

# Heinrich Klostermann GmbH & Co. KG Betonwerke

Projektleiter: Dipl.-Betrw. Peter Klostermann

Am Wasserturm 20, 48653 Coesfeld Tel.: 02541 / 749-35; Fax: 02541 / 749-39 E-Mail: pkl@klostermann-beton.de Internet: www.klostermann-beton.de

Entwicklung wasserdurchlässiger und verdunstungsfähiger Pflasterstein-Beläge zum Vermeiden von Niederschlagsabflüssen und zur Erhöhung der Evaporation im urbanen Raum (1. Phase)

Ergänzende Untersuchungen zur Optimierung wasserdurchlässiger Pflasterstein-Beläge als Beitrag zur Erhöhung der Evaporation im urbanen Raum (2. Phase)

# **Anhang**

zum

Abschlussbericht über ein Entwicklungsprojekt, gefördert unter dem Az: 23277 von der Deutschen Bundesstiftung Umwelt



von

Dipl.-Betrw. Peter Klostermann

Prof. Dr. Wilhelm Georg Coldewey

PD Dr. Patricia Göbel

Coesfeld, März 2012

|                                                                           | <u></u>                     |                                        | Ineti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tut für Geologie und                             | d Paläontologio          |  |  |  |  |
|---------------------------------------------------------------------------|-----------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------|--|--|--|--|
|                                                                           |                             | ESTFÄLISCHE                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                          |  |  |  |  |
|                                                                           | w                           | ILHELMS-UNIVERS                        | SITÄT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bteilung Angewand<br>PD Dr. Patricia             |                          |  |  |  |  |
|                                                                           |                             | ÜNSTER                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PD DI. Patricia                                  | Gobel                    |  |  |  |  |
| Probe:                                                                    | HKS                         | 0/32 mm                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THE PERSON NAMED IN                              | Don                      |  |  |  |  |
| Auftraggebe                                                               | er:                         | DBU                                    | 3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LA THE                                           |                          |  |  |  |  |
| Projektnum                                                                | mer:                        | AZ.:23277-23                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                          |  |  |  |  |
| Untersuchu                                                                | ngszweck:                   | Materialprüfung                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 人のなり                                             | A COLOR                  |  |  |  |  |
| Entnahmeo                                                                 | rt:                         | Fa. Klostermann                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THE STATE OF                                     | <b>以</b> 之人一言            |  |  |  |  |
| Tiefe der Er                                                              | ntnahme:                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A LE                                             |                          |  |  |  |  |
| Art der Entn                                                              |                             | laufwerksentnahm                       | ne 💮                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A CA                                             |                          |  |  |  |  |
| Tag der Ent                                                               | tnahme:                     | 14.01.2008                             | To the state of th | A L                                              | AHO                      |  |  |  |  |
| durch:                                                                    |                             | Starke, P.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | からと                                              |                          |  |  |  |  |
| Bodenart n                                                                | ach DIN 4022                |                                        | mG, g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mG, gg, s`, fg`                                  |                          |  |  |  |  |
|                                                                           | Schlämmkorn                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Siebkom                                          |                          |  |  |  |  |
| Feinstes<br>100                                                           | Schluffkom<br>Fein- Mittel- | Grob- Fein-                            | Sandkorn<br>Mittel- Grob-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Kieskorn Fein- Mittel-                           | Grob-                    |  |  |  |  |
| 90                                                                        |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                          |  |  |  |  |
| 80                                                                        |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                      |                          |  |  |  |  |
| egram me Gesam 140                                                        |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                          |  |  |  |  |
| 8 60<br>8 E                                                               |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                      |                          |  |  |  |  |
| % in b > 20                                                               |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del> |                          |  |  |  |  |
| 왕 40                                                                      |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                      |                          |  |  |  |  |
| Mas se namerie der Körmer<br>OS OS OS                                     |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                          |  |  |  |  |
| 8W 20                                                                     |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                          |  |  |  |  |
| 0                                                                         |                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                          |  |  |  |  |
| 0.001 0.0                                                                 | 002 0.006 0.01 0.02         | 0.06 0.1 0.2<br>Komdurchmesser d in mm | 0.6 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 10 20                                          | 60 100                   |  |  |  |  |
|                                                                           |                             | $k_{\rm f}$ nach Hazen:                | [m/s]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | -                        |  |  |  |  |
|                                                                           | nsgeometrische<br>enngrößen | U / Cc:                                | []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11,9                                             | / 4,7                    |  |  |  |  |
|                                                                           |                             | Gesamt-Plattigk                        | eitskennzahl <i>FI</i> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kennzahl $FI = (M_2/M_1) \times 100 = 27$        |                          |  |  |  |  |
| Z                                                                         | Kornklasse                  | Anteile, auf                           | die nächste ganz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e Zahl gerundet                                  | [%]                      |  |  |  |  |
| i O                                                                       | Romkiasse                   | C <sub>c</sub>                         | einschließl. $C_{ m tc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cr                                               | einschließl. $C_{ m tr}$ |  |  |  |  |
| ner<br>Jen                                                                | 31,5 / 45,0                 | 0                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                | 0                        |  |  |  |  |
| . Kör<br>nung                                                             | 22,4 / 31,5                 | 0                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                | 0                        |  |  |  |  |
| ener                                                                      | 16,0 / 22,4                 | 0                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                | 0                        |  |  |  |  |
| och                                                                       | 11,2 / 16,0                 | 0                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                | 0                        |  |  |  |  |
| gebr<br>Gest                                                              | 8,0 / 11,2                  | 0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                          |  |  |  |  |
| Anteile gebrochener Körner in<br>groben Gesteinskörnungen DIN EN<br>933-5 | 5,0 / 8,0                   | 0<br>ochono Körnor                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                | 0<br>ërnor               |  |  |  |  |
| Ant<br>grol<br>933                                                        |                             | ochene Körner<br>g gebrochene Körner   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r: gerundete Ko<br>tr: vollständig gerund        |                          |  |  |  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n. d. = nicht durchführbar

