, dass die CSB-Eliminationsleistung auch nach Rücknahme der Belastung in der Phase SPR 3 nicht wieder anstieg, sondern weiter absank.

Biogasausbeute und -qualität

Die Tab. 3-25 führt den realen (Ist-Wert) und den theoretischen Gesamtbiogasanfall (Soll-Wert) sowie deren Verhältnis (Ist/Soll-Verhältnis) für beide Reaktoren in allen drei Versuchsphasen auf. Der theoretische Gasanfall wurde mit der Annahme berechnet, dass aus 1 g eliminierten CSB ein Methangasvolumen von 350 ml gebildet wird.

		UASB-Reak	tor	Festbettreaktor			
	Gesamt-Gasanfall Ist Soll		Ist/Soll- Verhältnis	Gesamt-(Ist	Gasanfall Soll	Ist/Soll- Verhältnis	
	[ml _{stp}]	[ml _{STP}]	[%]	[ml _{STP}]	[ml _{STP}]	[%]	
Versuchsphase Biertreber	8565	222.960	3,84	51.690	297.067	17,4	
Versuchsphase Rübenscl	nnitzel						
Phase RS 2	58.274	146.052	39,9	149.151	186.415	80,0	
Phase RS 3	28.931	107.555	26,9	68.631	98.139	69,9	
Versuchsphase Speiseres	ste						
Phase SPR 2	58.977	304.360	19,4	293.992	399.141	73,7	
Phase SPR 3	4.024	52.513	7,7	76.134	82.481	92,3	

Tab. 3-25: Vergleich der Biogasproduktion in beiden Reaktoren

In keiner Versuchsphase erreichte einer der beiden Reaktoren die erwartete theoretische Biogasproduktion. Im Vergleich beider Reaktoren wies der Festbettreaktor immer die höhere Biogasausbeute und das bessere Ist/Soll-Verhältnis auf. So lieferte der Festbettreaktor in der Phase RS 2, der Versuchsphase Rübenschnitzel, 80 % der theoretischen Biogasproduktion, wohingegen der UASB-Reaktor gerade einmal 40 % produzierte. In der Phase SPR 3, der Versuchsphase Speisereste, erreichte der Festbettreaktor sogar > 90 % der theoretisch möglichen Biogasproduktion, wohin gegen der UASB-Reaktor < 10 % der Sollmenge erreichte. Eine abschließende Erklärung für die niedrige Biogasproduktion im UASB-Reaktor konnte nicht gefunden werden. Es wird aber vermutet, dass die granulierte Biomasse durch die eingetragenen Feststoffe "verklebt" und damit ein Filtereffekt bewirkt (siehe auch Kapitel 3.3.7). Die Versuche deuten darauf hin, dass sich granulierte Biomasse nicht für die Reinigung von HTC-Abwässern eignet.

Die Tab. 3-26 führt die Methangasgehalten beider Reaktoren in den drei Versuchsphasen auf. Eine detaillierte Übersicht über die Biogasqualitäten beider Reaktoren ist in Anhang A 2.1 und Anhang A 2.2 gegeben.

		UASB-Re	aktor		Festbettre	aktor
		Mittelwert	Bandbreite		Mittelwert	Bandbreite
	n	[Vol% CH ₄]	[Vol% CH ₄]	n	[Vol% CH ₄]	[Vol% CH ₄]
Versuchsphase Biertreber	3	74,3	58,1-97,9	4	76,4	69,6-84,6
Versuchsphase Rüt	penschni					
Phase RS 2	7	80,0	76,2-83,5	11	68,2	63,2-72,7
Phase RS 3	3	85,8	83,5-87,2	5	81,4	72,7-85,3
Versuchsphase Spe	eisereste					
Phase SPR 2	4	81,8	80,3-83,8	13	67,6	61,9-74,5
Phase SPR 3	2	77,8	60,6-95,0	4	73,3	72,3-74,5

Tab. 3-26: Vergleich der CH_4 -Gehalte in beiden Reaktoren (n = Anzahl der Analysen)

Tab. 3-26 ist zu entnehmen, dass die Biogasqualität des UASB-Reaktors mit einem mittleren Methangehalt von 74-85 Vol.-% besser war als im Festbettreaktor mit 68-81 Vol.-%. Auch schwankten die Bandbreiten der Methangehalte im Festbettreaktor mehr als im UASB-Reaktor. Schwefelwasserstoff konnte nur bei der Verwendung von Prozesswasser aus Rübenschnitzeln und nur im Festbettreaktor an bei 11 von 16 Analysen mit Volumenanteilen von 0,02-0,18 Vol.-% H₂S nachgewiesen werden.

Abschließend kann gesagt werden, dass der Festbettreaktor eine weit höhere Prozessstabilität und Performance aufwies als der UASB-Reaktor und sich deshalb eher für die anaerobe Reinigung von HTC-Prozesswässern eignet.

3.3.3 Abbaubarkeit der HTC-Prozesswässer

Die Tab. 3-27 gibt eine Übersicht über die anaerobe Abbaubarkeit der eingesetzten HTC-Prozesswässer. In jeder Versuchsphase wurde für jeden Reaktor immer eine Phase des stabilen anaeroben Abbaus für die Bewertung herangezogen. Zu beachten ist, dass keines der verwendeten Prozesswässer unverdünnt eingesetzt werden konnte, da es schon bei niedrigen Raumbelastungen zu Hemmungen des anaeroben Abbaus kam (siehe Kapitel 3.1.1). Eine Verdünnung mit dem Reaktorinhalt (Rezirkulation) war nicht ausreichend.

Die anaerobe Abbaubarkeit von Biertreber- und Speisereste-Prozesswasser beläuft sich auf ca. 80-85 % bei einer Verdünnung von Prozesswasser zu Leitungswasser von 1 + 3,8. Die höchsten Raumbelastungen wurden dabei im Festbettreaktor mit 3,4 kg CSB/(m³·d) (Biertreber) und 4,2 kg CSB/(m³·d) (Speisereste) erreicht. Bei der Verwendung von Prozesswasser aus Rübenschnitzeln konnte im Festbettreaktor bei einer Raumbelastung von 3,5 kg CSB/(m³·d) und einer Prozesswasserverdünnung von 1 + 2,1 nur noch eine CSB-Eliminationsleistung von 66 % erreicht werden.

Da es in allen Versuchsreihen bei einer Steigerung der Raumbelastung immer zu einem dauerhaften Rückgang der CSB-Eliminationsleistung kam, ist es fraglich, ob das Prozesswasser überhaupt unverdünnt anaerob behandelt werden kann. Wenn ja, dann vermutlich nur mit sehr geringen Raumbelastungen. Für die Konzeption und die Wirtschaftlichkeit einer großtechnischen Anlage ist daher die Möglichkeit einer Mitbehandlung des Prozesswassers mit einem anderen, leicht anaerob abbaubaren Prozesswasser zu überdenken, da der großtechnische Einsatz von Leitungswasser zu Verdünnungszwecken aus Gründen der Wirtschaftlichkeit auszuschließen ist.

Tab. 3-27:	Übersicht -	- anaerobe	Abbaubarkeit	der eingesetz	zten HTC-Pr	ozesswässer	(Mittelwerte)

		Versuchsphase									
Parameter	Einheit	Biertreber					Rübenschr	nitzel	Speisereste		
		n	UASB	n	Festbett	n	UASB	Festbett	n	UASB	Festbett
B _{R,CSB} bei stabilen Prozess	kg/(m³*d)	5	2,8	7	3,4	8	3,2	3,5	13	3,7	4,2
Hydraulische Aufenthaltszeit	d	5	5,7	7	3,3	8	4,6	4,1	13	4,4	3,8
C _{CSB,ZU}	g/l	6	12,7	7	10,9	14	14,3	14,3	27	16,0	16,0
Verdünnung (Prozesswasser + Leitungs- wasser)	-	2	1 + 3,8	2	1 + 3,8	1	1 + 2,1	1 + 2,1	5	1 + 3,8	1 + 3,8
C _{CSB,AN}	g/l	5	3,0	7	2,2	8	4,8	4,9	13	2,5	2,3
η _{csb}	%	5	77	7	80	8	66	66	13	84	85

n = Anzahl der Analysen

3.3.4 Maximale Raum-Zeit-Ausbeuten

In der ersten Versuchsphase (Biertreber) und der dritten Versuchsphase (Speisereste) wurde versucht, die maximale mögliche Raum-Zeit-Ausbeute für die Versuchsreaktoren zu ermitteln. Die Tab. 3-28 zeigt die maximalen Raumbelastungen beider Reaktoren zum Zeitpunkt eines stabilen anaeroben Abbauprozesses in diesen beiden Versuchsphasen. Analog dazu sind die dazugehörigen CSB-Eliminationsleistungen und die Konzentrationen an organischen Säuren mit aufgetragen. Ebenfalls mit aufgeführt sind die Ergebnisse zum Ende des stabilen anaeroben Abbauprozesses in beiden Phasen.

	UAS	B-Reakt	or	Festb	ettreakto	or
	$B_{R,CSB,max}$	η_{CSB}	org. Säuren	$B_{R,CSB,max}$	η _{CSB}	org. Säuren
	[kg /(m³*d)]	[%]	[mg/l]	[kg /(m³*d)]	[%]	[mg/l]
Versuchsphase Biertreber						
Stabiler anaerober Abbau- prozess	3,9	86	~ 300	5,5	81	~ 300
Endpunkt des stabilen an- aeroben Abbauprozesses	6,2	70	~ 710	7,9	65	~ 800
Versuchsphase Speisereste						
Stabiler anaerober Abbau- prozess	4,22	83	~ 400	5,3	84	~ 530
Endpunkt des stabilen an- aeroben Abbauprozesses	6,95	78	~ 1.000	6,95	82	~ 700

Tab. 3-28:	Erreichte Raumbelastungen in den Versuchsphasen I, Biertreber und III, Spei-
	sereste

Ein stabiler anaerober Abbau ließ sich nur bei geringen Raumbelastungen von bis zu ca. 4 kg CSB/(m³·d) im UASB-Reaktor und 5,5 kg CSB/(m³·d) im Festbettreaktor erreichen. Die maximalen Raumbelastungen lagen bei 7,0 kg CSB/(m³·d) (UASB-Reaktor) und 7,9 kg CSB/(m³·d) (Festbettreaktor) mit Aufenthaltszeiten von 3 bis 8 d.

In beiden Versuchsphasen kam es in den Reaktoren nach Überschreiten der genannten maximalen Raumbelastung von 7 bzw. 7,9 kg CSB/(m³·d) zu einem schnellen Konzentrationsanstieg der organischen Säuren. Nach Rücknahme der Belastung ging die Konzentration an organischen Säuren nur langsam zurück. Dies Verhalten soll beispielhaft am UASB-Reaktor in der Versuchsphase Speisereste beschrieben werden, da es hier besonders auffällig war.

Die Abb. 3-17 zeigt den Verlauf der Raumbelastung und der organischen Säuren im UASB-Reaktor über den Versuchszeitraum.

Abb. 3-17: Konzentration an organischen Säuren und CSB-Raumbelastung des UASB-Reaktors, Versuchsphase Speisereste

Bei Raumbelastungen von bis zu 4 kg CSB/(m³·d) konnte ein Anstieg der organischen Säuren im Reaktor auf bis zu 400 mg/l beobachtet werden. Die CSB-Raumbelastung wurde bis zum 08.10.2012 auf maximal 6,95 kg CSB/(m³·d) gesteigert. Die organischen Säuren betrugen zu diesem Zeitpunkt ca. 1.000 mg/l. Trotz konstanter Rücknahme der Raumbelastung stieg im weiteren Verlauf die Konzentration der organischen Säuren auf bis zu 1.750 mg/l an (23.09.2012) und hielt sich über einen Zeitraum von ca. vier Wochen. Dieses deutet auf eine Hemmung der anaeroben Bakterien, vor allem der methanogenen Spezies, hin. Die klassischen Hemmungen infolge organischer Säuren, H₂S, Ammonium und Schwermetallen werden ausgeschlossen. Welcher Stoff für die Hemmung verantwortlich war, konnte nicht ermittelt werden. Daraus folgt, dass das Prozesswasser der HTC nur in hoch verdünnter Form anaerob behandelt werden kann. Abhängig vom Ausgangssubstrat musste hier eine Verdünnung von 1 l Prozesswasser + 2-3 l Verdünnungswasser angesetzt werden, um einen stabilen anaeroben Abbau zu gewährleisten.

Abb. 3-18: Konzentration an organischen Säuren und FOS/TAC-Verhältnis des UASB-Reaktors, Versuchsphase Speisereste

Es ist deutlich zu erkennen, dass das FOS/TAC-Verhältnis maßgeblich von der Konzentration an organischen Säuren beeinflusst wurde, da sich die Kalkreserve (TAC), ab Beginn der Phase SPR 2, quasi konstant zwischen 1.500-2.000 mg/l gehalten hat. Bei einer Raumbelastung von 4,22 kg CSB/(m³·d), einem CSB-Eliminationsgrad von 83 %, einer Konzentration von organischen Säuren von ca. 400 mg/l und einem FOS/TAC-Verhältnis von 0,2 wurde am 01.10.2012 die Obergrenze für einen stabilen anaeroben Abbau von HTC-Prozesswässer aus Speiseresten im UASB-Reaktor gefunden. Die erreichte maximale Belastung von 7 kg CSB/(m³·d) am 08.10.2012 zeigte den Endpunkt der stabilen Reaktorperformance auf.

3.3.5 Einfluss des pH-Wertes auf die Biogasbildung

In der zweiten Versuchsphase Rübenschnitzel wurde auch der Einfluss des pH-Wertes im Prozesswasser auf die Biogasbildung untersucht, wobei vor allem ein Arbeitsbereich für den pH-Wert ermittelt werden sollte. Den Zusammenhang zwischen Raumbelastung, Gasproduktion und pH-Wert in beiden Reaktoren zeigen die Abb. 3-19 und Abb. 3-20.

Abb. 3-19: B_{R,CSB}, Biogasanfall und pH-Wert im UASB-Reaktor während der Versuchsphase Rübenschnitzel

Abb. 3-20: B_{R,CSB}, Biogasanfall und pH-Wert im Festbettreaktor während der Versuchsphase Rübenschnitzel

Während der letzten vier Wochen der Phase RS 2 konnte in beiden Reaktoren eine gleichmäßige Biogasproduktion bei einem vergleichsweise stabilen pH-Wert und stabiler CSB-Eliminationsleistung beobachtet werden. In dieser Phase wurde der pH-Wert in den Reaktoren nicht von außen beeinflusst. Im UASB-Reaktor lag der pH-Wert zwischen 6,8 und 7,0 bei einer Biogasproduktion von rund 1 I/d. Im Festbettreaktor lag der pH-Wert in der gleichen Zeitspanne zwischen 6,6-6,9 bei einer Gasbildung von ca. 3,0-3,5 I/d. Mit Anheben des pH-Wertes in der Vorlage auf 6,5-7,0 während der Phase RS 2 stieg der pH-Wert in beiden Reaktoren an. Im UASB-Reaktor stieg dieser bis auf 8,1 bei einem mittleren pH-Wert von 7,64. Gleichzeitig konnte ein Rückgang der täglich produzierten Biogasmenge auf ca. 0,5 I/d und weniger festgestellt werden. Im Festbettreaktor stieg der pH-Wert bis auf 7,8 an und lag im Mittel bei 7,49. Auch hier konnte ein Rückgang der täglich produzierten Biogasmenge auf 2,5 I/d und weniger beobachtet werden.

Für beide Reaktoren ist eine Ammonium-/Ammoniakhemmung auszuschließen, da das eingesetzte Prozesswasser eine Ammoniumkonzentration von < 20 mg/l aufwies (siehe Kapitel 3.1.1). Eine Hemmung durch Schwefelwasserstoff kann ausgeschlossen werden, da H₂S nur im Festbettreaktor über den Zeitraum der Versuchsphase Rübenschnitzel in Konzentrationen von 0,02-0,18 Vol.-% H₂S nachgewiesen werden konnte. Nach Kroiss (1986) kann in diesem Konzentrationsbereich keine Hemmung durch H₂S vorliegen. Deswegen ist von einer Hemmung der anaeroben Biologie, verursacht durch einen zu hohen pH-Wert in Kombination mit einer Substrathemmung, auszugehen. Unter Einbeziehung der oben aufgeführten Ergebnisse ist anzunehmen, dass der anaerobe Abbau von HTC-Prozesswässern aus Rübenschnitzeln, vermutlich aber auch der aller anderen HTC-Prozesswässer, bei pH-Werten zwischen 6,6 und 7,0 am effektivsten abläuft.

3.3.6 CSB-Bilanz

Für die Beurteilung der Reaktoren und deren Abbauleistung ist eine CSB-Bilanz notwendig. Die Bilanzierung erfolgt auf Grundlage des zugeführten CSB, der gleich 100 % gesetzt wird. In die Bilanz gehen ein: der homogenisierte CSB im Zu- und Ablauf, der Kohlenstoff im produzierten Biogas und im Biomassezuwachs (Yield). Da der CSB in den HTC-Prozesswässern nahezu vollständig in gelöster Form vorliegt (siehe Kapitel 3.1.1) konnte auf die Berücksichtigung des filtrierten CSB verzichtet werden. Durch Aufsummieren der einzelnen CSB-Fraktionen kann die Bilanz erstellt werden (Formel 3-6).

$$CSB_{Zulauf} = CSB_{Schlamm} + CSB_{Ablauf} + CSB_{CH_4} + CSB_{CH_4,Versust}$$
 Formel 3-6

Die einzelnen CSB-Fraktionen wurden nach folgenden Formeln berechnet:

$$CSB_{Schlamm} = B_{CSB,Zu} \times Y$$
Formel 3-7
$$CSB_{Ablauf} = B_{CSB,Zu} - B_{CSB,AN}$$
Formel 3-8
$$CSB_{CH_4} = \frac{V_{ges, Biogas} \times n_{CH_4}}{350}$$
Formel 3-9
CS	B _{CH4} , Verlust	$= \boldsymbol{\rho}_{CH_4} \times \boldsymbol{k}_{H, CH_4} \times \boldsymbol{\rho}_{CH_4} \times \boldsymbol{V}_{Abwasser} \times 1000$	Formel 3-10			
mit:	B _{CSB,Zu}	= Zugeführte Gesamt-CSB-Fracht über den Versuchszeitraum in g CSB				
	$B_{CSB,AN}$	= Gesamt-CSB Fracht im Ablauf des Reaktors über den Versuchszeitraum	in g CSB			
	Y	= Yield (Ertragsfaktor) in g CSB/g CSB _{abgebaut}				
	$V_{\text{ges, Biogas}}$	= Gesamtvolumen des gebildeten Biogases in ml.				
	[#] 👬 🚛 N _{CH4}	= Prozentualer Anteil des Methangas am Gesamtgasvolumen in ml CH ₄ /ml Gas				
	🎾 🛲 рсн4	= Partialdruck des Methangases in bar				
	it а, ст. К н, сн	Henry-Konstante des Methangases bei 35 °C in mol/(I·bar)				
	$ ho_{CH4}$ $ ho_{CH4}$	= Gasdichte des Methangases in I/mol				
	V _{Prozesswasser}	= Summe des anaerob gereinigten Prozesswassers in I				
	350	= spezifische Methangasbildung in ml CH₄/g CSB				

Für den Yield wird ein Wert von 0,1 g oTR/g CSB angenommen. Dieser Wert entspricht dem Mittelwert der in der Literatur angegebenen Werte von 0,05-0,15 g oTR/g CSB (Trautmann, 2007).

Ergebnisse

Tab. 3-29 stellt die wichtigsten Ergebnisse dieser Bilanzen zusammen. Der CSB-Bilanzanteil stellt den in der Bilanz wiedergefundenen CSB, der CSB-Bilanzrest den nicht wiedergefundenen Anteil am CSB dar. Eine detaillierte Übersicht über die Ergebnisse aller CSB-Bilanzierungen ist in Anhang A 2.3 gegeben.

