Abschlussbericht

5. GKSS Schule zur Umweltforschung Persistente Schadstoffe: Vergangenheit, Gegenwart und Zukunft

(5th GKSS School of Environmental Research Persistent Pollution: Past, Present and Future)

9. – 18. Mai 2007, Jagdschloß Göhrde, bei Lüneburg

gefördert aus Mitteln der Deutschen Bundesstiftung Umwelt (DBU) AZ 25107-42

<u>Inhalt</u>

- 1. Thema der Schule
- 2. Struktur des Programms
- 3. Praktische Übungen
- 4. Gruppenarbeit
- 5 Nebenprogramm
- 6. Teilnehmer
- 7. Resümee
- 8. Anlagen

1. Thema der Schule

Persistente Schadstoffe: Vergangenheit, Gegenwart und Zukunft

Persistente Schadstoffe sind ein Hauptmerkmal des sog. "Anthropozäns". Diese gegenwärtige Ära ist durch einen wachsenden Einfluss menschlicher Aktivitäten auf das Erdsystem gekennzeichnet, die gleichwertig oder gar bedeutender als natürliche Einwirkungen sind. Obwohl anthropogene Freisetzungen von säurebildenden Gasen und von Schwermetallen in die Atmosphäre und Hydrosphäre bis in historische Zeiten zurückdatiert werden können, kann man das "Chemische Anthropozän" als die ca. 1950 beginnende und sich bis heute erstreckende Zeitperiode ansehen, in der der Einfluss von Menschen freigesetzter persistenter Schadstoffe die globale Dimension erreicht.

Die 5. GKSS Schule zur Umweltforschung fokussierte sich auf Persistente Organische Schadstoffe (POPs), Schwermetalle und Aerosole und bestand aus Lehrveranstaltungen zu den thematischen Blöcken:

- Darstellung, Gegenüberstellung und Bewertung des anthropogen bedingten Wandels der Umwelt
- Ursachen und Folgen auf unterschiedlichen Zeitskalen
- Langzeitgefährdungen und Auswirkungen auf die menschliche Gesellschaft
- Modellierung des Transports, der Transformation und der Deposition auf regionaler und globaler Skala

Alle Veranstaltungen wurden in Englisch abgehalten.

2. Struktur des Programms

Das Programm der Schule war in einer solchen Weise angelegt, dass sowohl Aspekte der Beobachtung/Messung wie auch der Modellierung aufbauend auf einem soliden theoretischen Hintergrund abgedeckt werden konnten. Im Anschluss an einen umfassenden Überblick wurden natürliche historische Datenarchive betrachtet. Darauf folgten Einblicke in die Erstellung von Emissionsdatenbasen. Die Umwandlung und der Transport von Schadstoffen wurden in einer Reihe von Vorlesungen und Übungen behandelt. Die Aufnahme und Verteilung der Schadsubstanzen in Ökosystemen und insbesondere die Rezeption durch Menschen war das abschließende Themengebiet, bevor die politischen Implikationen mit starkem Bezug auf die Europäische Union zusammenfassend dargestellt wurden.

Die Blöcke mit den Einzelbeiträgen und Lehrern sind im Anschluss aufgeführt.

Die Studenten wurden in 3 Gruppen aufgeteilt und gebeten, jeweils einen Berichterstatter zu ernennen. Diese Berichterstatter (Rapporteure) erhielten am letzten Tag der Schule die Gelegenheit, in 15 Minuten die aus der Sicht ihrer Gruppe wesentlichen und wichtigsten Lehrinhalte zusammenfassend darzustellen.

Alle Vorträge, die Zusammenfassungen der Berichterstatter sowie die Ergebnisse der Gruppenarbeit (siehe weiter unten) wurden allen Teilnehmern und Lehrern in der Zwischenzeit auf einer CD-ROM zur Verfügung gestellt.