| WESTFÄLISCHE   WILHELMS-UNIVERSITÄT   Münster   Münster   Münster   Münster   Münster   Münster   Münster   Münster   Münster   PD Dr. Patricia Göbel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                 |                    |                        | <u> </u>                |                 |                  |                                       |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|--------------------|------------------------|-------------------------|-----------------|------------------|---------------------------------------|--|--|
| Probe: HKS 0/32 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>               |                 |                    |                        | Institu                 | t für Geolo     | ogie und I       | Paläontologie                         |  |  |
| Probe: HKS 0/32 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                 |                    |                        | Ab                      | teilung An      | gewandte         | e Geologie                            |  |  |
| Auftraggeber: DBU Projektnummer: AZ::23277-23 Untersuchungszweck: Materialprüfung Entnahmeort: Fa. Klostermann Tiefe der Entnahme: Art der Entnahme: Haufwerksentnahme Tag der Entnahme: 14.01.2008 durch: Starke, P.  Filterstabilität Verwendung als Tragschichtmaterial mit folgenden Bettungsmateriallen Bettungsmaterial D <sub>15</sub> D <sub>50</sub> d <sub>85</sub> d <sub>50</sub> D <sub>15</sub> /d <sub>55</sub> D <sub>50</sub> /d <sub>50</sub> Nachweis der Filterstabilität Splitt (Stratiebo) Splitt (Klostermann) Glasasche Splitt (Klostermann) Glasasche Glasasche/Sand-Germ gewaschener Sand Pflastermörle!  Korndichte - Kapillarpyknometer nach DIN 18124  Weithalspyknometer nach DIN-EN 1097-6  Proctorversuch nach DIN 18127  Wasserdurchlässigkeit nach DIN 18130 (mit konstantem hydralischem Gefälle, gemittelte Werte)  Wasseraufnahmefähigkeit im verdichteten Zustand  Wasserhaltevermögen im verdichteten Zustand  WhV = (m <sub>vinst</sub> /m <sub>a</sub> )*100 [%] Apha 2 (Em) WhV = (m <sub>vinst</sub> /m <sub>a</sub> )*100 [%] Apha 2 (Em) WhV = (m <sub>vinst</sub> /m <sub>a</sub> )*100 [%] Apha 3 (Em) WhV = (m <sub>vinst</sub> /m <sub>a</sub> )*100 [%] Apha 4 (Em) WhV = (m <sub>vinst</sub> /m <sub>a</sub> )*100 [%] Apha 4 (Em)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                 |                    |                        | PD Dr. Patricia Göbel   |                 |                  |                                       |  |  |
| Projektnummer: AZ.:23277-23 Untersuchungszweck: Materialprüfung Entnahmeort: Fa. Klostermann Tiefe der Entnahme: Haufwerksentnahme Tag der Entnahme: 14.01.2008 durch: Starke, P.  Filterstabilität Verwendung als Tragschichtmaterial mit folgenden Bettungsmateriallen Bettungsmaterial $D_{15}$ $D_{50}$ $d_{85}$ $d_{50}$ $D_{15}/d_{85}$ $D_{50}/d_{50}$ Nachweis der Filterstabilität Splitt (Stratiebo) Splitt (Stratiebo) Splitt (Klostermann) Glasasche Glasasche/Sand-Gem. gewaschener Sand Pilastermörle!  Korndichte - Kapillarpyknometer nach DIN 18124  Korndichte - Weithalspyknometer nach DIN-EN 1097-6  Proctorversuch nach DIN 18127  Wasserdurchtässigkeit nach DIN 18130 (mit konstantem hydralischem Gefälle, gemittelte Werte)  Wasseraufnahmefähigkeit im verdichteten Zustand  Wasserhaltevermögen im verdichteten Zustand  Rohrdurchmesser $d$ : [cm] 4  Kapillare Steighöhe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Probe:                 | HKS 0/          | 32 mm              |                        | V.C                     | 750             |                  |                                       |  |  |