	CSB-Bilanzanteil	CSB-Bilanzrest
	[%]	[%]
Versuchsphase Biertreber		
UASB-Reaktor	38,4	61,6
Festbettreaktor	54,5	45,5
Versuchsphase Rübenschnitzel		
Phase RS 2		
UASB-Reaktor	48,6	51,4
Festbettreaktor	50,4	49,6
Phase RS		
UASB-Reaktor	34,7	65,3
Festbettreaktor	30,4	69,6
Versuchsphase Speisereste		
Phase SPR 2		
UASB-Reaktor	52,7	47,3
Festbettreaktor	80,1	19,9
Phase SPR 3		
UASB-Reaktor	13,4	86,6
Festbettreaktor	22,8	77,2

Tab. 3-29: Ergebnisse der CSB-Bilanzierungen für beide Reaktoren

Aus Tab. 3-29 wird ersichtlich, dass mit einer Ausnahme alle CSB-Wiederfindungsraten nicht weit höher als 50 % liegen. Die Ausnahme bildete die Phase SPR 2 der Versuchsphase Speisereste des Festbettreaktors. In dieser Phase kam es zu einer hohen Biogasproduktion bei gleichzeitig guter Biogasqualität. So konnte ein verhältnismäßig großer Anteil des CSB im produzierten Biogas wiedergefunden werden.

Wie im Kapitel 3.3.2 beschrieben, wurde in beiden Reaktoren trotz guter CSB-Eliminationsleistung weit weniger Biogas gebildet als theoretisch hätte anfallen müssen. Es wird vermutet, dass dieser nicht erfasste CSB in Form von Ausfällungen im Reaktor verblieben ist. Eine Feststoffbilanz soll diese Frage klären.

3.3.7 Feststoffbilanz

Ab der Versuchsphase Rübenschnitzel wurde für jeden Versuchsreaktor eine Feststoffbilanz erstellt, um zu ermitteln, ob und wie viele der dem Rektor zugeführten Feststoffe in diesem verblieben. Betrachtet wurden die Feststoffparameter TS, oTS, TR und oTR. Der Bilanzraum wurde um den jeweiligen Reaktorraum gezogen. Der Bilanzraum und alle maßgeblichen Berechnungsparameter sind Abb. 3-21 zu entnehmen.

Abb. 3-21: Bilanzraum und maßgebliche Parameter

Zur Aufstellung einer Feststoffbilanz wurden neben den durchgesetzten Abwassermengen die Feststoffparameter im Zu- und Ablauf der Reaktoren bestimmt. Da zu keiner Zeit Überschussschlamm aus einem der Versuchsreaktoren abgezogen wurde, gilt $Q_{US} = 0$ und $X_{\text{Feststoff},US} = 0$. Deswegen wird der Biomassezuwachs im Weiteren nicht berücksichtigt. Da der CSB der HTC-Prozesswässer in allen Fällen nahezu vollständig in gelöster Form vorlag (siehe Kapitel 3.1.1) wird auch die Produktion von Biogas aus Feststoffen im Weiteren nicht berücksichtigt.

Die ermittelten Konzentrationen der Feststoffparameter standen repräsentativ für die Konzentrationen der jeweiligen Parameters über den betrachteten Zeitraum zwischen zwei Probenahmen. Der Zeitraum erstreckte sich von der aktuellen bis zur vorherigen Probenahme und betrug entweder drei Tage (Freitag bis Montag) oder vier Tage (Montag bis Freitag). Die jeweiligen Feststoffmengen (M_{Feststoff}), die dem jeweiligen Reaktor zu- und abgeführt wurden, wurden nach folgender Formel ermittelt.

$$M_{Feststoff} [mg] = X_{Feststoff} \left[\frac{mg}{l}\right] \times Q[l]$$
 Formel 3-11

Die im betrachteten Zeitraum im Reaktor akkumulierte oder ausgeschwemmte Feststoffmenge (M_{Akk}) wurde durch Subtraktion der Feststoffmenge, die den Reaktor verlassen hat ($M_{Feststoff,Ab}$), von der, die dem Reaktor zugeführt wurde ($M_{Feststoff,Zu}$), ermittelt.

$$M_{Akk} [mg] = M_{Feststoff, Zu} [mg] - M_{Feststoff, Ab} [mg]$$
 Formel 3-12

Die gesamte akkumulierte oder ausgeschwemmte Menge eines Feststoffes ($M_{Akk,Ges}$) über den Zeitraum einer Versuchsphase wurde durch Addition der Einzelwerte ermittelt.

$$M_{Akk,Ges}[mg] = M_{Akk,1}[mg] + M_{Akk,2}[mg] + \dots + M_{Akk,n}[mg]$$
Formel 3-13

Ergebnisse

Die in den Reaktoren akkumulierte oder ausgeschwemmte Menge an Feststoffen sind für alle Versuchsphasen in Tab. 3-30 zusammenstellt. Eine detaillierte Übersicht inklusive graphischer Auswertungen der Ergebnisse aller Feststoff-Bilanzierungen ist in Anhang A 2.4 gegeben.

	TS	oTS	TR	oTR
	[g]	[g]	[g]	[g]
Versuchsphase Rübenschnitzel				
Phase RS 2				
UASB-Reaktor	2,3	1,8	137,1	131,0
Festbettreaktor	1,8	2,1	131,9	133,0
Phase RS 3				
UASB-Reaktor	1,3	1,3	159,6	119,7
Festbettreaktor	0,6	0,6	149,4	117,2
Versuchsphase Speisereste				
Phase SPR 2				
UASB-Reaktor	- 1,6	- 1,0	248,3	225,3
Festbettreaktor	- 1,5	- 0,4	280,3	260,9
Phase SPR 3				
UASB-Reaktor	- 0,1	0,0	25,1	25,1
Festbettreaktor	0,0	0,0	34,4	35,7

Tab. 3-30: Ergebnisse der Feststoff-Bilanzierungen für beide Reaktoren

Die durchgehend positiven Werte für beide Reaktoren und alle Feststoffparameter über den Zeitraum der Versuchsphase Rübenschnitzel zeigen, dass diese Mengen im jeweiligen Reaktor akkumuliert wurden. So wurden im Festbettreaktor 131,9 g TR und 133 g oTR akkumuliert. Die negativen Zahlen für die Parameter TS und oTS in beiden Reaktoren in der Versuchsphase Speisereste bedeuten, dass diese Mengen des jeweiligen Parameters aus den Reaktoren ausgeschwemmt wurden. Beim UASB-Reaktor waren dies 1,6 g TS und 1,0 g oTS.

Das Ausschwemmungs- und Akkumulationsverhalten der betrachteten Feststoffparameter soll exemplarisch am UASB-Reaktor während der Versuchsphase Rübenschnitzel dar-gestellt werden.

Abb. 3-22 zeigt den Verlauf der Parameter TS und oTS im betrachteten Zeitraum. Abb. 3-23 zeigt analog den Verlauf der Parameter TR und oTR. Die Tab. 3-31 führt anschließend die Ergebnisse der Bilanz detailliert auf.

Abb. 3-22: Akkumulierte TS- und oTS-Mengen des UASB-Reaktors während der Versuchsphase Rübenschnitzel

Abb. 3-23: Akkumulierte TR- und oTR-Mengen des UASB-Reaktors während der Versuchsphase Rübenschnitzel

	Phase RS 2			Phase RS 3				
	TS	oTS	TR	oTR	TS	oTS	TR	oTR
	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
Fracht im Zulauf über den Zeit- raum	5.141	4.463	278.966	241.785	2.002	1.696	348.236	219.563
Fracht im Ablauf über den Zeit- raum	2.811	2.680	141.876	110.772	741	399	188.629	99.882
Bilanz (im System verblieben)	2.329	1.783	137.091	131.013	1.261	1.297	159.608	119.681

Tab. 3-31: Feststoffbilanz des UASB-Reaktors während der Versuchsphase Rübenschnitzel

Aus

Abb. 3-22 ist zu entnehmen, dass über den betrachteten Zeitraum immer wieder TS, vor allem aber oTS, d.h. Biomasse, aus dem Reaktor ausgeschwemmt wurde. Aus

Abb. 3-22 geht hervor, dass bis auf eine Ausnahme der TR und oTR über den gesamten Versuchszeitraum im jeweiligen Reaktor akkumuliert, zum Beispiel als Kohle ausgefallen, oder anaerob abgebaut wurden. Auch wird die Bildung von MAP in Betracht gezogen. Das betrachtete Verhalten ist, wie in Anhang A 2.4 dargestellt, auf alle Versuchsphasen und beide Reaktoren zu übertragen.

Der TR besteht aus ungelösten und gelösten Wasserinhaltsstoffen wie zum Beispiel Biomasse (ungelöst), gelösten Salze oder anderen gelösten chemischen Verbindungen, aber auch noch nicht weit polymerisierter Biokohle. Wie in Kapitel 3.3.1 beschrieben, kommt es im HTC-Prozesswasser auch nach mehrmaligem Filtrieren durch den Tuchfilter einer Kammerfilterpresse zu einer kontinuierlichen Bildung von Biokohle, die überwiegend aus Kohlenstoff besteht. Es kommt auch zur Bildung von MAP-Kristallen, wobei es nach Fach (2005) zu einer Reduktion des CSB infolge von Mitfällung kommen kann. Wie in Kapitel 3.1.1 beschrieben, liegt der CSB der frischen Prozesswässer fast ausschließlich in gelöster Form vor. Ein Teil des gelösten CSB wird demnach durch den oTR dargestellt. Dies lässt den Schluss zu, dass die in Kapitel 3.3.6 beschriebenen CSB-Bilanzreste möglicherweise als Ausfällungen in den Reaktoren verblieben sind. Ob dies an chemischen Reaktionen des Prozesswassers in den Reaktoren liegt und/oder einem möglichen Filtereffekt der Reaktoren zuzuschreiben ist, kann nicht geklärt werden.

3.3.8 Nährstoffverhältnisse

Während der dritten Versuchsphase wurde der mit Leitungswasser verdünnte Reaktorzulauf sowie die Abläufe beider Reaktoren zweimal einer Vollanalyse unterzogen. Das Prozesswasser wurde in den Reaktoren mit einem Mischungsverhältnis von ca. 1 Teil Prozesswasser zu 4 Teilen Leitungswasser verdünnt eingesetzt. Die Abbauleistungen entsprachen ca. 75-80 %. Daher kann in beiden Fällen von einem stabilen Prozess ausgegangen werden. Die Ergebnisse dieser Untersuchungen sind in den Tab. 3-32 und Tab. 3-33 zusammengestellt.

Parameter	Einheit	Zulauf Reaktoren	Ablauf UASB-Reaktor	Ablauf Festbettreaktor
C _{CSB}	[g/l]	17.500	2.613	2.443
S _{CSB}	[g/l]	16.800	2.148	2.358
S _{NO3-N}	[mg/l]	20	11	12
S _{NO2-N}	[mg/l]	0,24	0,49	0,22
S _{NH4} -N	[mg/l]	198	251	311
C _{TKN}	[mg/l]	445	356	414
C _{TNb}	[mg/l]	466	367	426
C _{org. N}	[mg/l]	247	105	103
C _{Pges}	[mg/l]	25	22	14
CSB:N:P-Verhältnis	-	1.000 : 27 : 1		

Tab. 3-32: Nährstoffverhältnisse im Speisereste-Prozesswasser am 21.09.2012

Tab. 3-33: Nährstoffverhältnisse im Speisereste-Prozesswasser am 16.10.2012

Parameter	Einheit	Zulauf Reaktoren	Ablauf UASB-Reaktor	Ablauf Festbettreaktor
C _{CSB}	[g/l]	20.800	5.203	4.902
S _{CSB}	[g/l]	20.800	4.639	4.307
S _{NO3-N}	[mg/l]	19	15	16
S _{NO2-N}	[mg/l]	0,18	0,46	0,74
S _{NH4} -N	[mg/l]	66	305	313
C _{TKN}	[mg/l]	617	566	591
C _{TNb}	[mg/l]	637	581	608
C _{org. N}	[mg/l]	552	261	279
C _{Pges}	[mg/l]	42	31	23
CSB:N:P-Verhältnis	-	1.000 : 31 : 2		

Nach Bischofsberger et al. (2005) kann bei stark versäuerten Abwässern von einem C:N:P-Verhältnis von 1.000 : 8 : 1 als Richtwert ausgegangen werden. Dieses Verhältnis kann, abhängig von der Abwasserzusammensetzung und den beteiligten Bakteriengruppen, variieren. Wird dieses C:N:P-Verhältnis auf das HTC-Prozesswasser übertragen, deutet dies bei beiden Prozesswässern auf einen Überschuss an Stickstoff.

Auffallend sind die hohen Konzentrationen an organischem Stickstoff. Dieser organische Stickstoff wird in den Reaktoren nur zu 50-60 % ammonifiziert, was ungewöhnlich ist.

3.4 Folgerungen

Folgende Schlussfolgerungen bezüglich der anaeroben Abbaubarkeit der verwendeten HTC-Prozesswässer lassen sich aus den kontinuierlichen Abbauversuchen ziehen:

- 1. HTC-Prozesswässer sind anaerob nur nach Verdünnung abbaubar. Abhängig vom Einsatzmaterial musste eine Verdünnung von 1 I Prozesswasser + 2-3 I Verdünnungswasser angesetzt werden, um einen stabilen anaeroben Abbau zu gewährleisten.
- 2. Für das Einsatzmaterial Biertreber liegt die Eliminationsleistung bei einem stabilen Anlagenbetrieb bei 75-80 % bezogen auf einen CSB im Zulauf von 12 g/l, für das Einsatzmaterial Rübenschnitzel bei 60-70 % bezogen auf einen CSB im Zulauf von 15 g/l und für das Einsatzmaterial Speisereste bei ca. 85 % bezogen auf einen CSB im Zulauf von 16 g/l.
- 3. Ein stabiler anaerober Abbau lässt sich nur bei geringen Raumbelastungen von ca. 4 kg CSB/(m³·d) im UASB-Reaktor und ca. 5,5 kg CSB/(m³·d) im Festbettreaktor erreichen. Die maximalen Raumbelastungen betragen 7,0 kg CSB/(m³·d) im UASB-Reaktor und 7,9 kg CSB/(m³·d) im Festbettreaktor bei Aufenthaltszeiten von 3 bis 8 Tagen.
- pH-Wert-abhängig bildet sich in der Vorlage, den Rohrleitungen und den Reaktoren Biokohle. Die Ausfällungen treten vor allem bei pH-Werten > 7 auf.
- 5. Die CSB-Bilanzen zeigen Bilanzreste von 20-80 %, obwohl auch das im Reaktorablauf gelöste Methan berücksichtigt wurde.
- 6. Die Biogasproduktion ist stark abhängig vom pH-Wert. Die besten Ergebnisse wurden bei pH-Werten von 6,6-7,0 erzielt; pH-Werte > 7,0 führten regelmäßig zu einer verringerten Gasproduktion bei gleich bleibender CSB-Eliminationsleistung, vor allem im UASB-Reaktor. Dieses Ergebnis steht den Erkenntnissen aus den durchgeführten Batchtests entgegen, in denen bei pH-Werten von 7,0 die bessere Biogasausbeute erzielt wurde.
- Der CH₄-Gehalt im Biogas betrug im Mittel 75-85 % im UASB-Reaktor und 70-80 % im Festbettreaktor. Ein H₂S-Anteil konnte nur im Festbett bei der Verwendung von Prozesswasser aus Rübenschnitzeln nachgewiesen werden und war mit < 0,1 % vernachlässigbar.
- 8. Die Feststoffbilanzen zeigten, dass vor allem TR und oTR der verwendeten Prozesswässer in den Reaktoren akkumuliert wurden. Dies könnte eine mögliche Erklärung für die hohen CSB-Bilanzreste sein, denn es wird vermutet, dass der Kohlenstoff in Form von Biokohle oder auch als Mitfällungsprodukt bei der Entstehung von MAP in den Reaktoren ausgefallen ist.
- Der organisch gebundene Stickstoff (org. N) wurde nur zu ca. 50-60 % ammonifiziert, während eine nahezu vollständige Ammonifikation üblich ist. Das lässt den Schluss zu, dass der im Prozesswasser enthaltene Stickstoff nicht vollständig biologisch verfügbar ist.

4 Aerobe Nachbehandlung

4.1 Batch-Tests zur aeroben Abbaubarkeit

Zur Beurteilung der aeroben Abbaubarkeit wurden BSB-Langzeittests über 30 Tage gemäß der manometrischen (respirometrischen) Methode unter Verwendung eines OxiTop-Systems der Fa. WTW durchgeführt. Die in den Abbildungen 4-1 bis 4-3 dargestellten Daten lassen erkennen, dass Prozesswasser sowohl unbehandelt als auch nach einer anaeroben Vorbehandlung abbaubar ist. Der Abbau ist insbesondere beim vorbehandelten Wasser nach fünf Tagen allerdings noch nicht abgeschlossen, d.h. beim Betrieb einer kontinuierlichen aeroben Stufe ist mit einer längeren Anpassungsphase der Mikroorganismen zu rechnen.

Abb. 4-1: BSB-Test mit nicht vorbehandeltem Prozesswasser (links) und dem Ablauf des Anaerobreaktors in Detmold (rechts); Einsatzmaterial: Biertreber

Abb. 4-2: BSB-Test mit nicht vorbehandeltem Prozesswasser (links) und dem Ablauf des Anaerobreaktors in Detmold (rechts); Einsatzmaterial: Rübenschnitzel

Abb. 4-3: BSB-Test mit nicht vorbehandeltem Prozesswasser (links) und dem Ablauf des Anaerobreaktors in Detmold (rechts); Einsatzmaterial: Speisereste

Aus den ermittelten BSB-Werten lassen sich die in Tabelle 4-1 und 4-2 aufgeführten CSB/BSB-Verhältnisse ableiten. Die Daten in Tabelle 4-1 zeigen eine sehr gute Abbaubarkeit der nicht vorbehandelten Prozesswässer und bestätigen die schon in Kapitel 1 zitierten Resultate eigener Voruntersuchungen, bei denen ein solches Wasser in einem dynamischen Abbautest aerob weitgehend gereinigt werden konnte (Ramke et al., 2010b). Die Ergebnisse in Tabelle 4-2 zeigen an, dass auch die anaerob vorbehandelten Prozesswässer aerob weiter abgebaut werden können.

 Tab. 4-1:
 CSB/BSB-Verhältnisse für nicht vorbehandelte HTC-Prozesswässer der drei ausgewählten Einsatzstoffe

			Einsatzstoff	
Parameter		Biertreber	Rübenschnitzel	Speisereste
CSB	[mg/l]	50.600	45.800	65.200
BSB₅	[mg/l]	24.200	13.500	27.000
BSB ₂₀	[mg/l]	33.200	26.500	37.200
CSB/BSB₅	[mg/mg]	2,09	3,39	2,41
CSB/BSB ₂₀	[mg/mg]	1,52	1,73	1,75

Tab. 4-2: CSB/BSB-Verhältnisse für anaerob vorbehandelte HTC-Prozesswässer der drei ausgewählten Einsatzstoffe

			Einsatzstoff	
Parameter		Biertreber	Rübenschnitzel	Speisereste
CSB	[mg/l]	7.320	4.720	2.818
BSB₅	[mg/l]	1.580	310	352
BSB ₂₀	[mg/l]	2.820	733	929
CSB/BSB ₅	[mg/mg]	4,63	15,2	8,00
CSB/BSB ₂₀	[mg/mg]	2,60	6,44	3,03

4.2 Betrieb einer kontinuierlichen aeroben Laborkläranlage

Zur weiteren Untersuchung der aeroben Abbaubarkeit wurde eine kontinuierlich betriebene Laborkläranlage (Abbildung 4-4) mit Ablaufwasser der anaeroben Behandlungsstufe beaufschlagt. Die Anlage bestand aus drei Reaktoren mit je 6 I Volumen, von denen der zweite und dritte belüftet wurden, sowie einer Nachkläreinheit. Das Gesamtvolumen der Belebungsstufe, in die zu Beginn Belebtschlamm aus den kommunalen Kläranlagen in Höxter und Holzminden im Verhältnis 2:1 eingefüllt worden war, umfasste somit 18 I, das Volumen der belüfteten Reaktoren 12 I.