I. Block zur allgemeinen Einführung

- Welcome (Prof. Ralf Ebinghaus)
- Introduction to the school (Dr. Markus Quante)
- The problem of persistent pollution an overview (Prof. Ralf Ebinghaus)

II. Block zu historischer Entwicklung, natürlichen Archiven, rezenter Bewertung und Emissionen

- History of air pollution causes and consequences (Prof. Peter Brimblecombe)
- What can we learn from ice cores? (Prof. Claude Boutron)
- What can we learn from peat cores? (Prof. William Shotyk)
- Emission inventories (Prof. Jozef Pacyna)
- Retrospective assessment of lead emissions and control policies in Europe (Prof. Hans von Storch)

III. Block zu Atmosphärenchemie, globalem Transport und chemischer Modellierung

- POP chemistry in the atmosphere (Dr. Wolf-Ulrich Palm)
- The global distribution of aerosols (Prof. Hartmut Graßl)
- Aerosols as transport vehicles of persistent pollutants (Dr. Volker Matthias)
- Clouds and their role in atmospheric transport and chemistry (Dr. Markus Quante)
- Chemical transport modelling (Dr. Armin Aulinger)
- Assessment of source-receptor relations by inverse modelling (Dr. Hendrik Elbern)

IV. Block zu Auswirkungen, Ökotoxikologie und politischen Implikationen

- What do real world experiments tell us about pathways of persistent pollutants (Prof. Holger Hintelmann)
- Perspectives of predictive toxicology (Prof. Gerrit Schüürmann)
- Natural substances of marine origin with toxic properties (Dr. Heike Helmholz)
- Effects of persistent pollutants on marine mammals (Jun.Prof. Veronika Hellwig)
- The European POP-perspective (Prof. Ivan Holoubek)

V. Zusammenfassung

- Block II (Ravindra Kaival, Teilnehmer)
- Block III (Matthias Sörgel, Teilnehmer)
- Block IV (Claudia Möckel, Teilnehmer)

3. Praktische Übungen

Der Ablaufplan der Schule stellte eine Reihe von Zeitfenstern zur Verfügung, in denen die Teilnehmer aktiv beitragen und mit den Vortragenden interagieren konnten. Es gab Nachmittagsblöcke mit Übungen, die den praktischen Umgang mit Instrumenten und Modellen ermöglichten. Die Studenten waren aufgefordert, sich selbst persönlich als auch wissenschaftlich vorzustellen. Die Übungen umfassten im Einzelnen

Mittelalterliche Luftverschmutzung (Prof. Peter Brimblecombe)

Die Übung konzentrierte sich auf die Verschmutzung der Luft durch die mittelalterliche Salzfabrikation in Lüneburg. Die Emissionen wurden aus historischen Aufzeichnungen zur Anzahl der Fabrikationsstellen und Produktionsmengen und –prozesse sowie aus dem Holzverbrauch beim Sieden abgeleitet.

Die Studenten konnten die Emissionsdaten für Simulationen mit vereinfachten Modellen benutzen, um bodennahe Konzentrationsfelder von Primärschadstoffen (z.B. CO, SO₂, Partikel und B(a)P) zu berechnen. Die Ergebnisse wurden in einer solchen Weise zusammengefasst und aufbereitet, dass sie auch der Öffentlichkeit verfügbar gemacht werden konnten, wobei das Deutsche Salzmuseum behilflich war, das in Lüneburg angesiedelt ist und auch die Übung durch die Bereitstellung der historischen Basisdaten im Vorfeld unterstützt hat . Prof. Peter Brimblecombe hat ein angepasstes Schadstoffmodell zur Verfügung gestellt, GKSS stellte die Computer und öffentlich lizenzierte Software bereit.

Erstellung von Emissionsdatenbasen (Prof. Jozef Pacyna)

Emissionsdatenbasen werden in der Regel aus einer Reihe von Eingangsdaten erstellt; der Prozess erfordert umfassende Qualitätstests. Während der Übung waren die Studenten aufgefordert, beispielhaft eine Emissionsdatenbasis aus Primärdaten, die unterschiedliche Sektoren betreffen, zu erstellen. Die Ergebnisse wurden visualisiert und vor dem Hintergrund unterschiedlicher Erstellungsprozeduren und variablen Qualitätsanforderungen diskutiert. Die Eingangsdaten wurden von Prof. Jozef Pacyna verfügbar gemacht, der die Übung auch leitete. GKSS stellte die erforderlichen Visualisierungsprogramme bereit.