| Untersuchungszweck: Materialprüfung Entnahmeort: Fa. Klostermann Tiefe der Entnahme: Art der Entnahme Haufwerksentnahme Tag der Entnahme: 14.01.2008 durch: Starke, P.  Filterstabilität Verwendung als Tragschichtmaterial mit folgenden Bettungsmaterialien Bettungsmaterial D <sub>15</sub> D <sub>50</sub> d <sub>85</sub> d <sub>50</sub> D <sub>15</sub> /d <sub>85</sub> D <sub>50</sub> /d <sub>50</sub> Nachweis der Filterstabilität Splitt (Klostermann) Glasasche Glasasche-Glasasche-Gem- gewaschener Sand Plastermortel  Korndichte - Kapillarpyknometer nach DIN 18127  Korndichte - Weithalspyknometer nach DIN- EN 1097-6  Wasserdurchlässigkeit nach DIN 18130 (mit konstantem hydralischem Gefälle, gemittelte Werte)  Wasseraufnahmefähigkeit im verdichteten Zustand  Wasserhaltevermögen im verdichteten Zustand  Weithalspyknometer nach WhV = (m <sub>WNV</sub> /m <sub>θ</sub> )*100 [%] 4,4  Rohrdurchmesser d: [cm] 4  Rohrdurchmesser d: [cm] 4  Rohrdurchmesser d: [cm] 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Auftraggeber:          |                 | DBU                |                        | 4                       | -               |                  | 公司马                                   |  |  |
| Entnahmeort: Fa. Klostermann Tiefe der Entnahme: Art der Entnahme Haufwerksentnahme Tag der Entnahme: 14.01.2008 durch: Starke, P.  Filterstabilität Verwendung als Tragschichtmaterial mit folgenden Bettungsmaterialien Bettungsmaterial D <sub>15</sub> D <sub>50</sub> d <sub>85</sub> d <sub>50</sub> D <sub>15</sub> /d <sub>85</sub> D <sub>50</sub> /d <sub>50</sub> Nachweis der Filterstabilität Splitt (Klostermann) Glasasche Glasasche-Glasasche-Gem. gewaschener Sand Pflastermortel  Korndichte - Kapillarpyknometer nach DIN 18127  Korndichte - Weithalspyknometer nach DIN-EN 1097-6  Proctorversuch nach DIN 18127  Wasserdurchlässigkeit nach DIN 18130 (mit konstantem hydralischem Gefälle, gemittelte Werte)  Wasseraufnahmefähigkeit im verdichteten Zustand  Fohrdurchmesser d: [cm] 4  Rohrdurchmesser d: [cm] 4  Rohrdurchmesser d: [cm] 4  Rohrdurchmesser d: [cm] 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Projektnummer:         | A               | Z.:23277-23        |                        |                         |                 |                  |                                       |  |  |
| Tiefe der Entnahme: Art der Entnahme Tag der Entnahme: 14.01.2008 durch: Starke, P.  Filterstabilität Verwendung als Tragschichtmaterial mit folgenden Bettungsmaterialien Bettungsmaterial Bettungsmaterial D <sub>15</sub> D <sub>50</sub> D <sub>50</sub> D <sub>50</sub> D <sub>15</sub> /D <sub>85</sub> D <sub>50</sub> /D <sub>15</sub> /D <sub>85</sub> D <sub>50</sub> /D <sub>50</sub> Splitt (Stratiebo) Splitt (Klostermann) Glasasche Glasasche-Glasasche-Glasasche-Sand-Gem. gewaschener Sand Pflastermortel  Korndichte- Kapillarpyknometer nach DIN 18124  Korndichte- Weithalspyknometer nach DIN- EN 1097-6  Proctorversuch nach DIN 18127  Proctorversuch nach DIN 18127  Wasserdurchlässigkeit nach DIN 18130 (mit konstantem hydralischem Gefälle, gemittelte Werte)  Wasseraufnahmerähigkeit im verdichteten Zustand  WhV = $(m_{WW}/m_0)^{*}$ 100  Rohrdurchmesser $d$ :  [cm] 4  Kapillare Steighöhe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Untersuchungszweck:    | Ma              | aterialprüfung     |                        |                         |                 |                  |                                       |  |  |
| Art der Entnahme Tag der Entnahme: 14.01.2008 durch: Starke, P.  Filterstabilität  Verwendung als Tragschichtmaterial mit folgenden Bettungsmaterialien  Bettungsmaterial $D_{15}$ $D_{50}$ $D_{50}$ $D_{50}$ $D_{15}/d_{95}$ $D_{50}/d_{90}$ Nachweis der Filterstabilität  Splitt (Stratiebo) Splitt (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Entnahmeort:           | Fa              | . Klosterma        | stermann               |                         |                 |                  |                                       |  |  |
| Tag der Entnahme: durch: Starke, P.    Filterstabilität                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tiefe der Entnahme:    |                 |                    |                        |                         |                 |                  |                                       |  |  |