Die Anlage wurde mit einem Zulaufstrom von 2 I/d und einem Rücklaufverhältnis von 5 betrieben. Lediglich beim Rübenschnitzel-Prozesswasser erfolgte eine geringe Zugabe an NH₄-N. Regelmäßig gemessen wurden die CSB-Werte im Zu- und Ablauf, ergänzt durch gelegentliche Messungen der Parameter TOC, NH₄-N und PO₄-P. Hin und wieder wurden auch Schlammproben mikroskopisch untersucht.

Einsatzstoff Biertreber

Der aerobe Abbau des anaerob behandelten Prozesswassers von Biertreber wurde über einen Zeitraum von 128 Tagen untersucht. Die Biozönose war zuvor etwa 40 Tage lang mit dem Ablauf der Anaerobstufe, die mit verschiedenen HTC-Prozesswässern adaptiert werden sollte, beaufschlagt worden. Wie in Abbildung 4-5 dargestellt, lag der CSB-Wert im Zulauf anfangs bei 600 mg/l und wurde dann schrittweise auf gut 6.000 mg/l erhöht. Es stellte sich dementsprechend eine Raumbelastung von 0,10 bis 1,02 g CSB/(I · d) ein. Die Schlammbelastung in den belüfteten Reaktoren lag bei maximal 0,34 g CSB/(g TS · d).

Die Beurteilung der Abbaubarkeit erfolgte auf der Basis der CSB-Werte im Ablauf der Versuchsanlage. Die in Abbildung 4-5 dargestellten Daten zeigen, dass eine stabile CSB-Elimination von über 50 % erreicht wird. Unter Vernachlässigung der Werte aus den ersten 14 Tagen, bei denen Anlauf- und Verdünnungseffekte noch einen Einfluss hatten, ergibt sich hier ein mittlerer Abbaugrad von 58 %.

Abb. 4-5: Zu- und Ablaufwerte des anaerob behandelten Prozesswassers von Biertreber in der aeroben Laborkläranlage

Die parallel gemessenen Konzentrationen an NH₄-N zeigten, dass nur eine geringe Abnahme um ca. 20 % auf Ablaufwerte von 160-180 mg/l erreicht werden konnte.

Mikroskopische Untersuchungen des Belebtschlamms ließen erkennen, dass sich die Biozönose aufgrund des Substrats nicht einseitig veränderte, d.h. es war eine normale Belebtschlammfauna mit verschiedenen Protozoen wie sessilen und freien Ciliaten sowie auch einigen Rotatoria (Abbildung 4-6) zu beobachten.

Abb. 4-6: Mikroskopische Aufnahmen des Belebtschlamms aus der Laborkläranlage mit Glockentierchen (links) und Rädertierchen (rechts)

Bei der maximalen Raumbelastung von 1,0 g CSB/(I · d) während der letzten 10 Betriebstage veränderte sich der Schlamm allerdings dergestalt, dass nur noch Bakterienflocken und Amöben, aber keine Protozoen mehr vorlagen. Dies zeigt, dass es für das anaerob behandelte Prozesswasser eine Belastungsgrenze bei der aeroben Nachbehandlung gibt.

Die Reaktoren der Laborkläranlage wurden deshalb vor der nächsten Versuchsreihe erneut mit frischem Schlamm angeimpft.

Einsatzstoff Rübenschnitzel

Der Versuchszeitraum für den aeroben Abbau des anaerob behandelten Prozesswassers von Rübenschnitzeln erstreckte sich über einen Zeitraum von 103 Tagen. Dabei betrugen die CSB-Werte im Zulauf 1.300 bis 2.500 mg/l. Die sich einstellende Raumbelastung lag bei 0,21 bis 0,41 g CSB/(I \cdot d) und die Schlammbelastung in den Reaktoren bei maximal 0,10 g CSB/(g TS \cdot d).

Die Beurteilung der Abbaubarkeit erfolgte wieder auf der Basis der CSB-Werte im Ablauf der Versuchsanlage. Wie die in Abbildung 4-7 dargestellten Zu- und Ablaufwerte zeigen, wird hier eine stabile CSB-Elimination von rund 50 % erreicht. Der Rückgang der Zulaufkonzentration ab Tag 80 ist bedingt durch niedrigere Ablaufwerte der Anaerobreaktoren in dieser Phase. Ohne Berücksichtigung der Daten aus den ersten 14 Tagen lässt sich für den Abbaugrad ein Mittelwert von 47 % errechnen.

Beim Parameter NH₄-N kam es zu einer Abnahme um etwa 70 % auf Ablaufkonzentrationen von 50-70 mg/l, d.h. es fand hier eine nennenswerte Nitrifikation statt. Eine auffällige Veränderung des Belebtschlamms wurde bei dieser Versuchsreihe nicht beobachtet.

Abb. 4-7: Zu- und Ablaufwerte des anaerob behandelten Prozesswassers von Rübenschnitzeln in der aeroben Laborkläranlage

Einsatzstoff Speisereste

Der aerobe Abbau des anaerob behandelten Prozesswassers von Speiseresten wurde über einen Zeitraum von 73 Tagen untersucht. Hierbei betrugen die CSB-Werte im Zulauf 1.800 bis 4.500 mg/l. Die resultierende Raumbelastung lag bei 0,30 bis 0,75 g CSB/($I \cdot d$) und die Schlammbelastung in den Reaktoren bei maximal 0,18 g CSB/(g TS $\cdot d$).

Auch hier erfolgte die Beurteilung der Abbaubarkeit auf der Basis der CSB-Werte im Ablauf der Versuchsanlage. Wie die in Abbildung 4-8 dargestellten Zu- und Ablaufwerte zeigen, wird wieder eine stabile CSB-Elimination von über 50 % erreicht. Der mittlere Abbaugrad über die gesamte Versuchsdauer beträgt 56 %.

Eine auffällige Veränderung des Belebtschlamms trat auch bei dieser Versuchsreihe nicht auf.

Abb. 4-8: Zu- und Ablaufwerte des anaerob behandelten Prozesswassers von Speiseresten in der aeroben Laborkläranlage

Die Untersuchung der Stickstoffkomponenten zeigte, dass bei diesem Prozesswasser 99 % der NH₄-N-Zulaufkonzentration von 270 mg/l umgesetzt wurde. Obwohl die Messung des Parameters Nitrat in dieser Matrix fehlerbehaftet ist, deuten die gefundenen Ablaufwerte von 70-190 mg/l NO₃-N darauf hin, dass auch eine gewisse Denitrifikation stattgefunden haben muss.

4.3 Charakterisierung des biologisch vorbehandelten Prozesswassers

Für die anaerob bzw. anaerob+aerob behandelten Prozesswässer wurden erneut GC-MS Übersichtsanalysen durchgeführt. Die in Abb. 4-9 bis 4-11 wiedergegebenen Chromatogramme lassen erkennen, dass nur noch sehr geringe Anteile der im unbehandelten Wasser vorhandenen Stoffe (siehe Kapitel 2) nachweisbar sind. Außer Phthalaten und nicht näher zuordbaren aliphatischen und aromatischen Kohlenwasserstoffen im µg/l-Bereich ließen sich hier keine anderen Stoffe identifizieren.

Die Analysen zeigen jedoch auch, dass es in den Anaerobreaktoren zu einer Verunreinigung der Prozesswässer gekommen ist, und zwar in allen drei Fällen mit Cyclosiloxanen und im Fall des Rübenschnitzel-Prozesswassers zusätzlich mit Bis(2-ethylhexyl)phthalat (DEHP). Die Siloxan-Kontaminationen lassen sich auf die Verwendung von Silikonklebern beim Bau der Versuchsanlage zurückführen. Die DEHP-Kontamination kann dadurch erklärt werden, dass die Probenahme offenbar kurz nach dem Einsatz neuen Schlauchmaterials vorgenommen wurde, in dem DEHP als Weichmacher enthalten ist.

Den Chromatogrammen für die aerob nachbehandelten Proben zufolge werden diese Kontaminationen jedoch in der Aerobstufe vollständig eliminiert, so dass sie die Aussagen zum Behandlungskonzept für HTC-Prozesswässer nicht beeinträchtigen.

Abb. 4-9:: GC-MS Chromatogramme für anaerob (links) und anaerob+aerob (rechts) behandeltes HTC-Prozesswasser, Einsatzmaterial: Biertreber

Abb. 4-10: GC-MS Chromatogramme für anaerob (links) und anaerob+aerob (rechts) behandeltes HTC-Prozesswasser, Einsatzmaterial: Rübenschnitzel

Abb. 4-11: GC-MS Chromatogramme für anaerob (links) und anaerob+aerob (rechts) behandeltes HTC-Prozesswasser, Einsatzmaterial: Speisereste

4.4 Folgerungen

- Anaerob behandeltes Prozesswasser weist eine aerobe Abbaubarkeit auf, die sich in CSB/BSB₅-Verhältnissen von 4,6 bis 15,2 sowie CSB/BSB₂₀-Verhältnissen von 2,6 bis 6,4 ausdrückt.
- Bei Langzeitversuchen mit einer kontinuierlichen Laborkläranlage lassen sich mittlere Abbaugrade für den CSB von 47 % (Rübenschnitzel) bis 58 % (Biertreber) erreichen. Ein stabiler Betrieb setzt jedoch eine Raumbelastung < 1,0 kg CSB/(m³·d) voraus.
- 3. Die im Prozesswasser enthaltenen, mit Pentan extrahierbaren organischen Spurenstoffe werden in den beiden biologischen Stufen weitestgehend entfernt.

5 Adsorptive Schlussreinigung

5.1 Batch-Tests zur Ermittlung von Gleichgewichtsparametern

Zur Beurteilung der Adsorbierbarkeit der organischen Stoffe im anaerob und aerob behandelten Prozesswasser wurden zuerst Adsorptionsisothermen mit Pulveraktivkohle (Norit ROW 0.8 S) und zwei verschiedenen Anfangskonzentrationen aufgenommen. Je Isothermenpunkt wurde ein Probenvolumen von 0,2 I verwendet; die Zugabemengen an Aktivkohle lagen bei 0,1-3,0 g und der pH-Wert im Bereich pH = 7-8. Nach einer Kontaktzeit von 72 h wurden die Lösungen membranfiltriert (0,45 μ m) und die DOC-Werte der Proben bestimmt. Mit Hilfe einer Massenbilanz wurden dann die zu jedem Punkt der Isotherme gehörenden adsorbierten Stoffmengen (DOC-Beladungen) berechnet.

Die in Abbildungen 5-1 bis 5.3 wiedergegebenen Isothermen für die drei untersuchten Einsatzstoffe zeigen jeweils eine Verschiebung ihrer Lage bei Veränderung der Anfangskonzentration. Dies ist ein klarer Hinweis darauf, dass die Inhaltsstoffe ein heterogenes Adsorptionsverhalten aufweisen. Ein Teil der organischen Stoffe ist dabei als gut adsorbierbar einzustufen, wie die hohen Beladungswerte von rund 200 mg/g bei hohen Restkonzentrationen zeigen, daneben gibt es aber auch schlechter adsorbierbare Komponenten.

Nicht adsorbierbare Anteile, die sich aus einem Abknicken der Isothermen in Richtung der Konzentrationsachse bei niedrigen Restkonzentrationen ableiten ließen, sind in den Diagrammen nicht klar erkennbar. Durch hohe Zugabemengen an Aktivkohle können sehr niedrige Restkonzentrationen von wenigen mg/l DOC erreicht werden. Demzufolge ist zu erwarten, dass sich mit einem Aktivkohle-Adsorptionsverfahren fast alle verbliebenen, biologisch nicht abbaubaren organischen Substanzen abtrennen lassen.

Abb. 5-1: Adsorptionsisothermen für HTC-Prozesswasser nach anaerober und aerober Vorreinigung für zwei Anfangskonzentrationen; Aktivkohle Norit ROW 0.8 S, Einsatzstoff Biertreber

Abb. 5-2: Adsorptionsisothermen für HTC-Prozesswasser nach anaerober und aerober Vorreinigung für zwei Anfangskonzentrationen; Aktivkohle Norit ROW 0.8 S, Einsatzstoff Rübenschnitzel

Abb. 5-3: Adsorptionsisothermen für HTC-Prozesswasser nach anaerober und aerober Vorreinigung für zwei Anfangskonzentrationen; Aktivkohle Norit ROW 0.8 S, Einsatzstoff Speisereste

Zur quantitativen Bestimmung der unterschiedlich gut adsorbierbaren Anteile in einem heterogenen Gemisch unbekannter Zusammensetzung ist die so genannte Adsorptionsanalyse entwickelt worden (Sontheimer et al., 1988). Dabei wird das Gemisch als System aus mehreren fiktiven Komponenten dargestellt, die unterschiedliche Adsorptionsparameter aufweisen. Diese Parameter, in der Regel die K- und n-Werte der Isothermengleichung von Freundlich, sowie die Konzentrationsanteile der fiktiven Komponenten werden durch eine Anpassungsrechnung (nichtlineare Regression) aus den Isothermendaten für das Gemisch ermittelt. In dieser Untersuchung wurde das Programm ADSA (Sontheimer und Johannsen, 1992) verwendet, mit dem Gemischisothermen für bis zu drei Anfangskonzentrationen ausgewertet werden können. Um die Anzahl der Parameter zu begrenzen, werden in der Regel die n-Werte mit n = 0,2 einheitlich festgelegt, so dass nur die K-Werte und die Konzentrationsanteile zu ermitteln sind. Im vorliegenden Fall wurde außerdem festgelegt, dass für alle drei Prozesswässer die gleichen K-Werte gelten sollen. Die Ergebnisse der Auswertung sind in Tabelle 5-1 aufgeführt.

Tab. 5-1: Fiktive Komponenten und deren Gemischanteile zur Beschreibung der Adsorptionsgleichgewichte der anaerob und aerob behandelten HTC-Prozesswässer

Komponente	Biertreber %	Einsatzstoff %	Komponente %
	70	70	70
1: K ₁ = 0	0,99	0,87	3,81
2: K ₂ = 10; n = 0,2	0,84	0	2,42
3: K ₃ = 30; n = 0,2	0	15,36	4,84
4: K ₄ = 60; n = 0,2	89,77	83,77	73,24
5: K ₅ = 80; n = 0,2	8,40	0	15,69

Wie die Ergebnisse in Tabelle 5-1 zeigen, liegen die nicht adsorbierbaren Anteile (K₁ = 0) bei 0,87 % bis maximal 3,81 % der Gesamtkonzentration. Auch der Beitrag der schwächer adsorbierbaren Komponenten (K₂ und K₃) liegt nur bei maximal 15,36 %. Das Adsorptionsverhalten der Prozesswässer wird bestimmt durch Anteile von mehr als 83 % der gut adsorbierbaren Komponenten (K₄ und K₅).

In den Abbildungen 5-4–5-6 sind die mit den Parametern aus Tabelle 5-1 berechneten Isothermenverläufe den Messdaten (in linearer Auftragung) gegenübergestellt. Insbesondere bei niedrigen Restkonzentrationen kommt es hier zu Abweichungen zwischen Rechnung und Messung. Die hohen Beladungen, die auch in mit körniger Aktivkohle befüllten Adsorbern erreichbar sein sollten, können dagegen recht gut beschrieben werden.

Abb. 5-4: Ergebnis der Adsorptionsanalyse für HTC-Prozesswasser nach anaerober und aerober Vorreinigung, Einsatzstoff Biertreber

Abb. 5-5: Ergebnis der Adsorptionsanalyse für HTC-Prozesswasser nach anaerober und aerober Vorreinigung, Einsatzstoff Rübenschnitzel

Abb. 5-6: Ergebnis der Adsorptionsanalyse für HTC-Prozesswasser nach anaerober und aerober Vorreinigung, Einsatzstoff Speisereste

5.2 Batch-Tests zur Ermittlung von Kinetikparametern

Zur Beschreibung der Adsorptionskinetik an körniger Aktivkohle wird häufig das Modell Film-Homogene Diffusion verwendet (Sontheimer et al., 1988). Für dieses Modell müssen bei Gemischen ein mittlerer Filmdiffusionskoeffizient für den äußeren Stoffübergang und ein mittlerer Oberflächendiffusionskoeffizient für den Stofftransport im Inneren der Aktivkohlekörner bestimmt werden.

Der äußere Stoffübergang wurde mit Hilfe der sogenannten Kleinfiltermethode (Fettig und Sontheimer, 1984; Cornel et al., 1986) mit verdünnten Proben der anaerob und aerob behandelten Prozesswässer und Kornkohle des Typs NORIT ROW 0.8 S untersucht. Aus den Versuchsdaten kann ein mittlerer effektiver Diffusionskoeffizient für die adsorbierbaren Stoffe abgeleitet werden, der es dann erlaubt, Filmdiffusionskoeffizienten für unterschiedliche Filtergeschwindigkeiten in durchströmten Aktivkohleschüttungen zu berechnen. Hierfür hat sich die Korrelation von Gnielinski (Sontheimer et al., 1988) bewährt.

In Tabelle 5-2 sind die erhaltenen Parameter für den äußeren Stoffübergang zusammengestellt. Aus dem mittleren effektiven Diffusionskoeffizienten $D_{L,eff}$ kann auch nach der von Sontheimer et al. (1988) vorgeschlagenen Gleichung

$$D_{L,eff} = 7.3 \cdot 10^{-9} \cdot M_W^{-0.5}$$
 (m²/s)

eine mittlere Molmasse M_W für ein Stoffgemisch abgeschätzt werden. Die entsprechenden Werte für die HTC-Prozesswässer sind gleichfalls in Tabelle 5-2 angegeben. Sie zeigen, dass die Molmassen der Inhaltsstoffe nach den biologischen Behandlungsstufen in der gleichen Größenordnung wie aquatische Huminstoffe liegen (Fettig, 1999) und damit vergleichsweise hoch sind.

Tab. 5-2: Mittlere effektive Diffusionskoeffizienten, Filmdiffusionskoeffizienten für eine Filtergeschwindigkeit von 0,8 m/h (entsprechend der Bedingung beim Säulenversuch) sowie mittlere Molmassen der anaerob und aerob behandelten HTC-Prozesswässer

Parameter			Einsatzstoff	
		Biertreber	Rübenschnitzel	Speisereste
$D_{L,eff}$	m²/s	1,9 * 10 ⁻¹⁰	1,3 * 10 ⁻¹⁰	1,6 * 10 ⁻¹⁰
$\beta_{L,eff}$	m/s	0,34 * 10 ⁻⁵	0,25 ∗ 10 ⁻⁵	0,30 * 10 ⁻⁵
M_W	g/mol	1.480	3.150	2.080

Die Bestimmung der mittleren Oberflächenkoeffizienten für die Adsorption der anaerob und aerob behandelten Prozesswässer erfolgte auf der Basis von Konzentrations-Zeit-Kurve, die im Rührbecher unter Verwendung eines Turbinenrührers gemessen wurden. Einzelheiten dieser Methode sind bei Sontheimer et al. (1988) gegeben. Aus den Messdaten kann der kinetische Parameter dann durch eine Anpassungsrechnung ermittelt werden. Da sein Wert von der Stoffkonzentration abhängt, müssen die Versuche mit den gleichen Anfangskonzentrationen vorgenommen werden, wie sie im zu beschreibenden System vorliegen. Die Messdaten sind in den Abbildungen 5-7–5-9 dargestellt und die daraus ermittelten Parameter für den Stofftransport im Korninneren in Tabelle 5-3 aufgeführt.