Chemische Transportmodellierung (Dr. Armin Aulinger, Dr. Volker Matthias)

Eine vereinfachte eindimensionale Version eines komplexen dreidimensionalen Chemietransportmodells (CTM) wurde dazu benutzt, den Studenten die Wechselbeziehungen zwischen unterschiedlichen chemischen Verbindungen während des Transports durch die Atmosphäre nahe zu bringen und den wichtigen Einfluss meteorologischer Bedingungen auf den Lebenszyklus von Schadstoffen aufzudecken. Die Säulenversion des CTM wurde von GKSS erstellt und den Studenten in aufbereiteter Version zur Verfügung gestellt.

Erfahrung mit Instrumenten (Prof. Ralf Ebinghaus, Lutz Ahrens):

Moderne analytische Sampler wurden für die Nachmittagsübung im freien Gelände installiert. Die Studenten hatten somit die Möglichkeit, in der Praxis zu sehen, wie Proben in der Gasphase und in der Partikelphase mit Hilfe von großvolumigen Luftprobenahmengeräten und Stufenimpaktoren genommen werden. Eine anschließende "virtuelle Tour – von der Probenahme bis zur analytischen Messung" hat die analytischen Prozedurschritte bei der Reduktion von einer 1500 m³ Luftprobe auf ein 50 ml Extrakt verdeutlicht.

4. Gruppenarbeit

Die Fähigkeit zu Gruppen- bzw. Teamarbeit wurde bei Ausarbeitungen zu gesundheitlichen Aspekten wie auch zu sozialen und ethischen Implikationen von Schadstoffeinflüssen eingeübt. Die Teilnehmer sollten in drei Gruppen eingeteilt jeweils ein Forschungsprogramm zu diesen Themen erarbeiten, das es auch vor dem Plenum zu verteidigen galt.. Die Ergebnisse der Gruppenarbeiten stellten die Grundlage für eine abendliche Diskussionsrunde dar, bei der im informellen Rahmen zum Teil sehr kontrovers, aber immer fair und konstruktiv diskutiert wurde.

5. Nebenprogramm

Das oben aufgeführte wissenschaftliche Programm wurde durch einige Aktivitäten ergänzt, die den Teilnehmern die regionalen Besonderheiten bekannt machen sollten. So fand eine forstkundlich geführte Wanderung durch das staatliche Waldschutzgebiet Göhrde statt. Die Geschichte der Stadt Lüneburg wurde durch eine Führung erschlossen sowie das Deutsche Salzmuseum besichtigt. Während eines gemeinsamen Abendessens stellte auch der Vertreter der DBU, Dr. M. Hempel, die Deutsche Bundesstiftung Umwelt und ihre Zielsetzung hinsichtlich der aktuellen Sommerschule vor.

6. Teilnehmer

Über das Internet-Portal und e-mail hatten sich etwa 120 Interessenten für die Schule "Persistente Schadstoffe: Vergangenheit, Gegenwart und Zukunft" angemeldet.

Basierend auf den beizufügenden Unterlagen haben die Organisatoren 40 Teilnehmer ausgewählt und entsprechend benachrichtigt.

Tatsächlich anwesend waren 36 Studenten, da es kurzfristig Absagen wegen Krankheit bzw. Visumsproblemen gab. Die Teilnehmer repräsentierten 24 Nationen. Es konnten 7 Vollstipendien gewährt werden, 13 Teilstipendien (Erlass der Teilnehmergebühren, Unterstützung bei Reisekosten), 16 Teilnehmer waren Selbstzahler.

Am Ende der Schule wurde allen Studenten ein Zertifikat ausgehändigt, mit dem die erfolgreiche Teilnahme an der Sommerschule bestätigt wurde.