| $ \begin{array}{ c c c c c c c } \hline \textbf{Gurch:} & \textbf{Starke, P.} \\ \hline \textbf{Filterstabilität} & \textbf{Verwendung als Tragschichtmaterial mit folgenden Bettungsmateriallen} \\ \hline \textbf{Bettungsmaterial} & \textbf{D}_{15} & \textbf{D}_{50} & \textbf{d}_{85} & \textbf{d}_{50} & \textbf{D}_{15}/\textbf{d}_{85} & \textbf{D}_{50}/\textbf{d}_{50} \\ \hline \textbf{Splitt (Stratiebo)} & \textbf{Splitt (Klostermann)} \\ \textbf{Splitt (Klostermann)} & \textbf{Glasasche} \\ \hline \textbf{Glasasche} & \textbf{Glasasche} & \textbf{Glasasche} \\ \hline \textbf{Glasascher Sand-Gem.} & \textbf{gewaschener Sand} \\ \textbf{gewaschener Sand} & \textbf{p}_{\textbf{flastermörtel}} \\ \hline \textbf{Korndichte} & \textbf{Korndichte} & \textbf{Korndichte} & \textbf{Korndichte} & \textbf{Mittelwert} \\ \hline \textbf{Rorndichte} & \textbf{Korndichte} & \textbf{Mittelwert} \\ \hline \textbf{Starke, P.} & \textbf{P}_{15}/\textbf{G}_{85} & \textbf{D}_{50}/\textbf{d}_{50} & \textbf{Nachweis der Filterstabilität} \\ \hline \textbf{Filterstabilität} & \textbf{Starke, P.} & \textbf{Starke, P.} & \textbf{Starke, P.} \\ \hline \textbf{Starke, P.} & \textbf{D}_{15}/\textbf{d}_{85} & \textbf{D}_{15}/\textbf{d}_{85} & \textbf{D}_{50}/\textbf{d}_{50} & \textbf{Nachweis der Filterstabilität} \\ \hline \textbf{Starke, P.} & \textbf{D}_{15}/\textbf{d}_{85} & \textbf{D}_{15}/\textbf{d}_{85} & \textbf{D}_{50}/\textbf{d}_{50} & \textbf{Nachweis der Filterstabilität} \\ \hline \textbf{Starke, P.} & \textbf{D}_{15}/\textbf{d}_{85} & \textbf{D}_{15}/\textbf{d}_{85} & \textbf{D}_{15}/\textbf{d}_{85} & \textbf{D}_{15}/\textbf{d}_{15} \\ \hline \textbf{Korndichte} & \textbf{Din 18124} & \textbf{D}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15} & \textbf{D}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15} \\ \hline \textbf{Nachweis der Filterstabilität} & \textbf{D}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/\textbf{G}_{15}/G$                                                                                                                         | Art der Entnahme       | Hauf            | werksentn          | ahme                   | 700                     |                 |                  |                                       |  |  |
| $ \begin{array}{ c c c c c c c } \hline \textbf{Glarke, P.} \\ \hline \textbf{Filterstabilität} & \textbf{Verwendung als Tragschichtmaterial mit folgenden Bettungsmaterialien} \\ \hline \textbf{Bettungsmaterial} & \textbf{D}_{15} & \textbf{D}_{50} & \textbf{d}_{85} & \textbf{d}_{50} & \textbf{D}_{16}/\textbf{d}_{85} & \textbf{D}_{50}/\textbf{d}_{50} \\ \hline \textbf{Splitt (Stratiebo)} & \textbf{Splitt (Klostermann)} \\ \hline \textbf{Splitt (Klostermann)} & \textbf{Glasasche} \\ \hline \textbf{Glasasche (Glasasche Gasand - Pflastermörtel} & \textbf{D}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_{18}/\textbf{G}_$ | Tag der Entnahme:      |                 | 14.01.2008         | 3                      |                         |                 |                  |                                       |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | durch:                 |                 | Starke, P.         |                        | 不可。                     |                 | 15               | NA CO                                 |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Filterstabilität       | Verwer          | ndung als <b>1</b> | ragschich              | tmaterial r             | nit folgend     | en Bettur        | ngsmaterialien                        |  |  |
| Splitt (Stratiebo) Splitt (Klostermann) Glasasche Glasasche/Sand-Gem. gewaschener Sand Pflastermörtel  Korndichte - Kapillarpyknometer nach DIN 18124  Froctorversuch nach DIN 18127  Wasserdurchlässigkeit nach DIN 18130 (mit konstantem hydralischem Gefälle, gemittelte Werte)  Wasseraufnahmefähigkeit im verdichteten Zustand  Wasserhaltevermögen im verdichteten Zustand  Finiterstablintat  Friniterstablintat  Passacre  Proctorersuch (Slassache) $p$ [g/cm³] $p$ 1 $p$ 2 $p$ 3 Mittelwert $p$ 2,76 $p$ 2,66 $p$ 2,70 $p$ 2,71  The proctordichte $p$ 2 $p$ 3 Mittelwert  Friniterstablintat  Proctorersuch of Sand  Pfl 2 $p$ 2 $p$ 3 Mittelwert $p$ 1 $p$ 2 $p$ 3 Mittelwert $p$ 1 $p$ 2 $p$ 3 Mittelwert $p$ 3 $p$ 1 $p$ 2 $p$ 3 Mittelwert $p$ 2,76 $p$ 2,66 $p$ 2,70 $p$ 2,71  The proctordichte $p$ 2 $p$ 3 $p$ 3 $p$ 4 $p$ 3 $p$ 4 $p$ 5 $p$ 4 $p$ 4 $p$ 4 $p$ 5 $p$ 4 $p$ 4 $p$ 6 $p$ 4 $p$ 6 $p$ 4 $p$ 6 $p$ 4 $p$ 6 $p$ 7 $p$ 8 $p$ 9 $p$ 8 $p$ 9 $p$ 8 $p$ 9 $p$ 8 $p$ 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                 |                    | 1                      | T                       |                 |                  |                                       |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                      | D <sub>15</sub> | <i>D</i> 50        | U <sub>85</sub>        | U <sub>50</sub>         | 7 1),-/0 1)/0   |                  |                                       |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                 |                    |                        |                         |                 |                  |                                       |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Glasasche              |                 |                    |                        |                         |                 |                  |                                       |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                 |                    |                        |                         |                 |                  |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                 |                    |                        |                         |                 |                  |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                 |                    |                        |                         |                 |                  |                                       |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                 | ρ [a/cm³]          |                        | $\rho_1$                | $\rho_2$        | $\rho_3$         | Mittelwert                            |  |  |
| Weithalspyknometer nach DIN-EN 1097-6 $\rho_{ssd}$ [Mg/m³] $\rho_{ssd$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | naon bin        | ۲ اع               | , 6 ]                  | 2,76                    | 2,66            | 2,70             | 2,71                                  |  |  |
| Proctorversuch nach DIN 18127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                 | _                  |                        | $\rho_1$                | $\rho_2$        | $\rho_3$         | Mittelwert                            |  |  |
| Proctorversuch nach DIN 18127 optimaler Wassergehalt $w_{Pr}$ [%] 5,75  Wasserdurchlässigkeit nach DIN 18130 (mit konstantem hydralischem Gefälle, gemittelte Werte) $9,07E-04$ $2176,48$ erbracht  Wasseraufnahmefähigkeit im verdichteten Zustand $WAV = (m_{WAV}/m_d)^*100$ [%] $15,3$ Wasserhaltevermögen im verdichteten Zustand $WHV = (m_{WHV}/m_d)^*100$ [%] $4,4$ Kapillare Steighöhe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | nach DIN-       | $ ho_{ m ssd}$ [I  | Mg/m³J                 |                         | n.d.            |                  |                                       |  |  |
| Proctorversuch nach DIN 18127 optimaler Wassergehalt $w_{Pr}$ [%] 5,75  Wasserdurchlässigkeit nach DIN 18130 (mit konstantem hydralischem Gefälle, gemittelte Werte) $9,07E-04$ $2176,48$ erbracht  Wasseraufnahmefähigkeit im verdichteten Zustand $WAV = (m_{WAV}/m_d)^*100$ [%] $15,3$ Wasserhaltevermögen im verdichteten Zustand $WHV = (m_{WHV}/m_d)^*100$ [%] $4,4$ Kapillare Steighöhe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 | 1                  | 100% Proct             | ordichte ρ <sub>P</sub> | Pr              | [g/cm³]          | 2,13                                  |  |  |
| Wasserdurchlässigkeit nach<br>DIN 18130 (mit konstantem<br>hydralischem Gefälle,<br>gemittelte Werte)beiwert $k_f$ [m/s]: $V$ [l/(s*ha)]: $k_f \ge 5,4.10^{-5}$ m/s9,07E-042176,48erbracht8,73E-042095,87erbracht9,07E-042176,48erbrachtWasseraufnahmefähigkeit im verdichteten Zustandmax. Wasseraufnahmevermögen in Bezug zur TrockenmasseWasserhaltevermögen im verdichteten Zustandmax. Wasserhaltevermögen in Bezug zur TrockenmasseWHV = $(m_{WHV}/m_d)^*100$ [%]4,4Kapillare SteighöheRohrdurchmesser $d$ : [cm]4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Proctorversuch nach    | DIN 18127       | opt                | imaler Was             | ssergehalt              | w <sub>Pr</sub> |                  |                                       |  |  |
| Wasserdurchlässigkeit nach<br>DIN 18130 (mit konstantem<br>hydralischem Gefälle,<br>gemittelte Werte)beiwert $k_f$ [m/s]:<br>$9,07E-04$ $v$ [l/(s*ha)]:<br>$2176,48$ $v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                 | Durchläs           | ssigkeits-             | Infiltration            | onsrate         | Anfo             | orderung von                          |  |  |