Abb. 5-7: Konzentrations-Zeit-Kurve für HTC-Prozesswasser nach anaerober und aerober Vorreinigung an Aktivkohle, Einsatzstoff Biertreber

Abb. 5-8: Konzentrations-Zeit-Kurve für HTC-Prozesswasser nach anaerober und aerober Vorreinigung an Aktivkohle, Einsatzstoff Rübenschnitzel

Abb. 5-9: Konzentrations-Zeit-Kurve für HTC-Prozesswasser nach anaerober und aerober Vorreinigung an Aktivkohle, Einsatzstoff Speisereste

Tab. 5-3: Mittlere Oberflächendiffusionskoeffizienten sowie die zugehörigen Anfangskonzentrationen der anaerob und aerob behandelten HTC-Prozesswässer

Parame	eter		Einsatzstoff	
		Biertreber	Rübenschnitzel	Speisereste
$D_{S,eff}$	m²/s	1,2 * 10 ⁻¹³	1,1 * 10 ⁻¹³	1,1 * 10 ⁻¹³
Со	mg/I DOC	429	361	357

Die Parameterwerte sind Tabelle 5-3 zufolge zahlenmäßig fast gleich groß, allerdings müssen Oberflächendiffusionskoeffizienten immer in Zusammenhang mit dem Transportmodell betrachtet werden. Größenordnungsmäßig liegen aber auch sie im Bereich der für Huminstoffe gefundenen Daten, d.h. der Transport im Inneren der Aktivkohlekörner verläuft relativ langsam.

5.3 Kolonnenversuche mit körniger Aktivkohle

Körnige Aktivkohle wird in durchströmten Festbetten eingesetzt, wobei die Adsorptionsleistung sowohl von den Gleichgewichten als auch der Kinetik abhängen. Zur Überprüfung dieser Zusammenhänge wurden Kolonnenversuche mit allen drei Prozesswässern durchgeführt. Die in Abbildung 5-10 dargestellte Apparatur besteht aus zwei hintereinander geschalteten Glassäulen mit 3 cm Innendurchmesser, die aus einem Überlaufbehälter mit dem Prozesswasser beschickt werden. Die Länge jedes Aktivkohlebettes (Norit ROW 0.8 S) beträgt 27,5 cm, so dass sich eine Gesamtlänge von 55 cm ergibt.

Die Durchströmung wurde durch ein Nadelventil im Ablauf der zweiten Säule auf einen konstanten Wert von 0,56 l/h eingestellt; dies entspricht einer Filtergeschwindigkeit von 0,8 m/h. Derart niedrige Werte sind bei hohen Zulaufkonzentrationen und kleinen Wassermengen, wie sie beispielsweise bei Deponiesickerwässern vorliegen, durchaus üblich, um hohe Beladungswerte zu erreichen und die Aktivkohle optimal auszunutzen (Fettig et al., 1996). Diese Randbedingungen treffen auch für HTC-Prozesswässer zu.

Die Gesamtversuchszeit betrug knapp 100 Stunden, in denen ca. 140 Bettvolumina an Prozesswasser, bezogen auf die Gesamtmenge an Aktivkohle, durch die Säulen hindurchgesetzt wurde.

Abb. 5-10: Aufbau der Anlage (Säule 1 und Säule 2) für die Aktivkohle-Kolonnenversuche

In den Abbildungen 5-11 bis 5-13 sind die DOC-Durchbruchskurven der drei biologisch vorbehandelten HTC-Prozesswässer wiedergegeben. Sie zeigen für die Säule 1 einen fast gleichmäßigen Anstieg der Ablaufwerte auf 72-82 % der Zulaufwerte. Bei Säule 2 ist der Anstieg flacher, und die maximalen Ablaufwerte betragen nur 37-44 % des jeweiligen Zulaufwertes.

Abb. 5-11: Durchbruchskurven für HTC-Prozesswasser nach anaerober und aerober Vorreinigung an Aktivkohle, Einsatzstoff Biertreber

Abb. 5-12: Durchbruchskurven für HTC-Prozesswasser nach anaerober und aerober Vorreinigung an Aktivkohle, Einsatzstoff Rübenschnitzel

Abb. 5-13: Durchbruchskurven für HTC-Prozesswasser nach anaerober und aerober Vorreinigung an Aktivkohle, Einsatzstoff Speisereste

Die Messdaten der Kolonnenversuche zeigen, dass sich breite Stoffübergangszonen in der Aktivkohleschüttung ausbilden und die Adsorptionskinetik somit einen großen Einfluss auf die Aufnahme der organischen Stoffe hat. Wie die sehr niedrigen Ablaufwerte der 2. Säule während der ersten Betriebsstunden andeuten, sollte aber bei hinreichend langer Kontaktzeit des Wassers mit der Aktivkohle, z.B. bei Verwendung von mehreren Kolonnen mit jeweils 1,5 bis 2 m Bettlänge in Reihenschaltung, eine weitgehende Entfernung der Stoffe sowie eine sehr gute Ausnutzung der Adsorptionskapazität der Aktivkohle möglich sein. Da entsprechende Versuche im Rahmen dieses Projektes zu große Mengen an HTC-Prozesswasser erfordert hätten, soll die Fragestellung mit Hilfe von Simulations-rechnungen näher betrachtet werden.

5.4 Simulationsrechnungen zur Adsorption in Aktivkohle-Kolonnen

Unter Verwendung des Modells Film-Homogene-Diffusion wurden zunächst die in Abschnitt 5.3 dargestellten Durchbruchskurven berechnet. Eingangsdaten dafür waren ausschließlich die in Tabelle 5-1 aufgeführten Ergebnisse der Adsorptionsanalyse zur Beschreibung der Adsorptionsgleichgewichte sowie die in Tabelle 5-2 und 5-3 wiedergegebenen kinetischen Parameter (mittlerer Film- und mittlerer Oberflächenflächendiffusionskoeffizient). Die Ergebnisse sind in den Abbildungen 5-14 bis 5-16 in normierter Form den Messwerten gegenübergestellt.

In allen Fällen können die gemessenen Durchbruchskurven qualitativ zufriedenstellend beschrieben werden. Die berechneten Anstiege der Kurven verlaufen zwar etwas steiler, was möglicherweise auf die Verwendung mittlerer kinetischer Parameter zurückzuführen ist, aber die Adsorptionsleistungen in beiden Säulen werden korrekt wiedergegeben. Dies bestätigt auch der Vergleich von gemessenen und berechneten Aktivkohlebeladungen, die in Tabelle 5-4 aufgeführt sind. Die Abweichungen betragen maximal 12 %, meist liegen sie unter 10 %.

Abb. 5-14: Gemessene und berechnete Durchbruchskurven für HTC-Prozesswasser nach biologischer Vorreinigung, Einsatzstoff Biertreber

Abb. 5-15: Gemessene und berechnete Durchbruchskurven für HTC-Prozesswasser nach biologischer Vorreinigung, Einsatzstoff Rübenschnitzel

Abb. 5-16: Gemessene und berechnete Durchbruchskurven für HTC-Prozesswasser nach biologischer Vorreinigung, Einsatzstoff Speisereste

Aktivkohle in den Kolonnenversuchen bei Versuchsende					
Parameter	Biertreber	Einsatzstoff	Speisereste		
	Säule 1 Säule 1+2	Rübenschnitzel	Säule 1 Säule		

136,6

145,8

6,7

166,9

167,7

0,5

mg/g

mg/g

%

Q_{Messung}

q_{Rechnung} Abweichung Säule 1 Säule 1+2

110,2

114,2

3,6

139,6

125,6

10

 Tab. 5-4:
 Vergleich von gemessenen und berechneten mittleren DOC-Beladungen der Aktivkohle in den Kolonnenversuchen bei Versuchsende

In weiteren Simulationsrechnungen wurde jetzt der Fall betrachtet, dass die biologisch
behandelten HTC-Prozesswässer über drei in Reihe geschaltete Aktivkohlekolonnen mit
je 2 m Bettlänge geleitet werden. Beispielhaft ist die Durchbruchskurve für den Einsatz-
stoff Biertreber in der Abbildung 5-17 dargestellt.

1+2

167,3

147,1

12,1

123,5

125,3

1,5

Abb. 5-17: Simulierte Durchbruchskurve für HTC-Prozesswasser nach biologischer Vorreinigung an Aktivkohle, Einsatzstoff Biertreber, bei einer Bettlänge von insgesamt 6 m und einer Fíltergeschwindigkeit von 0,8 m/h.

Wenn als Kriterium für den Kolonnenbetrieb ein Ablaufwert von 10 % des Zulaufwertes festgelegt wird (35-42 mg/l DOC entsprechend ca. 100 mg/l CSB), ergeben sich die in Tabelle 5-5 aufgeführten mittleren Aktivkohlebeladungen und spezifischen Durchsatzleistungen. Sie lassen erkennen, dass die Aktivkohle mit mindestens 158-211 mg/g DOC (entsprechend mehr als 400 mg/g CSB) beladen werden kann, also praktisch bis zu ihrem absoluten Sättigungswert.

Parameter Biertreber Einsa Rübens		Einsatzstoff Rübenschnitzel	Speisereste	
q Simulation	mg/g	211	158	191
V _{spezifisch}	m ³ /kg	0,50	0,45	0,54

Tab. 5-5:Mittlere DOC-Beladungen und spezifische Durchsatzleistungen der Aktivkohle
bei einer Bettlänge von 6 m

5.5 Folgerungen

- Die Adsorption an Aktivkohle ist ein geeignetes Verfahren, um biologisch gereinigte Prozesswässer nachzubehandeln. Die Komponenten dieser Stoffgemische weisen überwiegend eine gute Adsorbierbarkeit auf, und die nicht adsorbierbaren Fraktionen sind verschwindend gering. Die Adsorptionsgleichgewichte lassen mit Hilfe einer Adsorptionsanalyse charakterisieren.
- Die mittleren kinetischen Parameter der Stoffgemische deuten auf eine langsame Adsorptionskinetik hin. Aus dem effektiven Diffusionskoeffizienten können mittlere Molmassen von ca. 1.500-3.200 g/mol abgeleitet werden.
- Die Adsorption in Aktivkohlekolonnen kann mit Hilfe der in Batch-Tests bestimmten Parameter vorausberechnet werden. Bei hinreichend langer Kontaktzeit sind sehr hohe Beladungen der Aktivkohle erreichbar.

6 Nährstoffrückgewinnung

6.1 Verfahren zur Rückgewinnung von Phosphor und Stickstoff aus Prozess- und Abwässern

Phosphor ist ein essentielles Element für den Aufbau von Biomasse und als Düngerbestandteil zur Sicherstellung hoher Ernteerträge in der Landwirtschaft unverzichtbar. Bislang wird Phosphor durch den chemischen Aufschluss von Rohphosphat gewonnen, dessen Vorkommen auf der Welt jedoch begrenzt sind. Es wird damit gerechnet, dass es bereits in wenigen Jahrzehnten zu einer Verknappung des Phosphors kommen kann (Ashley et al, 2011). Daher werden seit einigen Jahren Verfahren untersucht, um Phosphor aus Prozess- und Abwässern in einer wieder verwendbaren Form abzutrennen. Eine Übersicht hierzu ist u.a. bei Sabelfeld und Geißen (2011) zu finden.

Nach Untersuchungen von Pinnekamp et al. (2007) kann Phosphor aus kommunalen Abwässern prinzipiell an vier Stellen zurückgewonnen werden: aus dem Kläranlagenablauf, aus den Schlammwässern, aus entwässertem Klärschlamm und aus der Klärschlammasche. Bei einer Behandlung der flüssigen Phase bietet sich vor allem das Schlammwasser an, weil die Konzentrationen an Phosphat und Ammonium darin höher sind als im Hauptstrom. Die Nährstoffe können hieraus durch Zugabe von Magnesiumoxid als Magnesium-Ammonium-Phosphat (MAP) abgetrennt werden. Dieses Verfahren besitzt gegenüber der klassischen Phosphatfällung mit dreiwertigen Metallsalzen die Vorteile, dass zum einen Ammonium-Stickstoff mit abgetrennt wird und zum anderen das Produkt MAP eine gute Pflanzenverfügbarkeit aufweist.

Für die MAP-Kristallisation sind optimale Betriebsparameter ermittelt worden, die einen Phosphorrückgewinnungsgrad von > 90 %, bezogen auf den Zulauf zu dieser Verfahrensstufe, ermöglichen. Pinnekamp et al. (2007) zufolge sind die organischen und anorganischen Verunreinigungen des MAP gering; sie liegen teils um mehrere Größenordnungen unter durchschnittlichen Klärschlammbelastungen und halten gültige sowie in Diskussion befindliche Grenzwerte für eine Verwertung in der Landwirtschaft ein. Seit 2008 erzeugen die Berliner Wasserbetriebe in ihren Klärwerken täglich 3-4 t MAP, die sie als mineralischen Dünger vermarkten dürfen (BWB, 2009).

Für industrielle Abwässer, die ausschließlich Phosphor enthalten, ist daneben auch ein Kristallisationsverfahren entwickelt worden, bei dem Calciumphosphate gebildet werden (Ehbrecht et al., 2011). Da in HTC-Prozesswässern aber immer ausreichend Ammonium-Stickstoff vorliegt, wurde das Verfahren der MAP-Fällung als die am besten geeignete Methode zur Phosphorrückgewinnung ausgewählt und untersucht.

In dem Fall, dass ein Prozess- oder Abwasserstrom nur Ammonium-Stickstoff, aber kein Phosphat enthält, könnte eine MAP-Kristallisation durch die zusätzliche Zugabe von Phosphorsäure erreicht werden. Aus Kostengründen ist dies jedoch nicht praktikabel. Mit dem physikalisch-chemischen Verfahren der Desorption (Strippung) ist es jedoch möglich, Ammonium in Form von Ammoniakgas aus dem Wasser abzutrennen und dann durch Absorption in Schwefelsäure als Ammoniumsulfat zurückzugewinnen (Rautenbach et al., 1994). Dieses Verfahren wird auch schon vereinzelt im technischen Maßstab zur Vorbehandlung von Schlammwässern auf Kläranlagen angewendet (Sackewitz und Maier, 1999).

Bei den HTC-Prozesswässern müssen hinsichtlich der Rückgewinnung von Nährstoffen drei Fälle unterschieden werden:

- Das Prozesswasser weist hohe Phosphor- und Stickstoffgehalte auf, wobei letztere nach einer anaeroben Stufe überwiegend als NH₄-N vorliegen. Hier bietet sich eine MAP-Fällung durch Zugabe von Magnesiumsalzen und pH-Anhebung an. Von den untersuchten Prozesswässern trifft dies auf den Einsatzstoff Biertreber zu.
- Das Prozesswasser weist niedrige Phosphor-, aber hohe Stickstoffgehalte auf, wobei letztere nach einer anaeroben Stufe wieder überwiegend als NH₄-N vorliegen. Dafür kommt eine Ammoniakstrippung nach pH-Anhebung mit nachfolgender Absorptionsstufe in Betracht. Dies trifft auf das Prozesswasser aus der Carbonisierung von Speiseresten zu.
- 3. Das Prozesswasser weist sowohl niedrige Phosphor- als auch niedrige Stickstoffgehalte auf. Eine Nährstoffrückgewinnung ist dann nicht sinnvoll. Ein Beispiel hierfür ist das Prozesswasser mit Rübenschnitzeln als Einsatzstoff.

6.2 Abtrennung von Phosphor und Ammonium-Stickstoff durch Fällung

Wie im Abschnitt 2.4 bereits beschrieben, kam es bei der Anhebung des pH-Wertes im Prozesswasser aus der Biertreber-Carbonisierung zu spontanen Ausfällungen. Um diesen Effekt genauer zu untersuchen, wurden Proben des Prozesswassers von jeweils 0,5 I mit Hilfe eines Ultraturrax homogenisiert und dann durch Zugabe von Natronlauge auf unterschiedliche pH-Werte eingestellt. Nach einer 30minütigen Rührphase mit 90 U/min folgte eine 30minütige Absetzphase, bevor Proben aus dem Überstand zur Analyse der wässrigen Phase genommen wurden. Die gebildeten Feststoffe wurden durch Filtration (1 μ m) abgetrennt und im Trockenschrank bei 110 °C getrocknet. Nach der Bestimmung des Trockenrückstandes wurden die Feststoffe bei 550 °C geglüht und anschließend die Parameter Glührückstand und Glühverlust ermittelt.

Abbildung 6-1 zeigt den Verlauf der Konzentrationen an Phosphat und Ammonium sowie die Menge an abfiltrierbaren Stoffen in Abhängigkeit vom eingestellten pH-Wert. Demnach verringert sich der Phosphatgehalt bereits bei pH = 7 um fast 50%. Bei diesem pH-Wert ist die Abnahme der molaren Konzentrationen von Phosphat und Ammonium mit etwa 18 mmol/l gleich groß und entspricht ungefähr der für das Prozesswasser ermittelten Magnesiumkonzentration von 16,9 mmol/l. Deshalb ist anzunehmen, dass es sich bei den hier gebildeten Feststoffen überwiegend um MAP handelt. Mit zunehmendem pH-Wert verringert sich die Phosphatkonzentration weiter um 6,5 mmol/l, während die Ammonium-konzentration nur noch geringfügig abnimmt. Im Hinblick auf die Calciumkonzentration von 10,8 mmol/l im Prozesswasser liegt nahe, dass die zusätzlich zum MAP gebildeten Feststoffe Calciumphosphate sind, die erst bei pH > 7 in nennenswertem Maße ausfallen.

Abb. 6-1: Verlauf der Phosphat- und Ammoniumkonzentration sowie der gebildeten Feststoffe (AFS) in Prozesswasser nach pH-Anhebung, Einsatzstoff Biertreber

Die Konzentration der abfiltrierbaren Stoffe kann nur zur qualitativen, nicht zur quantitativen Bestätigung der MAP-Bildung herangezogen werden. Für pH = 7 wäre ein AFS-Wert von 4.390 mg/l zu erwarten, wenn für MAP die Formel MgNH₄PO₄ x 6 H₂O zugrunde gelegt wird. Der gemessene Wert beträgt jedoch nur 2.460 mg/l. Aus der Materialforschung (Sarkar, 1991) wie auch aus dem klinischen Bereich (Frost et al., 2004) ist bekannt, dass sich das dem MAP entsprechende natürliche Mineral Struvit bei Temperaturen oberhalb von 50 °C an der Luft unter Abspaltung von Wasser und Ammoniak umwandelt. Hierzu wurde von Spatzier (2012) eine systematische Untersuchung mit synthetisch erzeugtem MAP durchgeführt. Die in Abbildung 6-2 dargestellten Daten zeigen die Gewichtsabnahme von MAP bei verschiedenen Trocknungstemperaturen, mit denen die zuvor zitierten Literaturangaben bestätigt werden. Die Abnahme von gut 40 % bei Temperaturen von mehr als 100 °C stimmt auch gut mit der Differenz zwischen dem zu erwartenden und dem in dieser Untersuchung gemessenen AFS-Gehalt überein, die 44 % beträgt.

Abb. 6-2: Gewichtsabnahme von synthetischem MAP als Funktion der Trocknungstemperatur; Mittelwerte aus jeweils drei Einzelproben (Spatzier, 2012)

Als Zusammensetzung des thermisch veränderten MAP vermutet Spatzier (2012) auf der Basis stöchiometrischer Betrachtungen neben einem Restanteil von ca. 50 % MAP die beiden Verbindungen MgHPO₄ x 3 H₂O (Newberyit) sowie MgHPO₄ x H₂O (amorphes Salz). Bei einer weiteren Temperaturerhöhung sind jedoch auch sie nicht stabil, wie die Glühverluste von im Mittel 20,4 % andeuten. Diese Zusammenhänge sind bei einer MAP-Gewinnung zum Zwecke der Weiterverwendung unbedingt zu beachten, d.h. die MAP-Kristalle dürfen nur bei Temperaturen von maximal 50 °C getrocknet werden.