Zur Verfügung steht bis auf weiteres eine Internetseite, auf der die Lehreinheiten, die Selbstdarstellung der Teilnehmer und die Ergebnisse der Arbeitsgruppen sowie einige Bilder zugänglich sind (http://coast.gkss.de/events/5thschool/after_school/new/5thschool/index.htm).

7. Resümee

Die Organisatoren können auf eine in allen Belangen erfolgreiche Sommerschule zurückblicken. Die Teilnehmer und Lehrenden aus den vielen, unterschiedlichen Nationen haben eine sehr kommunikative und produktive Gruppe gebildet. Es hat sich ein kleines Netzwerk von jungen Umweltwissenschaftlern, die die Bandbreite der Teildisziplinen umfassen, entwickelt, das auch über die aktuelle Schule hinaus aktiv sein möchte, was sicher auch im Sinne der DBU ist.

Es lässt sich ohne Einschränkungen sagen, dass es ohne den substantiellen Beitrag der Deutschen Bundesstiftung Umwelt sehr schwer geworden wäre, diese Sommerschule in der erreichten Qualität durchzuführen.

8. Anlagen

-			
Last name	First name	City	Country
Chemat	Smain	Alger	Algeria
Badalyan	Karen	Yerevan	Armenia
Ismayilova	Aynura	Baku	Azerbaijan
Khaiwal	Ravindra	Antwerp	Belgium
Meire	Rodrigo	Rio de Janeiro	Brazil
Buske	Daniela	Porto Alegre	Brazil
Baya	Pascale	Guelph	Canada
Hasan	Ozren	Zagreb	Croatia
Strandberg	Ursula	Joensuu	Finland
Jablonowski	Nicolai David	Aachen	Germany
Sörgel	Matthias	Hamburg	Germany
Zieger	Paul	Berlin	Germany
Jayaraju	Nadim	Tirupati	India
Singh	Gurmeet	New Delhi	India
Komaling	Thilma Ansyera	Jakarta	Indonesia
Leinert	Stephan	Dublin	Ireland
Bonafe	Giovanni	Bologna	Italy
Minguzzi	Enrico	Bologna	Italy
Antipova	Olga	Kaunas	Lithuania
Meilutytè-	Diana	Kaunas	Lithuania
Barauskienè	l/vitanand	\/	N 4
Beeharry	Kritanand	Vacoas	Mauritius
Hurrynag	Hemsing	Vacoas	Mauritius
Balogun	Ifeoluwa Adebowale	Akure	Nigeria
Luks	Bartolomiej	Warsaw	Poland
Butnariu	Monica	Timisoara	Romania
Sarateanu	Veronica	Timisoara	Romania
Bordas	Arpad	Novi Sad	Serbia
Wip	Dennis	Leysweg	Suriname
Sheu	Guey-Rong	Jhung-li	Taiwan
Tunc	Cagan	Erdemli Mersin	Turkey
Goncharov	Olexandr	Odessa	Ukraine
Chaemfa	Chakra	Lancaster	United
Moeckel	Claudia	Lancaster	Kingdom United
			Kingdom
Paul	Alexander	Worksop	United
Donohouo	Doonno	Miomi	Kingdom USA
Donohoue	Deanna Mariya Shaharbyna	Miami	USA
Petrenko	Mariya Shcherbyna	West Lafayette	USA