| hydralischem Gefälle, gemittelte Werte)  8,73E-04 2095,87 erbracht  9,07E-04 2176,48  wax. Wasseraufnahmevermögen in Bezug zur Trockenmasse  Wav = $(m_{WAV}/m_d)^*100$ [%]  15,3  Wasserhaltevermögen im verdichteten Zustand  WhV = $(m_{WHV}/m_d)^*100$ [%]  Kapillare Steighöhe  Rohrdurchmesser $d$ :  [cm]  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wasserdurchlässigk     | eit nach        | beiwert            | k <sub>f</sub> [m/s] : | $\dot{V}$ [l/(s*h       | na)] :          | k <sub>f</sub> ≥ | 5,4 <sub>∗</sub> 10 <sup>-5</sup> m/s |  |  |
| gemittelte Werte)8,73E-042095,87erbracht9,07E-042176,48erbrachtWasseraufnahmefähigkeit im verdichteten Zustandmax. Wasseraufnahmevermögen in Bezug zur TrockenmasseWAV = $(m_{WAV}/m_d)^*100$ [%]15,3Wasserhaltevermögen im verdichteten Zustandmax. Wasserhaltevermögen in Bezug zur TrockenmasseWHV = $(m_{WHV}/m_d)^*100$ [%]4,4Kapillare SteighöheRohrdurchmesser $d$ :[cm]4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                      |                 | 9,07               | 'E-04                  | 2176                    | 6,48            | ,                | erbracht                              |  |  |
| 9,07E-042176,48erbrachtWasseraufnahmefähigkeit im verdichteten Zustandmax. Wasseraufnahmevermögen in Bezug zur TrockenmasseWAV = $(m_{WAV}/m_d)^*100$ [%]15,3Wasserhaltevermögen im verdichteten Zustandmax. Wasserhaltevermögen in Bezug zur TrockenmasseWHV = $(m_{WHV}/m_d)^*100$ [%]4,4Kapillare SteighöheRohrdurchmesser $d$ :[cm]4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                      | 8,73            | BE-04              | 209                    | 5,87                    | ,               | erbracht         |                                       |  |  |
| Verdichteten Zustand $WAV = (m_{WAV}/m_d)^*100$ [%]15,3Wasserhaltevermögen im verdichteten Zustandmax. Wasserhaltevermögen in Bezug zur Trockenmasse $WHV = (m_{WHV}/m_d)^*100$ [%]4,4Kapillare SteighöheRohrdurchmesser $d$ :[cm]4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                      | 9,07            | 'E-04              | 2170                   | 6,48                    |                 | erbracht         |                                       |  |  |
| Wasserhaltevermögen im verdichteten Zustandmax. Wasserhaltevermögen in Bezug zur TrockenmasseWHV = $(m_{WHV}/m_d)^*100$ [%]4,4Kapillare SteighöheRohrdurchmesser $d$ :[cm]4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wasseraufnahmefäh      | igkeit im       | n                  | nax. Wassera           | ufnahmeverm             | ögen in Bezı    | ug zur Trock     | kenmasse                              |  |  |
| verdichteten Zustand $WHV = (m_{WHV}/m_d)^*100$ [%]     4,4       Kapillare Steighöhe     Rohrdurchmesser $d$ :     [cm]     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | verdichteten Zustand   |                 | WA                 | $/ = (m_{WAV}/m_{d})$  | <sub>i</sub> )*100      | [%              | %] 15,3          |                                       |  |  |
| Rohrdurchmesser d: [cm] 4  Kapillare Steighöhe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wasserhaltevermögen im |                 |                    | max. Wasse             | erhaltevermög           | en in Bezug     | zur Trocker      | nmasse                                |  |  |
| Kapillare Steighöhe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                 | WH                 | $V = (m_{WHV}/m_c)$    | <sub>d</sub> )*100      | [%              | 6]               | 4,4                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Kanillaro Stoigh       | öhe             |                    | Rohrdurch              | messer d:               |                 | [cm]             | 4                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Napiliale Stelgil      | <u>.</u>        |                    | kapillare St           | teighöhe <i>h</i> :     |                 | [cm]             | 10                                    |  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Westfälische
Wilhelms-Universität
Münster