Zur Überprüfung der Frage, ob das im Biertreber-Prozesswasser enthaltene Phosphat vollständig abgetrennt werden kann, wurde eine weitere Versuchsreihe durchgeführt, bei der gleichzeitig mit der Natronlaugedosierung die Zugabe von Magnesiumoxid (MgO) erfolgte. Die Zugabemenge wurde überstöchiometrisch gewählt, so dass im Prozesswasser insgesamt 40,6 mmol/I an Magnesium vorlagen. Die Konzentrationen an Phosphat und Ammonium sowie die Menge an abfiltrierbaren Stoffen sind in Abhängigkeit vom eingestellten pH-Wert in Abbildung 6-3 wiedergegeben.

Abb. 6-3: Verlauf der Phosphat- und Ammoniumkonzentration sowie der gebildeten Feststoffe (AFS) in Prozesswasser nach pH-Anhebung und Zugabe von Magnesiumoxid, Einsatzstoff Biertreber

Bei dieser Versuchsreihe verringert sich der Phosphatgehalt bereits bei pH = 7 um über 95 %, und auch bei den anderen pH-Werten sind die Restkonzentrationen vergleichbar niedrig. Die molaren Konzentrationen von Phosphat und Ammonium nehmen, mit Ausnahme des ersten Wertes, bei dem es sich um einen Messfehler handeln kann, in der gleichen Größenordnung ab. Dies erlaubt die Folgerung, dass es sich bei den gebildeten Feststoffen überwiegend um MAP handelt. Die AFS-Werte liegen im Mittel bei 4.540 mg/l, während der erwartete Wert bei Vorliegen von unzersetztem MAP 7.360 mg/l beträgt. Damit entspricht auch hier die Differenz von 38 % größenordungsmäßig dem von Spatzier (2012) gefundenen Wert.

Die beschriebenen Untersuchungen erfolgten parallel zu der ersten Versuchsreihe zum anaeroben Abbau am Hochschulstandort Detmold. Da nicht damit gerechnet worden war, dass Biertreber-Prozesswasser nennenswerte Gehalte an Magnesium aufweisen könnte, wurde hierfür nicht vorbehandeltes Prozesswasser verwendet, bei dem es zur Bildung von MAP in der Vorlage der Anaerobreaktoren kam (siehe Kapitel 3). Um dies zu verhindern,

sollte ein Prozesswasser wie das aus der Carbonisierung von Biertreber bereits vor dem anaeroben Abbau einer MAP-Fällung unterzogen werden.

Hierzu wurde zum Abschluss der Anaerobversuche noch einmal eine Menge von rund 50 I an Biertreber-Prozesswasser bereitgestellt, das folgende Konzentrationen aufwies: $C_{CSB} = 76.700 \text{ mg/l}$, $C_{NH4-N} = 1.020 \text{ mg/l}$ und $C_{PO4-P} = 1.220 \text{ mg/l}$. Es wurde eine Menge von $C_{Mg} = 960 \text{ mg/l}$ zugegeben und der pH-Wert auf 7 angehoben. Das stöchiometrische Verhältnis der Reaktionspartner betrug in etwa 1,4 : 1,9 : 1,0. Der damit erreichte Restgehalt an Phosphat betrug 38 mg/l, d.h. rund 97 % des Phosphors konnten abgetrennt werden. Der Ammoniumgehalt ging auf ca. 400 mg/l zurück, d.h. auch von diesem Nährstoff konnten rund 60 % gewonnen werden.

Als besonders positiv ist anzumerken, dass der hohe Wirkungsgrad für die Phosphorrückgewinnung schon bei einem pH-Wert von 7 erreicht wird. Der optimale pH-Bereich für die MAP-Bildung liegt nämlich bei pH = 9 - 9,5 und würde somit die Zugabe einer deutlich größeren Menge an Natronlauge für die pH-Anhebung erfordern.

Wie Abbildung 6-4 veranschaulicht, ist der gebildete Feststoff allerdings nicht homogen. Offensichtlich kam es hier parallel zur Ausfällung organischer Komponenten, die allerdings nicht weiter quantifiziert wurde. Ähnliche Beobachtungen werden von der MAP-Gewinnung in Berlin berichtet, wo die Trockensubstanz einen organischen Anteil von ca. 20 % aufweist (BWB, 2009).

Abb. 6-4: Fällungsprodukte bei der Vorbehandlung von Biertreber-Prozesswasser durch pH-Anhebung und Zugabe von Magnesiumoxid: MAP als helles Salz (links), MAP mit organischen Anteilen (Mitte), eine kleine Menge zähen organischen Materials (rechts)

6.3 Abtrennung von Ammonium-Stickstoff durch Desorption

Am Beispiel des Prozesswassers aus der Carbonisierung von Speiseresten, das niedrige Phosphor-, aber hohe Stickstoffgehalte aufweist, wurde die Methode der Ammoniak-

strippung nach pH-Anhebung mit nachfolgender Absorption in Säure experimentell untersucht. Da der Stickstoff im unbehandelten Prozesswasser überwiegend in organisch gebundener Form vorliegt (siehe Tabelle 2-3), sollte die Rückgewinnung aus dem Ablauf der Anaerobstufe erfolgen. Durch die anaerobe Behandlung wird der Stickstoffanteil aus den abgebauten organischen Stoffen in Ammonium umgewandelt, wodurch sich der ursprüngliche Ammoniumgehalt noch erhöht.

Aufgrund der Lage des Dissoziationsgleichgewichtes von Ammonium/Ammoniak kann eine nennenswerte Ammoniakdesorption nur im alkalischen Bereich durchgeführt werden. Bei einer Temperatur von 20 °C liegt der pK-Wert bei 10,1 (Rautenbach et al., 1994), d.h. der pH-Wert muss auf Werte > 10,1 angehoben werden, um eine effiziente Desorption zu erlauben. Darüber hinaus ist das Verteilungsgleichgewicht für Ammoniak zwischen Gas und Wasser für eine Desorption ungünstig, wie der Henry-Koeffizient von 0,49 bar (bei 20 °C) als stoffspezifischer Parameter anzeigt (Montgomery, 2005). Deshalb sind große Gasmengen notwendig, um die auszustrippende Ammoniakmenge aufzunehmen.

Als Strippgas wird i. d. R. Luft verwendet. In einer kontinuierlich betriebenen technischen Anlage wäre bei einer Gegenstromführung von Luft- und Wasserstrom eine Luftmenge von mindestens 2410 m³ Luft je m³ Wasser erforderlich, um einen Wirkungsgrad von 95% zu erreichen. In einer Gleichstromanlage läge der theoretische Luftbedarf für den gleichen Wirkungsgrad bei über 48.000 m³ Luft je m³ Wasser. Für eine Ammoniakdesorption ist also nur der Gegenstrombetrieb ein praktikables Verfahren.

Die Absorption des Ammoniaks kann in jeder Säure ausreichender Stärke erfolgen. Im praktischen Betrieb wird hierfür Schwefelsäure verwendet; für das darin gebildete Salz Ammoniumsulfat gibt es in der Düngemittelindustrie Verwertungsmöglichkeiten (Sackewitz und Maier, 1999).

Die verfügbaren Prozesswassermengen in dieser Untersuchung waren jedoch zu gering, um eine kontinuierliche Ammoniakdesorption durchzuführen. Daher wurde eine Versuchsapparatur im Labormaßstab aufgebaut, die aus einem Rundkolben von 2 I Inhalt als Vorlage und zwei hintereinander geschalteten Waschflaschen von je 500 ml Inhalt sowie einer Gasuhr bestand. Die Waschflaschen waren mit 0,2 I bzw. 0,1 I an 0,1 molarer Schwefelsäure gefüllt.

In den Rundkolben wurden 0,7 I des anaerob behandelten Prozesswassers gegeben, dessen pH-Wert durch Zugabe von NaOH auf 10,4 angehoben worden war, und dort über eine Fritte mit einem Stickstoffstrom (1 I/min) feinblasig beaufschlagt. Bei diesem pH-Wert liegen > 90 % des Ammoniams als Ammoniak vor. Der Gasstrom wurde dann zur Absorption des ausgestrippten Ammoniaks durch die beiden Waschflaschen geleitet. Nach dem Durchsatz bestimmter Gasmengen wurden Proben aus dem Rundkolben und den Waschflaschen genommen und darin die Ammoniumkonzentrationen gemessen. Es zeigte sich, dass die Ammoniakabsorption bereits in der ersten Waschflasche quantitativ ablief.

In Abbildung 6-5 ist der Verlauf der Ammoniumkonzentration im Rundkolben für zwei Versuche als Funktion des spezifischen Gasdurchsatzes dargestellt. Wie aufgrund der Gleichgewichtslage zu erwarten ist, nimmt sie nur langsam ab, und erst bei einer Gas-

menge von ca. 3.000 I Gas je I Wasser wird ein Wirkungsgrad von über 70 % erreicht. Bei einem spezifischen Gasdurchsatz von 5.000 I/I beträgt der Wirkungsgrad dann rund 88 %.

Die Randbedingungen bei diesem Versuchsaufbau sind mit dem Betrieb einer kontinuierlichen Strippanlage nicht zu vergleichen, deshalb ist der ermittelte Zusammenhang zwischen dem spezifischen Gasdurchsatz und dem Wirkungsgrad nicht übertragbar. Die Versuche sollten aber demonstrieren, dass eine Ammoniakdesorption auch aus HTC-Prozesswasser nach einer anaeroben Vorbehandlung erfolgreich durchgeführt werden kann. Die Berechnung der dafür erforderlichen Anlagendimensionen und die Optimierung der Betriebsbedingungen kann mit den für Gasaustauschprozesse entwickelten Methoden vorgenommen werden.

Abb. 6-5: Verlauf der Ammoniumkonzentration in anaerob behandeltem Prozesswasser (Einsatzstoff Speisereste) nach Strippung mit N₂ bei 20 °C.

6.4 Folgerungen

- Für die Nährstoffrückgewinnung aus einem Prozesswasser, das sowohl Ammonium-Stickstoff als auch Phosphat enthält, ist eine MAP-Kristallisation ein einfaches und praktikables Verfahren, bei dem ggf. nur ein Magnesiumsalz zugegeben werden muss. Ungewöhnlich ist die Bildung von MAP bereits bei einem pH-Wert von 7,0.
- 2. Bei einem Prozesswasser, das lediglich Ammonium-Stickstoff in nennenswerten Mengen enthält, kann die Ammoniakstrippung nach pH-Anhebung mit nachfolgender Ammoniakabsorption in Betracht gezogen werden.
- 3. Die Zusammensetzung der Prozesswässer hinsichtlich der Nährstoffe ist stark vom Einsatzstoff abhängig. Die Rückgewinnungsoptionen und -strategien müssen daher in jedem Einzelfall gesondert festgelegt werden.

7 Stoff- und Energiebilanz der Verfahrenskombination

7.1 Voraussetzungen und Festlegung der Prozessparameter

In diesem Kapitel sollen Stoff- und Energiebilanzen für die drei untersuchten Prozesswässer dargestellt werden, um die Beiträge der verschiedenen Stufen zur Elimination der Kohlenstoffverbindungen und den dafür erforderlichen Energieeinsatz zu illustrieren (Jaffke, 2013). Grundlage sind das in Abbildung 7-1 wiedergegebene Prozessschema und die zuvor beschriebenen Projektergebnisse. Als Eingangsdaten für die unbehandelten HTC-Prozesswässer wurden die in Tabelle 7-1 aufgeführten CSB- und TOC-Werte verwendet.

Abb. 7-1: Fließbild des dreistufigen Behandlungsverfahrens für HTC-Prozesswässer

Tab. 7-1:	CSB- und TOC-Konzentrationen in den HTC-Prozesswässern als Grundlage
	für die Bilanzierung der einzelnen Verfahrensstufen

Einsatzstoff	CSB	TOC	CSB/TOC
	[mg/l]	[mg/l]	-
Biertreber	49.700	18.770	2,65
Rübenschnitzel	39.700	15.920	2,49
Speisereste	72.200	27.210	2,65

Für die Menge des anfallenden Prozesswassers lagen keine expliziten Messwerte vor. Deshalb wurden hierfür zunächst überschlägig die Wiederfindungsraten des Wassers zugrunde gelegt, in denen neben dem Prozesswasser auch die Feuchte der Kohle und das anfallende Kondensat berücksichtigt werden (Ramke et al., 2010a). Von diesen Wassermengen wurde noch ein verbleibender Restwassergehalt in der HTC-Biokohle subtrahiert. Die Ergebnisse sind in Tabelle 7-2 aufgeführt.

Einsatzstoff	TS-Gehalt der OS	TS-Gehalt im Reaktor	Wiederfindungsrate des Wassers	Spezifischer PW-Anfall
	[%]	[%]	[%]	[l/kg OS-Input]
Biertreber	18	14	97	1,05
Rübenschnitzel	89	15	103	5,10
Speisereste	8	8	96	0,89

Tab. 7-2: Wassergehalt der Einsatzstoffe und spezifischer Prozesswasseranfall

OS - Originalsubstanz, PW - Prozesswasser

An dieser Stelle ist anzumerken, dass die eingesetzten Rübenschnitzel vorgetrocknet waren. Wegen ihres hohen TS-Gehalts muss vergleichsweise viel Wasser zugegeben werden (vergleiche Tabelle 2-1), so dass eine hohe spezifische Prozesswassermenge anfällt. Wiederfindungsraten des Wassers von über 100 % lassen sich darauf zurückführen, dass bei der Hydrothermalen Carbonisierung durch chemische Reaktionen auch Wasser aus organischen Substanzen abgespalten wird (Ramke et al., 2010a).

Für die anaerobe Behandlungsstufe wurden die in Tabelle 7-3 aufgeführten Werte der Raumbelastungen und CSB-Eliminationsleistungen vorausgesetzt. Die TOC-Eliminationsleistungen resultieren aus Messwerten für Zu- und Ablaufproben; sie werden für die nachfolgende Bilanzierung der Kohlenstoffelimination benötigt. Die Frage der maximalen Konzentrationen in der Anaerobstufe spielt für die Bilanzierung keine Rolle, da hierfür nur die Frachten betrachtet werden.

Einsatzstoff	Raumbelastung [kg CSB/(m ^{3.} d)]	CSB-Elimination [%]	TOC-Elimination [%]
Biertreber	3,40	79,8	83,9
Rübenschnitzel	3,26	70,3	64,0
Speisereste	4,49	85,5	87,6

Tab. 7-3: Betriebsparameter der Anaerobstufe als Grundlage für die Bilanzierung

Die in Tabelle 7-4 angegebenen Werte für die spezifische Biogasproduktion sowie die Biogaszusammensetzung wurden aus den Messwerten über den gesamten Versuchszeitraum abgeleitet. Für die Energiebilanzierung wurde der Brennwert von CH₄ zu 9,97 kWh pro m_N^3 angenommen.

Tab. 7-4:	Spezifische Biogasproduktion und -zusammensetzung als Grundlage für die
	Bilanzierung

Einsatzstoff	nsatzstoff Spezifische Biogas- produktion		CO ₂ -Anteil
	[m _N ³ Gas/kg CSB _{elim}]	[%]	[%]
Biertreber	0,073	80,3	19,7
Rübenschnitzel	0,302	72,4	27,5
Speisereste	0,371	69,2	30,8

Analog zur anaeroben Stufe wurde auch für die aerobe Stufe eine optimale Raumbelastung für jedes Prozesswasser festgelegt. Die hierbei erzielten CSB- und TOC-Eliminationsleistungen wurden dann als maßgeblich für die weitere Bilanzierung vorausgesetzt. Die jeweiligen Parameterwerte sind in Tabelle 7-5 aufgeführt.

Einsatzstoff	Raum- belastung [kg CSB/(m ^{3.} d)]	CSB/TOC Zulauf [-]	CSB- Elimination [%]	TOC- Elimination [%]	CSB/TOC Ablauf [-]
Biertreber	0,65	3,33	58,5	53,9	3,00
Rübenschnitzel	0,41	2,06	49,8	54,8	2,28
Speisereste	0,70	3,10	70,0	63,3	2,53

Tah 7_5	Retriehenarameter de	r Aarohetuta ale	Grundlage für die	Rilanzieruno
Tab. 7-5.	Demosparameter de	ACIODSIUIC als	Orunulaye fur ule	Dianziciung

In den Untersuchungen im Labormaßstab wurde weder bei der anaeroben noch bei der aeroben Behandlung ein Zuwachs von Biomasse festgestellt. Für die Übertragung in den technischen Maßstab wurde jedoch für die aerobe Stufe die Produktion von Überschussschlamm berücksichtigt Hierzu wurde die Menge an abfiltrierbaren Stoffen (AFS) im Ablauf der Aerobstufe stichprobenartig bestimmt und der Mittelwert von 32 mg/l der Menge an Überschussschlamm gleichgesetzt. Für die Kohlenstoffbilanz wurde weiterhin angenommen, dass dabei mit 1 g TS genau 1 g CSB aus dem System entfernt werden.

Durch die Entnahme von Überschussschlamm in einer technischen Anlage wird es zu geringeren CSB-Werten im Ablauf der aeroben Stufe kommen, als sie in dieser Untersuchung gemessen worden sind. Für die Bilanzierung wurden daher theoretische Ablaufkonzentrationen aus der Nachklärung ermittelt, indem die CSB-Frachten, die nach Subtraktion des im Überschussschlamm enthaltenen CSB-Anteils verbleiben, durch die jeweiligen Prozesswassermengen dividiert wurden.

Für die Dimensionierung der Aktivkohle-Stufe wurde von einer DOC-Elimination von 90 % und den in Tabelle 5-5 angegebenen mittleren Beladungswerten q ausgegangen. Aus den Beladungswerten kann die notwendige Menge an Aktivkohle bestimmt werden.

Für das Verhältnis zwischen den Parametern TOC und DOC im Zulauf zur Adsorptionsstufe lagen nur Messwerte für den Einsatzstoff Speisereste vor. Die Differenz, also der partikuläre, nicht gelöste Anteil des TOC, wird in einer technischen Anlage durch Filtration in der Aktivkohleschüttung oder in einem vorgeschalteten Kiesfilter entfernt und erfordert somit keine zusätzliche Adsorptionskapazität. Das mittlere Verhältnis aus zwei TOC- bzw. DOC-Messungen wurde auf die beiden anderen Einsatzstoffe übertragen, da beobachtet worden war, dass dort bei der Filtration des Prozesswassers ähnliche Anteile im Filter zurückblieben.

7.2 Kohlenstoffbilanz

Die Elimination von organischen Kohlenstoffverbindungen ist die wichtigste Aufgabe bei der Behandlung von HTC-Prozesswässern. Daher sollen in diesem Abschnitt Kohlenstoffbilanzen für alle drei Einsatzstoffe erstellt werden. Als Ausgangspunkt wird die Carbonisierung von jeweils **5 t Originalsubstanz pro Tag** gewählt.

Zunächst wird die Kohlenstoffbilanz für den Carbonisierungsprozess selbst betrachtet. In Tabelle 7-6 ist für jeden Einsatzstoff der Kohlenstoffverbleib in der festen, flüssigen und gasförmigen Phase dargestellt. Anzumerken ist, dass die hier ermittelten Frachten bis zu 10 % von den Frachtwerten abweichen, die bei der folgenden Bilanzierung der Prozesswasserbehandlung (siehe Tabelle 7-7) vorausgesetzt wurden. Grund dafür ist die stark von der Prozessführung bei der Carbonisierung abhängige Verteilung des Kohlenstoffs und daraus resultierende Unterschiede in der Konzentration des Prozesswassers.

Zwischen den Einsatzstoffen gibt es einen charakteristischen Unterschied bezüglich des Kohlenstoffverbleibs. Während der Ertrag an Biokohle bei Biertreber und Rübenschnitzeln bei gut 70 % der Einsatzmenge an Kohlenstoff liegt und sich rund 22 % im Prozesswasser wiederfinden, ist der Ertrag bei den Speiseresten mit 34 % sehr viel geringer, bei denen rund 60 % des Kohlenstoffs in das Prozesswasser übergehen. Als Hauptursachen hierfür werden von Blöhse (2013) der niedrige TS-Gehalt im Carbonisierungsreaktor und die stoffliche Zusammensetzung der Speisereste, insbesondere ihr relativ hoher Proteingehalt, angeführt.