5th GKSS School of Environmental Research, Part 1, 9 – 13 May 2007

Day:	Wen.	Thurs.	Fri.	Sat.	Sun.
Time	9	10	11	12	13
8:00 – 9:00		Breakfast	Breakfast	Breakfast	Breakfast
9:00 - 10:30	Arrival/Registration	Exercise	Emission inventories	POP chemistry in the	Excursion
	(Flöser)		(Pacyna)	atmosphere	Lüneburg
		Medieval pollution		(Palm)	
		(Brimblecombe)			bus transfer
10:30 - 11:00	Coffee break	Coffee break	Coffee break	Coffee break	
11:00 - 12:30	Arrival/Registration	What can we learn	Exercise	Chemical transport	Excursion
	(Flöser)	from peat cores	How to create emission	modelling.	Lüneburg
		(Shotyk)	inventories.	(Aulinger)	
			(Pacyna)		
12:30 – 14:00	Lunch Break	Lunch Break	Lunch Break	Lunch Break	Lunch Package
14:00 – 15:30	Welcome (Ebinghaus)	What can we learn	Retrospective assessment of		Excursion
	Welcome (Benz)	from ice cores	lead emissions and control	Self-introduction	Lüneburg
	Introduction to the	(Boutron)	policies in Europe	of participants	incl. visit to the
	School (Quante)		(von Storch)	(personal, scientific)	German Salt
	The problem of				Museum
	persistent pollution –				(hand over of
	an overview				medieval pollution
	(Ebinghaus)				poster)
15:30 – 16:00	Coffee break	Coffee break	Coffee break	Coffee break	
16:00 – 17:30	History of air				
	pollution – causes and	Self-introduction	Self-introduction	Common sports/	Conference Dinner
	consequences	of participants	of participants	Walk in the woods	
	(Brimblecombe)	(personal, scientific)	(personal, scientific)	(Meyer, Forestry	(introductory
				Office Göhrde)	address by sponsor)
18:00 – 19:00	Dinner	Dinner	Dinner	Dinner	cont.
start 19:00	Ice Breaker,				end ca. 21:00
	Göhrde-history (BZ)				bus transfer back

5th GKSS School of Environmental Research, Part 2, 14 – 18 May 2007

Day:	Mon.	Tue.	Wed.	Thurs.	Fri.
Time	14	15	16	17	18
8:00 – 9:00	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast
9:00 – 10:30	The global distribution	Aerosols as transport	Clouds and their role in	Natural substances of	The European POP-
	of aerosols	vehicles of persistent	atmospheric transport and	marine origin with	perspective
	(Graßl)	pollutants	chemistry (Quante)	toxic properties	(Holoubek)
		(Matthias)		(Helmholz)	
10:30 – 11:00	Coffee break	Coffee break	Coffee break	Coffee break	Coffee break
11:00 - 12:30	How do whole eco-	Assessment of source-	Perspectives of predictive	Effects of persistent	Wrap up/Rapporteurs
	system experiments	receptor relations by	toxicology	pollutants on marine	
	help us to predict the	inverse modelling	(Schüürmann)	mammals (Hellwig)	Final words
	fate of pollutants	(Elbern)			(Ebinghaus, Quante)
	(Hintelmann)				
12:30 – 14:00	Lunch Break	Lunch Break	Lunch Break	Lunch Break	Lunch Break
14:00 – 15:30	Group work	Exercise	Group work (continued)	Presentation and	
	Human health &		Human health & social and	discussion	Adjourn
	social and ethical	Chemical transport	ethical implications of	of group work	
	implications of	modelling	pollution		
	pollution	(Aulinger, Matthias,	(3 parallel groups)	(moderation: Quante)	
17.00	(3 parallel groups)	Bieser)		~ ~	
15:30 – 16:00	Coffee break	Coffee break	Coffee break	Coffee break	Coffee break
16:00 – 17:30	Hands-on modern	Creation of	Cultural event / Music	Presentation and	
	sampling tools	Course web pages	Evans Nierenz and friends	finalization of web	Farewell
	(Ebinghaus, Ahrens)	(guidance: Flöser)	(Berlin)	pages	
				(moderation: Flöser)	
18:00 – 19:00	Dinner	Dinner	Barbecue	Dinner	
start 19:00			convivial evening		
			music& dance (participants)		

Certificate

We confirm that

has successfully participated in the

Fifth GKSS School on Environmental Research

- Persistent Pollution: Past, Present and Future -

conducted from 9th to 18th May 2007 in Göhrde, Germany

Prof. Dr. Ralf Ebinghaus, Co-Organizer

Dr. Markus Quante, Co-Organizer

The School was co-sponsored by the Federal Environmental Foundation