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

# Probe: Tragschicht 0/45 NL

Auftraggeber: DBU

Projektnummer: AZ.:23277-23

Untersuchungszweck: Materialprüfung

Entnahmeort:

Tiefe der Entnahme: Art der Entnahme Tag der Entnahme:

durch: Starke, P.

#### **Bodenart nach DIN 4022**

S, G

|     |            |    |      | Sc | hlä  | mm | korn      |      |        |    |         |   |    |       |    |          |     |          |   | S     | ebko | rn    |   |    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |          |    |      |
|-----|------------|----|------|----|------|----|-----------|------|--------|----|---------|---|----|-------|----|----------|-----|----------|---|-------|------|-------|---|----|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|----------|----|------|
|     | Feinstes   |    |      |    |      | Sc | hluffkorn |      |        |    | Т       |   |    |       | Sa | ndkorn   |     |          |   |       |      |       |   |    | k | Geskorn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |       |          | Τ. | Stei |
| 100 | 1 ellistes | -  | ein- |    | Ш.   |    | M itte I- |      | G ro t | b- | $\perp$ |   |    | Fein- |    | Mitte I- |     | <u> </u> |   | Grob- |      | Fein- |   | Ц. |   | Mitte I-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - | Grob- |          | Ľ  |      |
| 90  |            |    |      |    |      |    |           |      |        |    |         |   |    |       |    |          |     |          |   |       |      |       |   |    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | هر    | <b>1</b> |    |      |
| 80  |            |    |      |    |      |    |           |      |        |    |         |   |    |       |    |          |     |          |   |       |      |       |   |    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ø | 98    |          |    |      |
| 70  |            |    |      |    |      |    |           |      |        |    |         |   |    |       |    |          |     |          |   |       |      |       |   |    |   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 |       |          |    |      |
| 60  |            |    |      |    |      |    |           |      |        |    |         |   |    |       |    |          |     |          |   |       |      |       |   |    |   | A SON THE PROPERTY OF THE PROP |   |       |          |    |      |
| 50  |            |    |      |    |      |    |           |      |        |    |         |   |    |       |    |          |     |          |   |       | 4    |       | • |    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |          |    |      |
| 40  |            |    |      |    |      |    |           |      |        |    |         |   |    |       |    |          |     |          |   |       |      |       |   |    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |          |    | Γ    |
| 30  |            |    |      |    |      |    |           |      |        | П  | T       | П |    |       |    |          |     |          | 7 |       |      |       |   |    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |          | T  | Γ    |
| 20  |            |    |      |    |      |    |           |      |        |    |         |   |    |       |    |          | 1   |          |   |       |      |       |   |    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |          |    |      |
| 10  |            |    |      |    |      |    |           |      |        |    |         |   |    |       |    | -        |     |          |   |       |      |       |   |    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |          |    | Γ    |
| 0   |            |    |      |    |      |    | l         | ١.   |        |    | 3       | • | •  |       |    |          |     |          |   |       |      |       |   |    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       |          |    |      |
| 0.0 | 0.0        | 02 |      | 0  | .006 | 0  | .01       | 0.02 |        |    | 0.06    |   | 0. | .1 0  | .2 |          | - 0 | 1.6      |   | 1 :   | 2    |       |   | 6  |   | 10 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D |       |          | 60 | _    |

| Gesteinsgeometrische |
|----------------------|
| Kenngrößen           |

| $k_{\rm f}$ nach HAZEN: | [m/s] | 4,7 * 10 <sup>-4</sup> |
|-------------------------|-------|------------------------|
| U / Cc:                 | []    | 35,0 / 0,3             |