Einsatzstoff	Input OS	Input TS	C-Input	C-Output Biokohle	C-Output Prozesswasser	C-Output Gasphase
	[t/d]	[t/d]	[kg/d]	[kg/d]	[kg/d]	[kg/d]
Biertreber	5,0	0,90	432	306,7	95,0	30,2
Rübenschnitzel	5,0	4,45	1.914	1358,6	421,0	133,9
Speisereste	5,0	0,40	186	63,2	111,6	11,2

Tab. 7-6: Kohlenstoffverteilung im Carbonisierungsprozess (Blöhse, 2013)

OS - Originalsubstanz

In der Anaerobstufe wird organischer Kohlenstoff in Biogas umgewandelt. Bei allen drei untersuchten Prozesswässern hat es beim Anaerob-Reaktor jedoch einen Bilanzrest gegeben, der auf partikuläre Ausfällungen im Reaktor zurückgeführt wurde. Demzufolge ergeben sich für die Anaerobstufe die in Tabelle 7-7 aufgeführten absoluten und die in Tabelle 7-8 wiedergegebenen relativen Werte für den Kohlenstoffverbleib.

Einsatzstoff	TOC _{zu}	C-Anteil im Methan	C-Anteil im Kohlendioxid	Partikuläre C- Ausfällung	TOC _{ab}
	[kg C/d]	[kg C/d]	[kg C/d]	[kg C/d]	[kg C/d]
Biertreber	98,86	6,55	1,60	74,81	15,90
Rübenschnitzel	406,03	83,47	31,73	144,78	146,06
Speisereste	120,60	37,62	16,77	51,28	14,92

Tab. 7-7: Kohlenstoffverbleib in der Anaerobstufe
Einsatzstoff	TOC _{zu}	C-Anteil im Methan	C-Anteil im Kohlendioxid	Partikuläre C- Ausfällung	TOC _{ab}
	[%]	[%]	[%]	[%]	[%]
Biertreber	100	7	2	76	16
Rübenschnitzel	100	21	8	36	36
Speisereste	100	31	14	43	12

Tab. 7-8: Relative Kohlenstofffrachten in der Anaerobstufe (gerundet)

In der aeroben Behandlungsstufe werden Kohlenstoffverbindungen durch die Mikroorganismen im Belebungsbecken zu Kohlendioxid abgebaut. Ein geringer Teil wird über den Baustoffwechsel in neue Biomasse umgewandelt und mit dem Überschussschlamm (ÜS) aus dem System entfernt. Für die aerobe Reinigungsstufe ergeben sich die in den Tabellen 7-9 und 7-10 wiedergegebenen Werte für den Kohlenstoffverbleib.

Tab. 7-9: Kohlenstoffverbleib in der Aerobstufe

Einsatzstoff	TOC _{zu}	C-Anteil im Koh- lendioxid		TOC_{ab}
	[kg C/d]	[kg C/d]	[kg C/d]	[kg C/d]
Biertreber	15,90	8,58	0,17	7,16
Rübenschnitzel	146,06	80,10	1,54	64,41
Speisereste	14,92	9,44	0,18	5,30

Einsatzstoff	TOC _{zu}	C-Anteil im Kohlendioxid	TOC im ÜS	TOC_{ab}
	[%]	[%]	[%]	[%]
Biertreber	16	9	< 1	7
Rübenschnitzel	36	20	< 1	16
Speisereste	12	8	< 1	4

Tab. 7-10: Relative Kohlenstofffrachten in der Aerobstufe (gerundet)

Die Kohlenstoffverbindungen im Zulauf zu den Aktivkohleadsorbern unterteilen sich in den gelösten Kohlenstoff (DOC) und den partikulären Kohlenstoff. Letzterer wird durch Filtration in der Aktivkohleschüttung oder in einem vorgeschalteten Kiesfilter entfernt. In der folgenden Tab. 7-11 ist der Verbleib des organischen Kohlenstoffs in der Adsorptionsstufe dargestellt. Tabelle 7-12 zeigt relativen Kohlenstofffrachten in dieser Stufe.

Einsatzstoff	TOC _{zu}	Partikulärer Kohlenstoff	DOC _{zu}	Adsorbierter DOC	DOC_{ab}
_	[kg C/d]	[kg C/d]	[kg C/d]	[kg C/d]	[kg C/d]
Biertreber	7,16	1,02	6,13	5,52	0,61
Rübenschnitzel	64,41	9,19	55,22	49,70	5,52
Speisereste	5,30	0,76	4,55	4,09	0,46

Tab. 7-11: Kohlenstoffverbleib in der Adsorptionsstufe

Tab. 7-12: Relative Kohlenstofffrachten in der Adsorptionsstufe (gerundet)

Einsatzstoff	TOC _{zu}	Partikulärer Kohlenstoff	DOC _{zu}	Adsorbierter DOC	DOC_{ab}
	[%]	[%]	[%]	[%]	[%]
Biertreber	7,2	1,0	6,2	5,6	0,6
Rübenschnitzel	15,9	2,3	13,6	12,2	1,4
Speisereste	4,4	0,6	3,8	3,4	0,4

In den Abbildungen 7-2 bis 7-4 wird für jeden Einsatzstoff der Verbleib des organischen Kohlenstoffs während der Prozesswasserbehandlung veranschaulicht.

Abb. 7-2: Kohlenstoffverbleib bei der Behandlung von HTC-Prozesswasser, Einsatzstoff: Biertreber

Abb. 7-3: Kohlenstoffverbleib bei der Behandlung von HTC-Prozesswasser, Einsatzstoff: Rübenschnitzel

Abb. 7-4: Kohlenstoffverbleib bei der Behandlung von HTC-Prozesswasser, Einsatzstoff: Speisereste

Es wird deutlich, dass die anaerobe Stufe bei allen Einsatzstoffen den größten Teil der Eliminationsleistung erbringt. Dies veranschaulichen auch noch einmal die in Tabelle 7-13 aufgeführten Anteile der einzelnen Stufen an der Gesamtelimination der Kohlenstoffverbindungen. Unbefriedigend ist jedoch, dass insbesondere das Prozesswasser für den Einsatzstoff Biertreber hier nur zu einem geringen Teil in Methan umgewandelt werden konnte. Bei den beiden anderen Einsatzstoffen ist der Biogasertrag zwar höher, er liegt aber immer noch klar unter den theoretisch möglichen Werten.

Einsatzstoff	Anaerobstufe	Aerobstufe	Aktivkohlestufe	Gesamtelimination
	[%]	[%]	[%]	[%]
Biertreber	83,9	8,8	6,6	99,4
Rübenschnitzel	64,0	20,1	14,5	98,6
Speisereste	87,6	8,0	4,0	99,6

Tab. 7-13: Anteile der einzelnen Stufen an der gesamten TOC-Elimination

7.3 Größe und Energiebedarf der einzelnen Stufen

Anlagengrößen

Auf der Grundlage der ermittelten Raumbelastungen wurden die Behälter-/ Beckengrößen für die beiden biologischen Behandlungsstufen überschlägig aus den täglichen Zulauffrachten errechnet. Die Ergebnisse für die anaerobe Behandlung sind in Tabelle 7-14 und die für die aerobe Stufe in Tabelle 7-15 aufgeführt. Sie zeigen, dass die biologischen Abbauvorgänge sehr langsam verlaufen, denn die HRT-Werte betragen 12-16 Tage für den anaeroben Reaktor und 15-29 Tage für die aerobe Stufe.

Tab. 7-14: Erforderliche Volumina des Anaerobreaktors

Einsatzstoff	Prozesswasser- strom	Zulauffracht	Raumbelastung anaerob	Behältervolumen (gerundet)
_	[m³/d]	[kg CSB/d]	[kg CSB/(m ^{3.} d)]	[m³]
Biertreber	5,27	261,8	3,40	77
Rübenschnitzel	25,50	1.012,4	3,26	311
Speisereste	4,43	320,0	4,49	71

Tab. 7-15: Erforderliche Volumina der aeroben Belebung

Einsatzstoff	Prozesswasser- strom	Zulauffracht	Raumbelastung aerob	Behältergröße (gerundet)
	[m³/d]	[kg CSB/d]	[kg CSB/(m ^{3.} d)]	[m³]
Biertreber	5,27	52,9	0,65	81
Rübenschnitzel	25,50	300,4	0,41	733
Speisereste	4,43	46,3	0,70	66

Aktivkohlebedarf

Für die abschließende Reinigung des Prozesswassers mit Aktivkohle wurden aus den spezifischen DOC-Beladungen und den zu eliminierenden DOC-Frachten die in Tabelle 7-16 aufgeführten Bedarfszahlen für Aktivkohle berechnet.

Einsatzstoff	Adsorbierte DOC-Fracht [kg DOC/d]	Spezifische DOC-Beladung [g DOC/kg AK]	Aktivkohle- Bedarf [kg AK/d]
Biertreber	5,52	211	26,2
Rübenschnitzel	49,70	158	314,6
Speisereste	4,09	191	21,4

Tab. 7-16: Täglicher Aktivkohlebedarf in der Adsorptionsstufe

Energiebedarf

Bei der anaeroben Prozesswasserbehandlung wird Energie im Wesentlichen in Form von Wärme für die Temperaturerhaltung im Reaktor benötigt. Im Labor wurde der Reaktor bei mesophilen Verhältnissen (mittlere Temperatur von 37 °C) betrieben. Allerdings fällt das Prozesswasser in der Carbonisierung mit einer höheren Temperatur an, als sie für die anaerobe Behandlung benötigt wird. Das Wasser muss deshalb abgekühlt werden, bevor es dem Festbett-Reaktor zugeführt werden kann, so dass bei einer technischen Anlage die Abwärme ggf. noch nutzbar gemacht werden kann. Einen zusätzlichen Energiebedarf verursachen die Förderpumpen, die sich aber mit Strom aus der Verwertung des Biogases in einem Blockheizkraftwerk (BHKW) versorgen ließen. Ein Netto-Energiebedarf der anaeroben Stufe wird deshalb in dieser Bilanzierung nicht berücksichtigt.

Bei der aeroben Nachbehandlung des Prozesswassers wird Energie hauptsächlich für die Belüftung im Belebungsbecken benötigt. Für die überschlägige Bemessung des Energiebedarfs der aeroben Stufe wurde auf Werte der kommunalen Abwasserreinigung zurückgegriffen. Auf den BSB₅ bezogen werden dort rund 40 kWh pro Einwohner und Jahr benötigt (Umweltbundesamt, 2009). Ausgehend von 60 g BSB₅ pro Einwohner und Tag ergibt sich ein spezifischer Energieverbrauch von rund 1,83 kWh pro kg BSB₅ (bei 100 % Elimination). Da HTC-Prozesswasser jedoch deutlich schwerer abbaubare Verbindungen enthält als kommunales Abwasser, wurde über den BSB₂₀ im Zulauf der aeroben Stufe der in Tabelle 7-17 aufgeführte Energiebedarf abgeschätzt.

Einsatzstoff	Prozesswasser- strom	BSB ₂₀ -Konzentration	BSB ₂₀ -Fracht	Energiebedarf
_	[m³/d]	[mg/l]	[kg BSB₅/d]	[kWh/d]
Biertreber	5,27	3.860	20,3	37,1
Rübenschnitzel	25,50	1.830	46,7	85,5
Speisereste	4,43	3.450	15,3	28,0

Tab	7-17 [.]	Energiebedarf der a	aeroben Belebung
Tub.	/ //.	Energiebeddin der e	Leioben Delebung

7.4 Energiebilanz

In diesem Abschnitt soll abgeschätzt werden, inwieweit der Energiegehalt der im Prozesswasser vorliegenden Kohlenstoffverbindungen genutzt werden kann und ob es einen Netto-Energiebedarf bei der Prozesswasserbehandlung gibt. Dazu sind in Tabelle 7-18 zusätzlich zum Gasanfall in der anaeroben Behandlungsstufe die damit verbundenen Energieerträge aufgeführt. Für die aus dem Biogas gewinnbare elektrische Energie wurde ein elektrischer Wirkungsgrad von 40 % bei Einsatz eines BHKW angenommen. Die Abschätzung zeigt, dass der Energiebedarf der Aerobstufe nur einen Bruchteil der gewinnbaren elektrischen Energie ausmacht. Dies gilt insbesondere, wenn es gelingt, einen Großteil der organischen Substanzen in der Anaerobstufe in Biogas umzuwandeln.

Einsatzstoff	Gasanfall in der An- aerobstufe	CH₄-Anteil	Energie- ertrag gesamt	Energie- ertrag elektrisch	Energie- bedarf der Aerob- stufe	Energie- über- schuss
	[m _N ³ /d]	[-]	[kWh/d]	[kWh _{el} /d]	[kWh _{el} /d]	[kWh _{el} /d]
Biertreber	15,2	0,803	122	48,8	37,1	11,7
Rübenschnitzel	215,3	0,724	1.554	621,8	85,5	536,3
Speisereste	101,6	0,692	701	280,3	28,0	252,3

 Tab. 7-18:
 Bilanzierung von Ertrag und Bedarf an elektrischer Energie bei der Prozesswasserbehandlung

In Tabelle 7-19 ist abschließend wiedergegeben, welcher Anteil der Energie, die in den Einsatzstoffen bei der Hydrothermalen Carbonisierung enthalten ist, in das Prozesswasser übergeht und damit für das HTC-Produkt Biokohle verloren ist, und wie sich sein weiterer Verbleib darstellen lässt. Bei dieser Abschätzung wurde der Brennwert von reinem Kohlenstoff von 34.000 kJ/kg verwendet, um den organischen Inhaltsstoffen einen theoretischen Energiewert zuordnen zu können. Die erhaltenen Zahlen sind allerdings nur als Anhaltswerte zu verstehen, aber es lagen keine Messungen vor, aus denen sich genauere Werte hätten ableiten lassen.

Mit den berechneten Energiewerten können die Energieerträge bei der Verwertung des Biogases verglichen werden. Die in Tabelle 7-19 angegebenen Wiedergewinnungsraten zeigen, welche Anteile der dem HTC-Prozess verlorengegangenen Energie durch die anaerobe Behandlung in dieser Untersuchung zurückgewonnen werden konnten.

Einsatzstoff	C-Input	C-Anteil im PW	Energie im PW	Energie- ertrag	Wieder- gewinnungs- rate
	[kg/d]	[-]	[kWh/d]	[kWh/d]	[%]
Biertreber	432	0,22	898	122	13,6
Rübenschnitzel	1.914	0,22	3.977	1.554	39,1
Speisereste	186	0,60	1054	701	66,5

Tab. 7-19: Energieverbleib bei der Prozesswasserbehandlung

Es muss jedoch betont werden, dass es sich hierbei nur um eine grobe Abschätzung handelt, da eine Reihe von Eingangsdaten, wie z.B. die Verteilung des Kohlenstoffs bei der Carbonisierung, relativ stark schwanken kann. Trotzdem wird deutlich, dass in der anaeroben Behandlungsstufe nennenswerte Anteile des "Energiegehalts" der Prozesswässer, die bei einer besseren Biogasausbeute sogar noch erheblich höher wären, verwertet werden können.

Mit den folgenden Abbildungen 7-5 bis 7-7 soll der Verbleib der Energie aus den Einsatzstoffen veranschaulicht werden. Das Verhältnis der Energiegehalte von Biokohle, Prozesswasser und Prozessgas wurde vereinfacht dem Verhältnis der jeweiligen C-Gehalte gleichgesetzt. Aus Platzgründen wurde der Pfeil für die Biokohle nicht maßstäblich dargestellt; die prozentuale Aufteilung ist aber an den Pfeilen aufgetragen.

Die Energiegehalte der als partikuläre Kohlenstoffverbindungen anfallenden Reststoffe (Schlämme) bei der Behandlung werden hier nicht weiter betrachtet. Sie könnten aber in einer Verbrennungsanlage thermisch verwertet werden. Der aerobe Abbau organischer Substanzen macht energetisch betrachtet nur einen kleinen Teil der Stoffumsetzungen aus, deshalb kann er auch mit Hilfe der im BHKW erzeugten elektrischen Energie durchgeführt werden. Damit sind der restliche Teil der elektrischen Energie und die gewonnene thermische Energie anderweitig nutzbar. Auch die an der Aktivkohle adsorbierten Stoffe werden bei der Reaktivierung der Kohle thermisch verwertet.

Abb. 7-5: Verbleib der im Einsatzstoff enthaltenen Energie bei der Carbonisierung und der weiteren Behandlung des Prozesswassers, Einsatzstoff: Biertreber

Abb. 7-6: Verbleib der im Einsatzstoff enthaltenen Energie bei der Carbonisierung und der weiteren Behandlung des Prozesswassers, Einsatzstoff: Rübenschnitzel

Abb. 7-7: Verbleib der im Einsatzstoff enthaltenen Energie bei der Carbonisierung und der weiteren Behandlung des Prozesswassers, Einsatzstoff: Speisereste

7.5 Betriebskosten der Adsorptionsstufe

Für das dreistufige Behandlungskonzept fallen außer Energiekosten, die aber über die Verwertung des Biogases gedeckt werden können, vor allem Kosten für den Austausch der beladenen Aktivkohle an. Mit spezifischen Kosten von 1,50 €/kg ergeben sich hierfür die in Tabelle 7-20 angegebenen Kosten pro Tag.

Einsatzstoff	AK-Bedarf	Materialkosten AK	Kosten der AK
_	[kg AK/d]	[€/kg]	[€/d]
Biertreber	26,2	1,50	39,30
Rübenschnitzel	314,6	1,50	471,90
Speisereste	21,4	1,50	32,10

Tab. 7-20: Kosten für den Austausch beladener Aktivkohle

AK - Aktivkohle

Wie bereits erwähnt, ist der Ertrag an Biokohle bei der Hydrothermalen Carbonisierung stark von der Prozessführung im Reaktor abhängig. Nach Blöhse (2013) können für die untersuchten Einsatzstoffe die in Tabelle 7-21 aufgeführten Ausbeuten zugrunde gelegt werden. Daraus errechnen sich die ebenfalls in dieser Tabelle angegebenen spezifischen Aktivkohlekosten.

Demnach betragen die Betriebskosten für die Aktivkohlestufe rund 9-23 €-ct pro kg produzierte HTC-Biokohle. Bei einer Carbonisierung im technischen Maßstab sollte es aber möglich sein, die Ausbeute an Biokohle zu erhöhen und die Verluste über das Prozesswasser zu verringern, beispielsweise durch die Erhöhung des TS-Gehalts im Carbonisierungsreaktor (Blöhse, 2013). Wenn dies gelänge, würden sich die spezifischen Aktivkohlekosten deutlich vermindern lassen.

Einsatzstoff	Ausbeute an Bio- kohle	Ertrag an Biokohle	Kosten der AK	Spezifische Aktivkohlekosten
	[kg TS-Biokohle/ kg TS-Input]	[kg TS/d]	[€/d]	[€-ct/kg Biokohle]
Biertreber	0,50	450	39,30	8,7
Rübenschnitzel	0,50	2.225	471,90	21,2
Speisereste	0,35	140	32,10	22,9

Tab. 7-21: Spezifische Aktivkohlekosten bei der Prozesswasserbehandlung

7.6 Folgerungen

- Eine Betrachtung des Kohlenstoffverbleibs bei der Behandlung des Prozesswassers aus der Carbonisierung von jeweils 5 t Originalsubstanz pro Tag zeigt, dass mehr als 99 % des organischen Kohlenstoffs durch die dreistufige Verfahrenskombination eliminiert werden können. Damit lassen sich Ablaufwerte von 100 bis 200 mg/l TOC erreichen und zukünftige Grenzwerte für eine Prozesswasserreinigung, die aber derzeit noch nicht existieren, aller Voraussicht nach einhalten.
- 2. Die anaerobe Stufe erbringt bei allen Einsatzstoffen den größten Teil der gesamten Eliminationsleistung. In beiden biologischen Stufen zusammen können 84 bis 95 % der TOC-Zulauffracht eliminiert werden. Dennoch verbleibt ein Anteil nichtabbaubarer Verbindungen (refraktärer Substanzen) in Konzentrationen von 1.200 bis 2.500 mg/l TOC, der sich nur durch Adsorption an Aktivkohle entfernen lässt.
- Für die biologischen Stufen ergeben sich aufgrund der niedrigen Raumbelastungen, die für einen stabilen Betrieb bei der ausschließlichen Beaufschlagung mit Prozesswasser erforderlich sind, vergleichsweise große Reaktorvolumina mit hydraulischen Aufenthaltszeiten (HRT) von größenordnungsmäßig 14 Tagen.
- 4. Die Betriebskosten für die Aktivkohlestufe belaufen sich unter den Bedingungen der Carbonisierung im kleinen Maßstab auf rund 9-23 €-ct pro kg produzierte HTC-Biokohle. Bei höheren Ausbeuten, wie sie bei Carbonisierungen im technischen Maßstab zu erwarten sind, würden diese Kosten voraussichtlich sinken.
- 5. In der anaeroben Stufe kann ein nennenswerter Anteil der in den organischen Inhaltsstoffen des Prozesswassers enthaltenen Energie verwertet werden. Damit lässt sich nicht nur der Energiebedarf der aeroben Stufe decken, sondern auch noch ein Überschuss an Energie erzielen.
- Die durchgeführten Abschätzungen beruhen auf den Ergebnissen der in den Kapiteln 2 bis 6 beschriebenen Untersuchungen. Sie sähen in Bezug auf den Energieertrag noch erheblich positiver aus, wenn die Biogasausbeute in der anaeroben Stufe in die Größenordnung der theoretisch möglichen Werte gesteigert werden könnte.

8 Bewertung und Verbreitung der Ergebnisse

Mit den im Rahmen des Vorhabens erhaltenen Ergebnissen konnten wesentliche Ziele erreicht werden. Dazu sind vor allem zu zählen:

- Die organischen Stoffe in HTC-Prozesswässern können mit der vorgeschlagenen dreistufigen Verfahrenskombination aus anaerobem Abbau, aerober Nachreinigung und adsorptiver Schlussbehandlung zu über 99 % eliminiert werden. Damit lassen sich zukünftige Grenzwerte aller Voraussicht nach einhalten und die Belastung der Umwelt bei der technischen Anwendung der Hydrothermalen Carbonisierung minimieren.
- Die im Prozesswasser enthaltenen, mit Pentan extrahierbaren organischen Spurenstoffe werden bereits in den beiden biologischen Stufen weitestgehend entfernt. Die Aktivkohlestufe stellt dann eine weitere Barriere dar, um eine Freisetzung nicht abgebauter Substanzen zu verhindern.
- Durch die Gewinnung von Biogas in der anaeroben Stufe und seine Verwertung wird die Energiebilanz der Prozesswasserbehandlung positiv, d.h. es kann ein Energieüberschuss erzielt werden.
- Sofern im Prozesswasser N\u00e4hrstoffe in h\u00f6heren Konzentrationen vorkommen, k\u00f6nnen sie auch aus dieser Matrix durch Verfahren wie die MAP-F\u00e4llung (bei Vorliegen von Ammonium-Stickstoff und Phosphat) bzw. die Ammoniakstrippung (bei Vorliegen nur von Ammonium-Stickstoff) zur\u00fcckgewonnen werden.

Einer direkten Umsetzung des Behandlungskonzeptes in den technischen Maßstab stehen jedoch noch einige Fragen entgegen, die in diesem Vorhaben nicht näher untersucht werden konnten. Dies betrifft in erster Linie die anaerobe biologische Stufe, in der zwar gute Eliminationsleistungen erreicht werden konnten, ein stabiler anaerober Abbau von Prozesswasser als Monosubstrat aber nur bei geringen Raumbelastungen von ca. 4 kg CSB/(m³·d) im UASB-Reaktor und ca. 5,5 kg CSB/(m³·d) im Festbettreaktor möglich war. Des Weiteren mussten die Prozesswässer verdünnt werden, um die eingesetzten Reaktoren stabil betreiben zu können. Zudem war die Ammonifikation der organischen Stickstoffverbindungen unvollständig, und die Ausbeute an Biogas lag trotz guter Gasgualität deutlich unterhalb des theoretisch zu erwartenden Wertes.

Auch die aerobe Stufe konnte nur mit Raumbelastungen kleiner 1,0 kg CSB/(m³·d) stabil betrieben werden. Hier wäre es interessant zu untersuchen, inwieweit ein anderes System wie beispielsweise ein Membranbioreaktor höhere Belastungswerte erlauben würde. Die aerobe Behandlung muss aber immer im Zusammenhang mit der vorgeschalteten anaeroben Stufe betrachtet und optimiert werden.

Die spezifischen Kosten der Aktivkohlestufe sind in Bezug auf den Ertrag an Biokohle als relativ hoch anzusehen. Eine Entlastung dieser Stufe und damit eine Kostenreduktion wäre unter Umständen zu erreichen, wenn ein Teil des Ablaufs der aeroben Stufe mit Ozon behandelt und dann in die biologische Behandlung zurückgeführt würde. Diese Kombination wird u.a. bei der Reinigung von Deponiesickerwässern angewandt.

Vorläufige Ergebnisse des Vorhabens sind bereits in mehreren Vorträgen der Fachöffentlichkeit vorgestellt worden:

- Fettig, J. und Liebe, H.: Analytik und physikalisch-chemische Behandlung von Prozesswässern aus der hydrothermalen Carbonisierung – erste Ergebnisse. Seminar "Hydrothermale Carbonisierung von Biomasse – Ergebnisse und Perspektiven", Deutsche Bundesstiftung Umwelt, Osnabrück, 20. Dezember 2011.
- Fettig, J., Liebe, H., Austermann-Haun, U. und Meier, J.-F.: Verwertung von Prozesswasser aus der hydrothermalen Carbonisierung.
 Fachforum F 5: Ressourceneffizienz und Innovationen, Woche der Umwelt, Schloss Bellevue, Berlin, 5.- 6. Juni 2012.
- Fettig, J.: Verwertungsmöglichkeiten für HTC-Prozesswässer. 3. Sitzung des Fachausschusses Biokohle im Arbeitskreis für die Nutzbarmachung von Siedlungsabfällen (ANS e.V.), Höxter, 6. März 2013.
- Meier, J.-F., Kretschmer, A.-K. und Austermann-Haun, U.: Anaerobe Behandlung von Prozesswässern aus der hydrothermalen Carbonisierung – erste Ergebnisse. Seminar "Hydrothermale Carbonisierung von Biomasse – Ergebnisse und Perspektiven", Deutsche Bundesstiftung Umwelt, Osnabrück, 20. Dezember 2011.

Im Jahr 2013 sollen die Vorhabensergebnisse bei folgenden Veranstaltungen, bei denen die Beiträge von den jeweiligen Programmkomitees angenommen worden sind, präsentiert werden:

- Fettig, J., et al.: Treatment of Process Water from Hydrothermal Carbonization of Organic Waste. 10th IWA Leading Edge Conference on Water and Wastewater Technologies, Bordeaux, France, 3. - 6. Juni 2013.
- Austermann-Haun, U., et al.: Anaerobe Behandlung von Prozesswässern aus der Hydrothermalen Carbonisierung. DWA/DECHEMA Industrietage Wassertechnik, Fulda, 13. - 14. November 2013.

Darüber hinaus ist geplant, eine Zusammenfassung der Ergebnisse in einer deutschen Fachzeitschrift zu veröffentlichen.

9 Fazit

Wie bereits in Kapitel 8 ausgeführt, konnten mit den erhaltenen Ergebnissen wesentliche Ziele des Projektes erreicht werden: Zum einen wurde die Machbarkeit (Feasibility) des Behandlungskonzeptes für HTC-Prozesswässer nachgewiesen, zum anderen wurden auch die Möglichkeiten zu einer stofflichen und energetischen Verwertung aufgezeigt. Damit könnten Anlagen zur hydrothermalen Carbonisierung bezüglich des Prozesswassers ressourcenschonend und ohne eine nennenswerte Belastung der Umwelt betrieben werden.

Ein stabiler Betrieb der mit den untersuchten Prozesswässern als Monosubstrat beaufschlagten anaeroben Bioreaktoren war jedoch nur mit niedrigen Raumbelastungen, die ein entsprechend großes Reaktorvolumen erfordern, einer Verdünnung des Zulaufs und einer nicht optimalen Ausbeute an Biogas möglich. Hier sollte unbedingt in einer weiterführenden Studie untersucht werden, ob sich die Raumbelastung und die Biogasausbeute nicht durch den Zusatz eines anderen, gut verwertbaren Abwassers erhöhen lassen. Eine solche Betriebsweise mit einem Co-Substrat ist an anderer Stelle schon erfolgreich angewendet worden.

Neben der anaeroben Behandlung gibt es auch bei der aeroben Stufe noch weiteres Optimierungspotential. So sollte untersucht werden, ob ihre Raumbelastung nicht durch den Einsatz eines Membranbioreaktors erhöht werden kann. Darüber hinaus wäre es eine Option, die Ablauffracht an refraktären Stoffen durch die nachgeschaltete Ozonung und Rückführung eines Teilstroms weiter zu verringern und so die Belastung der Adsorptionsstufe herabzusetzen, was einen geringeren Aktivkohlebedarf zur Folge hätte.

Für die Etablierung der hydrothermalen Carbonisierung von organischen Abfällen ist es von ausschlaggebender Bedeutung, welche Kosten dabei entstehen. Die Prozesswasserbehandlung hat daran einen wesentlichen Anteil. Aus den o.a. Gründen wurde es nicht für sinnvoll angesehen, eine Abschätzung der Gesamtkosten für das vorgeschlagene Behandlungskonzept vorzunehmen. Erst wenn die Anlagengrößen optimiert worden sind, kann der Investitionsaufwand konkret ermittelt werden.

Bei den Betriebskosten ist absehbar, dass es bei Verwertung des Biogases aus der anaeroben Stufe zu einem Nettoertrag an Energie kommen wird. Damit werden diese Kosten vor allem durch den Aktivkohlebedarf bestimmt. Eine genaue Festlegung der Aktivkohlemenge setzt aber auch voraus, dass es verbindliche Anforderungen an die Qualität des behandelten Prozesswassers gibt. Dies ist derzeit noch nicht der Fall. Sofern sich die Anforderungen am Anhang 22 (Chemische Industrie) der Abwasserverordnung orientierten, wäre eine CSB-Eliminationsleistung von 90 % bzw., bei Rohwasserkonzentrationen von > 50.000 mg/l, eine maximale CSB-Restkonzentration von 2.500 mg/l zu erwarten. Falls dagegen der Anhang 23 (Anlagen zur biologischen Behandlung von Abfällen) zugrunde gelegt würde, müsste der CSB auf 200 mg/l verringert werden. Letzteres ist aber eher unwahrscheinlich, weil HTC-Prozesswässer viel höhere Konzentrationen aufweisen als die mit dem Anhang 23 erfassten Abwässer und die Abwasserverordnung Reinigungsanforderungen von 99% bezüglich des CSB sonst nicht kennt.

Literaturverzeichnis

Altensen, R.; Richarts, F.	2010	Errichtung des HTC-Versuchsreaktors im Rahmen eines von der DBU geförderten Projektes – erste Ergebnisse und Betriebserfahrungen. http://fss.plone.uni-giessen.de/fss/fbz/fb08/Inst/ pflanzenoek/forschung/workshop/workshop/ alten- sen/file/Altensen_HTC-Verfahren.pdf (24.02.2012)
Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, L.; Guwy, A.; Jenícek, P.; Kalyuzhnui, S.; Van Lier, J.	2006	Anaerobic Biodegradation, Activity and Inhibition ABAI), Task Group Meeting, 9-10 October 2006, Prague
Arens, Th.; Morondo Martin, M.A.	2012	HPLC-Methode zur Analyse von HTC-Wasser, GIT Labor-Fachzeitschrift 2012 Nr. 4, 234-236
Ashley, K.; Cordell, D.; Mavinic, D.	2011	A brief history of phosphorus: From the philoso- pher's stone to nutrient recovery and reuse. Chemosphere, 84 (2011) 6, 737-746
ATV-FA 7.5	1990	Anaerobe Verfahren zur Behandlung von Industrie- abwässern. 1. Arbeitsbericht der Arbeitsgruppe des ATV-Fachausschusses 7.5 "Anaerobe Verfahren zur Behandlung von Industrieabwässern", KA Ab- wasser 37 (1990) 10, 1247-1251
ATV-FA 7.5	1993	Technologische Beurteilungskriterien zur anaero- ben Abwasserbehandlung, 2. Arbeitsbericht der Arbeitsgruppe des ATV-Fachausschusses 7.5 "An- aerobe Verfahren zur Behandlung von Industrie- abwässern", KA Abwasser 40 (1993) 2, 217-223
ATV-FA 7.5	1994	Geschwindigkeitsbestimmende Schritte beim anae- roben Abbau von organischen Verbindungen in Abwässern, 3. Arbeitsbericht der Arbeitsgruppe des ATV-Fachausschusses 7.5 "Anaerobe Verfah- ren zur Behandlung von Industrie-abwässern", KA Abwasser 41 (1994) 1, 101-107

Hochschule OWL	Literaturverzeichnis 101		
ATV-DVWK IG-5.1	2002	Praktische Empfehlungen und Hinweise für rob-anlagen, 4. Arbeitsbericht der Arbeitsgr ATV-DVWK-IG 5.1 "Anaerobe Verfahren zu handlung von Industrieabwässern", KA Abv Abfall 49 (2002) 12, 1708-1714	Anae- uppe ır Be- vasser
ATV-DVWK IG-5.1	2004	Anaerobe Testverfahren zur Abbaubarkeit, mung und Aktivität, 5. Arbeitsbericht der Ar gruppe ATV-DVWK-IG 5.1 "Anaerobe Verfa zur Behandlung von Industrieabwässern", H wasser, Abfall 51 (2004) 9, 997-1002	Hem- beits- ahren 〈A Ab-
AVA-CO2 Schweiz AG	2011	http://www.ava-co2.com/web/media/ downloads_DE/datenblaetter/ Factsheet_AVA_HTC-Modul_DE.pdf	
Berge, N.D.; Ro, K. S.; Mao, J.; Flora, J. R. V.; Chappell, M. A.; Bae, S.	2011	Hydrothermal carbonization of municipal wa streams. Environm. Sci. Technol. 45 (2011) 5703	aste 5696-
BWB	2009	Berliner Wasserbetriebe: Mineraldünger au ner Klärschlamm. gwf-Wasser/Abwasser 18 538	s Berli- 50 (7)
Bischofsberger, W. Dichtl, N. Rosenwinkel, KH. Seyfried, C.F. Böhnke, B.	2005	Anaerobtechnik: Handbuch der anaeroben handlung von Abwasser und Schlamm. 2., vollständig überarbeitete Auflage, Spring lag, Berlin/Heidelberg 2005	Be- ger Ver-
Blöhse, D.	2011, 2013	Mündliche Mitteilungen, Fachgebiet Abfallw und Deponietechnik der Hochschule OWL	virtschaft
Clemens, A.	2011	Hydrothermale Carbonisierung, Konversion zess zur Bereitstellung von Festbrennstoffe biogenen Reststoffen, http://www.bioenergi portal.info/ fileadmin/bioenergie- beratung/sachsen/dateien/ Vortrae- ge/2011_10_12_Clemens_HTC.pdf (15.03.	Ispro- In aus e- 2012)
Cornel, P.; Summers, R.S.; Roberts, P.V.	1986	Diffusion of humic acid in dilute aqueous so J. Colloid Interface Sci. 112 (1986) 1, 149-1	olution. 164

Hochschule OWL	Literaturverzeichnis		
DIN EN ISO11734	1998	Bestimmung der "vollständigen" anaeroben biolo- gischen Abbaubarkeit organischer Verbindungen im Faulschlamm Verfahren durch Messung der Biogasproduktion, Deutsches Institut für Normung e.V., Beuth Verlag GmbH, Berlin	
DIN EN 12880	2001	Bestimmung des Trockenrückstandes und des Wassergehalts, Deutsches Institut für Normung e.V., Beuth Verlag GmbH, Berlin	9
DIN EN 12879	2001	Bestimmung des Glühverlustes der Trockenma Deutsches Institut für Normung e.V., Beuth Ver GmbH, Berlin	asse, rlag
DIN 38409-2	1987	Summarische Wirkungs- und Stoffkenngrößen Gruppe H), Bestimmung der abfiltrierbaren Sto und des Glührückstandes H2), Deutsches Insti für Normung e.V., Beuth Verlag GmbH, Berlin	iffe
Ehbrecht, A.; Fuderer, T.; Schönauer, S.; Schuhmann, R.	2011	P-Recovery by Crystallisation of Calcium phos- phates with a Pilot Plant in Batch Mode Techno ogy. Wat. Sci. Tech. 63 (2011) 2, 339-344	- วl-
Envimac Engineering GmbH	2012	Pallringe, http://www.envimac.de/61.html (01.02.2012)	
Escala, M.; Graber, A.; Junge, R.; Koller, Ch.; Guiné, V.; Krebs, R.	2011a	Hydrothermal carbonization to revalue organic waste: the example of whey. Institute of Natura Resource Sciences, Zürcher Hochschule für An gewandte Wissenschaften, Zürich	ıl ∩-
Escala, M.; Koller, Ch.; Zumbuehl, C.; Gufler, C.; Junge, R.; Krebs, R.	2011b	Hydrothermale Karbonisierung des Klärschlam Stoffflüsse und Entwässerbarkeit. 2. HTC Fach gung Schweiz, Wädenswil	ıms: ıta-
Fach, S.	2005	Fällung von Magnesium-Ammonium-Phosphat Schlachthofabwasser, Diplomarbeit, Bauhaus- Universität Weimar, Professur für Siedlungswa serwirtschaft	aus IS-

Hochschule OWL	Literaturverzeichnis 1		103	
Fettig, J.; Sontheimer, H.	1984	Effektive Transportkoeffizienten bei der Adsorption natürlicher organischer Wasserinhaltsstoffe an Aktivkohle. Vom Wasser 63 (1984) 199-211		
Fettig, J.; Stapel, H.; Steinert, C.; Geiger, M.	1996	Treatment of Landfill Leachate by Preozon and Adsorption in Activated Carbon Colum Sci. Tech. 34 (1996) 9, 33-40	ation ns. Wat.	
Fettig, J.	1999	Characterisation of NOM by Adsorption and Effective Diffusivities. Environm. Int. 25 (1999) 2/3, 3 346		
Frost, R.L.; Weier, M.L.; Erickson, K.L.	2004	Thermal decomposition of struvite – implica the decomposition of kidney stones. J. The Analysis & Calorimetry 76 (2004) 3, 1025-1	ation for rmal 033	
Glasner, C.; Deerberg, G.; Lyko , H.	2011	Hydrothermale Carbonisierung: Ein Überbl Chemie Ingenieur Technik 83 (2011) 11, 1932-1943	ck.	
Grenol GmbH	2013	http://www.grenol.org/index.php?id=11. (31.01.2013, 19.05 Uhr)		
Handreichung	2009	Bestimmung der Säurekapazität (Alkalität, reserve, Pufferungsvermögen) und der org schen Säuren durch einfache Titration. Au aus den Veröffentlichungen des Institutes f lungs-wasserwirtschaft und Abfalltechnik de versität Hannover (ISAH) H.17	Kalk- ani- szug ür Sied- er Uni-	
Herbert, S.	2011	Mündliche Mitteilung, Kompetenzzentrum f gie- und Umweltsystemtechnik (ZEuUS) de hoch-schule Gießen-Friedberg	ür Ener- r Fach-	
Hoekman, S. K.; Broch, A.; Robbins, C.	2011	Hydrothermal Carbonization HTC) of Ligno losic Biomass, Energy Fuels 25 (2011), 18 DOI: 10.1021/ef101745n, http://pubs.acs.o doi/abs/10.1021/ef101745n (24.02.2012)	cellu-)2-1810. rg/	
Jaffke, AL.	2013	Bilanzierung von Stoff- und Energieströmen Behandlung von Prozesswässern der HTC jektarbeit, Masterstudiengang Environment Sciences, Hochschule OWL, FG Wasserter gie, Höxter, unveröffentlicht	ו für die . Pro- al chnolo-	

Hochschule OWL	Lit	teraturverzeichnis	104	
Kopinke, FD.; Hildebrand, H.; Köhler, R.; Baskyr, I.; Pörschmann, J.	2010	Verfahren und Reaktor zur hydrothermalen Ka nisierung von Biomassen im Tiefschacht-Reak und zur gleichzeitigen Nassoxidation der anfal den Prozesswässer. EP 2.206.688 A1		
Kretschmer, AK.	2012	Anaerobe Abbaubarkeit von HTC-Abwasse chelorarbeit an der Hochschule OWL, Lab Siedlungswasserwirtschaft, Detmold, unve licht	ər, Ba- or für röffent-	
Kroiss, H.	1986	Anaerobe Abwasserreinigung, Wiener Mitt Wasser Abwasser Gewässer, Band 62	eilungen	
Liebeneiner, R. Luthardt-Behle, T. Theilen, U.	2009	Prozesstechnische Rahmenbedingungen B Biogaserzeugung. Fachvortrag beim 5. Fra Abwassersymposium - Klär und Biogas, 25.06.2009, Frankfurt a. M.	oei der ankfurter	
Loritus GmbH	2013	http://www.loritus.com/Klaerschlamm.html (31.01.2013, 18.35 Uhr)		
Montgomery, J.M.	2005	Water Treatment - Principles and Design. ge, John Wiley & Sons, Hoboken, USA	2. Aufla-	
Pinnekamp, J.; Montag, D.; Gethke, K.; Goebel, S.; Herbst, H.;	2007	Rückgewinnung eines schadstofffreien, mi schen Kombinationsdüngers "Magnesiuma um-phosphat – MAP" aus Abwasser und k schlamm Texte 25, 2. Auflage, Umweltbun Dessau-Roßlau	nerali- ammoni- ílär- desamt,	
Ramke, HG.	2009	Wässrige Phase aus der HTC: Zusammen und Abbaubarkeit. Fachvortrag bei der HT Fachveranstaltung am 05.03.2009 im Joha rich von Thünen-Institut, Braunschweig	setzung C- ann Hein-	
Ramke, HG.; Blöhse, D.; Lehmann, HJ.; Antonietti, M.; Fettig, J.	2010a	Machbarkeitsstudie zur Energiegewinnung organischen Siedlungsabfällen durch Hydr male Carbonisierung, Abschlussbericht, I Bundesstiftung Umwelt, Osnabrück	aus other- Deutsche	
Ramke, HG.; Blöhse, D.; Lehmann, HJ.; Fettig, J.	2010b	Hydrothermale Carbonisierung organische lungsabfälle. Vortragsband, 22. Kasseler A und Bioenergieforum, 20-22. April 2010, W hausen, S. 141-157	r Sied- \bfall- /itzen-	

Hochschule OWL	Literaturverzeichnis		
Rautenbach, R.; Gebel, J.; Frye, A.; Kollbach, J.; Dahm, W.	1994	Ammoniakrecycling aus dem Prozeßwa Schlammentwässerung. KA Abwasser 576-584	asser der 41 (1994) 4,
Revatec GmbH	2013	http://www.revatec.de/anlagen.htm (31.01.2013, 19.15 Uhr)	
Sabelfeld, M.; Geißen, S-U	2011	Verfahren zur Eliminierung und Rückge von Phosphor aus Abwasser. Chemie I Technik 83 (2011) 6, 782-795	winnung ngenieur
Sackewitz, M.; Maier, K-H.	1999	Strippverfahren zur Teilstrombehandlur anlagen. WLB Wasser Luft Betrieb (199	ng auf Klär- 99) 2, 34-37
Sarkar, A.K.	1991	Hydration/dehydration characteristics o and dittmarite pertaining to magnesium phosphate cement systems. J. Material (1991) 9, 2514-2518	f struvite ammonium s Sci. 26
Schlitt, R.; Richarts, F.	2011	HTC-Verfahren der Schlitt GmbH & Co. http://data7.blog.de/media/404/5961404 74_d.pdf (10.11.2011)	. KG, 4_98e759a1
Schneider, D.; Escala, M.; Supawittayayothin, K.; Tippayawong, N.	2011	Characterization of biochar from hydrot bonization of bamboo. Intern. J. Energy 4 (2011) 2, 647-652	hermal car- [,] Environm.
Sontheimer, H.; Crittenden, J.C.; Summers, R.S.	1988	Activated Carbon for Water Treatmen lag, DVGW-Forschungsstelle, Karlsruhe	it. Eigenver- e
Sontheimer, H.; Johannsen, K.	1992	Beschreibung des Programms ADSA z führung der Adsorptionsanalyse. Eigen DVGW-Forschungsstelle, Karlsruhe	ur Durch- verlag,
Spatzier, A.	2012	Untersuchung von Ablagerungen in Abl systemen und deren Bildungspotentiale arbeit, Hochschule OWL, FG Abwasser Höxter, unveröffentlicht	eitungs- 9. Bachelor- 1reinigung,
Stemann, J.; Ziegler, F.	2011	Optimierung der Energiebilanz bei der I thermalen Karbonisierung. 2. HTC Facl Schweiz, Wädenswil	าydro- าtagung
SunCoal Industries GmbH	2013	http://www.suncoal.de/de/technologie/n energiebilanz. (31.01.2013, 19.35 Uhr)	nassen-und-

Hochschule OWL	Literaturverzeichnis		106
Trautmann, N.	2007	Abbildung einer halbtechnischen Versuchsanla (UASB) zur anaeroben Kommunalwasserbehar lung mit dem Anaerobic Digestion Model No. 1, Diplom-arbeit am ISAH, Universität Hannover, Hannover	ge nd-
TerraNova Energy GmbH	2013	http://www.terranova-energy.com/ anwendungen.php (31.01.2013, 19.50 Uhr)	
Umweltbundesamt	2009	Energieeffizienz kommunaler Kläranlagen. Des sau-Roßlau, 2009. http://www.umweltdaten.de/ publikationen/fpdf-I/3855.pdf (16.03.2013)	-
Urban, I.	2009	Anaerobe Kommunalabwasserbehandlung Einsatz und Bemessung von UASB-Reaktoren, Veröffentlichungen des Institutes für Siedlungs- wasserwirtschaft und Abfalltechnik der Universi Hannover (ISAH) Heft 143	tät
VDI 4630	2006	Vergärung organischer Stoffe: Substratcharakte sierung, Probenahme, Stoffdatenerhebung, Gä versuche, Verein Dt. Ingenieure, Beuth Verlag, Berlin	eri- r-
Weiner, B.; Baskyr, I.; Pörschmann, J.; Kopinke, FD.	2012	HTC-Prozesswasser: Verwertung oder Entsor- gung? Wissensstand und Lösungsansätze. 73. Symposium des ANS e. V., 19. und 20. Septem 2012, Berlin	nber
Witte, H.	2009	Voruntersuchungen zum Projektantrag "Verwer tung des Prozesswassers aus der Hydrotherma Carbonisierung", Labor für Siedlungswasserwir schaft der Hochschule OWL, unveröffentlicht	- alen t-

Anhang

A 1. Versuchsreihen der anaeroben Batchtests

Tab. A 1: Ansatz der Batchtests mit Biertreber-Prozesswasser

Parameter	Einheit	1. Ansatz	2. Ansatz
pH-Wert der Ansätze (ohne Blindwertansatz)	-	6,3-6,8	6,4-6,7
C _{CSB}	[g/l]	52,0	52,0
S _{CSB}	[g/l]	51,1	51,1
oTR-Gehalt der Biomasse	[g/l]	45,2	35,92
S _{CSB,Schlamm}	[g/l]	655	477
Schlammbelastungen			
Blindansatz 1 + 2	[kg CSB/kg oTR]	0,00	0,00
Ansatz 1 + 2	[kg CSB/kg oTR]	0,20	0,60
Ansatz 3 + 4	[kg CSB/kg oTR]	0,30	0,70
Ansatz 5 + 6	[kg CSB/kg oTR]	0,40	0,80
Ansatz 7 + 8	[kg CSB/kg oTR]	0,50	0,90

Tab. A 2: Ansatz der Batchtests mit Rübenschnitzel-Prozesswasser

Parameter	Einheit	1. Ansatz	2. Ansatz
pH-Wert der Ansätze (ohne Blindwertansatz)	-	4,7-6,4	7,00
C _{CSB}	[g/l]	45,7	52,8
S _{CSB}	[g/l]	44,4	51,0
oTR-Gehalt der Biomasse	[g/l]	42,46	56,27
$S_{CSB,Schlamm}$	[g/l]	254	509
Schlammbelastungen			
Blindansatz 1 + 2	[kg CSB/kg oTR]	0,00	0,00
Ansatz 1 + 2	[kg CSB/kg oTR]	0,10	0,10
Ansatz 3 + 4	[kg CSB/kg oTR]	0,20	0,20
Ansatz 5 + 6	[kg CSB/kg oTR]	0,30	0,30
Ansatz 7 + 8	[kg CSB/kg oTR]	0,40	0,40

Parameter	Einheit	1. Ansatz	2. Ansatz
pH-Wert der Ansätze (ohne Blindwertansatz)	-	5,3-6,5	7,00
C _{CSB}	[g/l]	74,8	72,2
S _{CSB}	[g/l]	73,0	70,0
oTR-Gehalt der Biomasse	[g/l]	31,31	32,92
S _{CSB,Schlamm}	[g/l]	517	413
Schlammbelastungen			
Blindansatz 1 + 2	[kg CSB/kg oTR]	0,00	0,00
Ansatz 1 + 2	[kg CSB/kg oTR]	0,10	0,10
Ansatz 3 + 4	[kg CSB/kg oTR]	0,20	0,20
Ansatz 5 + 6	[kg CSB/kg oTR]	0,30	0,30
Ansatz 7 + 8	[kg CSB/kg oTR]	0,40	0,40

Tab. A 3: Ansatz der Batchtests mit Speisereste-Prozesswasser

A 2. Versuchsreihen der kontinuierlichen anaeroben Abbauversuche

A 2.1 Versuchsergebnisse UASB-Reaktor

A 2.1.1 Versuchsphase Biertreber

Abb. A 1: Betriebsverlauf des UASB-Reaktors während der Versuchsphase Biertreber (15.09.2011-12.01.2012)

Abb. A 2: Konzentration an organischen Säuren und CSB-Raumbelastung des UASB-Reaktors, Versuchsphase Biertreber (15.09.2011-12.01.2012)

Abb. A 3: Konzentration an organischen Säuren und FOS/TAC-Verhältnis des UASB-Reaktors, Versuchsphase Biertreber (15.09.2011-12.01.2012)

Tab. A 4: Analyseergebnisse der Gaschromatographie des gebildeten Biogases im UASB-Reaktor (10.10.2011-12.01.2012)

Gassammelprobe aus Zeitraum	Einheit	CH_4	CO ₂	H_2S
14.10-15.12.2011 (62 d)	[%]	97,86	2,14	0,00
16.1221.12.2011 (6 d)	[%]	58,07	41,93	0,00
21.12.2011-12.1.2012 (23 d)	[%]	67,00	33,00	0,00
gewichtetes Mittel:	[%]	87,44	12,56	0,00

A 2.1.2 Versuchsphase Rübenschnitzel

Abb. A 4: Betriebsverlauf des UASB-Reaktors während der Versuchsphase Rübenschnitzel (10.04.-30.07.2012)

Abb. A 5: CSB-Reinigungsleistung des Festbettreaktors während der Versuchsphase Rübenschnitzel 10.04.-30.07.2012)

Abb. A 6: Konzentration an organischen Säuren und FOS/TAC-Verhältnis des UASB-Reaktors, Versuchsphase Rübenschnitzel (10.04.-30.07.2012)

Abb. A 7: Biogaszusammensetzung im UASB-Reaktors während der Versuchsphase Rübenschnitzel (10.04.-30.07.2012)

A 2.1.3 Versuchsphase Speisereste

Abb. A 8: Betriebsverlauf des UASB-Reaktors während der Versuchsphase Speisereste (31.07.-07.11.2012)

Abb. A 9: Biogaszusammensetzung im UASB-Reaktors während der Versuchsphase Speisereste (31.07.-07.11.2012)

A 2.2 Versuchsergebnisse Festbettreaktor

A 2.2.1 Versuchsphase Biertreber

Abb. A 10: Betriebsverlauf des Festbettreaktors während der Versuchsphase Biertreber (15.09.2011-12.01.2012)

Abb. A 11: Konzentration an organischen Säuren und CSB-Raumbelastung des Festbettreaktors, Versuchsphase Biertreber (15.09.2011-12.01.2012)

Abb. A 12: Konzentration an organischen Säuren und FOS/TAC-Verhältnis des Festbettreaktors, Versuchsphase Biertreber (15.09.2011-12.01.2012)

Tab. A 5:	Analyseergebnisse	der	Gaschromatographie	des	gebildeten	Biogases
	(10.10.2011-12.01.2	012)			-	-

Gassammelprobe aus Zeitraum	Einheit	CH₄	CO ₂	H_2S
14.10-05.12.2011 (52 d)	[%]	84,60	15,40	0,00
05.12-27.12.2011 (22 d)	[%]	76,95	23,05	0,00
27.12.2011-07.01.2012 (11 d)	[%]	69,60	30,40	0,00
07.01-12.01.2012 (5 d)	[%]	74,40	25,60	0,00
gewichtetes Mittel:	[%]	80,33	19,67	0,00

A 2.2.2 Versuchsphase Rübenschnitzel

Abb. A 13: Betriebsverlauf des Festbettreaktors während der Versuchsphase II, Rübenschnitzel 10.04.-30.07.2012)

Abb. A 14: CSB-Reinigungsleistung des UASB-Reaktors während der Versuchsphase Rübenschnitzel (10.04.-30.07.2012)

Abb. A 15: Konzentration an organischen Säuren und FOS/TAC-Verhältnis des Festbettreaktors, Versuchsphase Rübenschnitzel 10.04.-30.07.2012)

Abb. A 16: Biogaszusammensetzung im Festbettreaktor während der Versuchsphase Rübenschnitzel 10.04.-30.07.2012)

A 2.2.3 Versuchsphase Speisereste

Abb. A 17: Betriebsverlauf des Festbettreaktors während der Versuchsphase Speisereste (31.07.-07.11.2012)

Abb. A 18: Konzentration an organischen Säuren und CSB-Raumbelastung des Festbettreaktors, Versuchsphase Speisereste (31.07.-07.11.2012)

Abb. A 19: Konzentration an organischen Säuren und FOS/TAC-Verhältnis des Festbettreaktors, Versuchsphase Speisereste (31.07.-07.11.2012)

Abb. A 20: Biogaszusammensetzung im Festbettreaktors während der Versuchsphase Speisereste (31.07.-07.11.2012)

A 2.3 Ergebnisse der CSB-Bilanzierung der Anaerobversuche

 Tab. A 6:
 CSB-Bilanzen, UASB-Reaktor – Detaillierte Darstellung der Ergebnisse

	Einheit	Schlamm	Ablauf	Biogas Methan)	Methanverluste im Reaktorablauf	Bilanzanteil	Bilanzrest
Biertreber	[%]	7,24	27,63	3,13	0,45	38,45	61,55
Rübenschnitzel							
Phase RS 2 (30.0422.06.2012)	[%]	5,17	23,51	19,74	0,41	48,55	51,45
Phase RS 3 (22.0630.07.2012)	[%]	3,85	20,12	10,37	0,33	34,67	65,33
Speisereste							
Phase SPR 2 (20.0819.10.2012)	[%]	9,72	22,29	20,15	0,51	52,68	47,32
Phase SPR 3 (19.1007.11.2012)	[%]	1,91	9,92	1,37	0,37	13,37	86,63

Tab. A 7: CSB-Bilanzen, Festbettreaktor – Detaillierte Darstellung der Ergebnisse

	Einheit	Schlamm	Ablauf	Biogas Methan)	Methanverluste im Reaktorablauf	Bilanzanteil	Bilanzrest
Biertreber	[%]	6,41	35,91	11,73	0,43	54,47	45,53
Rübenschnitzel							
Phase RS 2 (30.0422.06.2012)	[%]	3,76	18,39	28,03	0,25	50,43	49,57
Phase RS 3 (22.0630.07.2012)	[%]	2,26	12,15	15,77	0,19	30,37	69,63
Speisereste							
Phase SPR 2 (20.0819.10.2012)	[%]	7,62	16,03	56,14	0,32	80,12	19,88
Phase SPR 3 (19.1007.11.2012)	[%]	1,58	5,32	15,75	0,11	22,76	77,24

A 2.4 Ergebnisse der Feststoffbilanzen

UASB-Reaktor - Speisereste

Abb. A 21: Akkumulierte TS- und oTS-Mengen des UASB-Reaktors während der Versuchsphase Speisereste (31.07.-07.11.2012)

Abb. A 22: Akkumulierte TR- und oTR-Mengen des UASB-Reaktors während der Versuchsphase Speisereste (31.07.-07.11.2012)

Tab. A 8:	Feststoffbilanz des UASB-Reaktors während der Versuchsphase Speisereste
	(31.0707.11.2012)

	Phase SPR 2 (20.0819.10.2012)				Phase SPR 3 (19.1007.11.2012)			
	TS	TS oTS TR oTR		TS	oTS	TR	oTR	
	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
Fracht im Zulauf über den Zeit- raum	1.182	953	429.786	322.691	0	0	88.502	62.548
Fracht im Ablauf über den Zeit- raum	2.754	1.912	181.537	97.408	110	0	63.417	37.444
Bilanz im System verblieben)	- 1.573	- 959	248.249	225.282	- 110	0	25.085	25.104
Festbettreaktor - Rübenschnitzel

Abb. A 23: Akkumulierte TS- und oTS-Mengen des Festbettreaktors während der Versuchsphase Rübenschnitzel 10.04.-30.07.2012)

Abb. A 24: Akkumulierte TR- und oTR-Mengen des Festbettreaktors während der Versuchsphase Rübenschnitzel 10.04.-30.07.2012)

Tab. A 9: Feststoffbilanz des Festbettreaktors während der Versuchsphase Rübenschnitzel 10.04.-30.07.2012)

	Phase RS 2 (30.0422.06.2012)				Phase RS 3 (22.0630.07.2012)			
	TS	oTS	TR	oTR	TS	oTS	TR	oTR
	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
Fracht im Zulauf über den Zeit- raum	5.797	5.078	295.043	255.751	1.763	1.488	303.710	192.003
Fracht im Ablauf über den Zeit- raum	3.894	2.978	163.102	122.723	1.140	713	154.337	74.789
Bilanz im System verblieben)	1.747	2.144	131.941	133.028	594	619	149.373	117.215

Abb. A 26: Akkumulierte TR- und oTR-Mengen des Festbettreaktors während der Versuchsphase Speisereste (31.07.-07.11.2012)

Tab. A 10:	Feststoffbilanz des	Festbettreaktors	während	der	Versuchsphase	Speisereste
	(31.0707.11.2012)12)				

	Phase SPR 2 (20.0819.10.2012)				Phase SPR 3 (19.1007.11.2012)			
	TS	oTS	TR	oTR	TS	oTS	TR	oTR
	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]	[mg]
Fracht im Zulauf über den Zeit- raum	1.306	1.022	487.267	364.963	0	0	94.637	66.836
Fracht im Ablauf über den Zeit- raum	2.792	1.456	207.003	104.087	0	0	60.262	31.152
Bilanz im System verblieben)	- 1.486	- 433	280.264	260.877	0	0	34.375	35,684