Gesamt-Plattigkeitskennzahl  $FI = (M_2/M_1) \times 100 = 29$ 

| EN                                      | Kornklasse  | Anteile, auf                         | die nächste ganze        | Zahl gerundet                                           | [%]                      |  |  |  |
|-----------------------------------------|-------------|--------------------------------------|--------------------------|---------------------------------------------------------|--------------------------|--|--|--|
| in<br>DIN E                             | Norrikiasse | C <sub>c</sub>                       | einschließl. $C_{ m tc}$ | Cr                                                      | einschließl. $C_{ m tr}$ |  |  |  |
| _                                       | 45,0 / 63,0 | 0                                    | 100                      | 0                                                       | 0                        |  |  |  |
| Körner<br>ıungen                        | 31,5 / 45,0 | 7                                    | 100                      | 0                                                       | 0                        |  |  |  |
| _                                       | 22,4 / 31,5 | 13                                   | 100                      | 0                                                       | 0                        |  |  |  |
| skö                                     | 16,0 / 22,4 | 11                                   | 97                       | 3                                                       | 3                        |  |  |  |
| och                                     | 11,2 / 16,0 | 7                                    | 97                       | 3                                                       | 3                        |  |  |  |
| gebrochener Körnel<br>Gesteinskörnungen | 8,0 / 11,2  | 9                                    | 98                       | 2                                                       | 2                        |  |  |  |
|                                         | 5,0 / 8,0   | 9                                    | 98                       | 2                                                       | 2                        |  |  |  |
| Anteile<br>groben<br>933-5              | _           | ochene Körner<br>g gebrochene Körner |                          | r: gerundete Körner<br>tr: vollständig gerundete Körner |                          |  |  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n. d. = nicht durchführbar

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

# Probe: Tragschicht 0/45 NL

Auftraggeber: DBU

Τ

Projektnummer: AZ.:23277-23
Untersuchungszweck: Materialprüfung

Entnahmeort:

durch:

Tiefe der Entnahme: Art der Entnahme Tag der Entnahme:

Starke, P.

|            | TO ALLEND THE WAY AND A SHOULD BE AND A SHOULD BE AND A SHOULD BE AND ASSESSED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Co.      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20       |
|            | A MORNING TO STATE OF THE STATE | 1        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A.       |
|            | The state of the s | Y        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|            | THE PROPERTY OF THE PROPERTY O | 1        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The same |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 329      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Des.     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38       |
|            | The second secon | 100      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70       |
|            | MICH THE THE THE THE THE THE THE THE THE TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400      |
| 一个人的一个人    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| A PARTY OF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |
|            | The Authority of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |

| Filterstabilität                     | Verwer          | ndung als <b>T</b> | ragschich              | <b>tmateria</b> l r         | nit folgend     | en Bettur       | ngsmaterialien                        |
|--------------------------------------|-----------------|--------------------|------------------------|-----------------------------|-----------------|-----------------|---------------------------------------|
| Bettungsmaterial                     | D <sub>15</sub> | D <sub>50</sub>    | d <sub>85</sub>        | d <sub>50</sub>             | $D_{15}/d_{85}$ | $D_{50}/d_{50}$ | Nachweis der<br>Filterstabilität      |
| Splitt (Stratiebo)                   | 0,292           | 2,501              | -                      | 3,331                       | -               | 0,8             | nicht erbracht                        |
| Splitt (Klostermann)                 | 0,292           | 2,501              | -                      | 3,563                       | -               | 0,7             | nicht erbracht                        |
| Glasasche                            | 0,292           | 2,501              | 4,380                  | 1,831                       | 0,1             | 1,4             | erbracht                              |
| Glasasche/Sand-Gem.                  | 0,292           | 2,501              | 2,515                  | 0,529                       | 0,1             | 4,7             | erbracht                              |
| gewaschener Sand                     | 0,292           | 2,501              | 0,660                  | 0,311                       | 0,4             | 8,0             | erbracht                              |
| Pflastermörtel                       | 0,292           | 2,501              | 0,785                  | 0,359                       | 0,4             | 7,0             | erbracht                              |
| Korndichte -<br>Kapillarpyknometer r |                 | o [a               | /cm³]                  | $\rho_1$                    | $\rho_2$        | $\rho_3$        | Mittelwert                            |
| 18124                                | lacii Dii       | P 19               | Citi j                 | 2,61                        | 2,57            | 2,58            | 2,59                                  |
| Korndichte -<br>Weithalspyknometer i | nach DIN        | 0 . [1             | /lg/m³]                | $\rho_1$                    | $\rho_2$        | $\rho_3$        | Mittelwert                            |
| EN 1097-6                            | P ssd L         | vig/iii ]          |                        | n.d.                        |                 |                 |                                       |
| Proctorversuch nach I                | NIN 19127       | 1                  | 00% Procto             | ordichte $ ho$ <sub>P</sub> | r               | [g/cm³]         | > 2,23                                |
| Proctorversuch nach i                | JIN 10127       | opt                | imaler Was             | sergehalt i                 | W <sub>Pr</sub> | [%]             | > 9,56                                |
|                                      |                 | Durchläs           | sigkeits-              | Infiltration                | onsrate         | Anfo            | orderung von                          |
| Wasserdurchlässigk                   | eit nach        |                    | k <sub>f</sub> [m/s] : | $\dot{V}$ [l/(s*h           |                 |                 | 5,4 <sub>∗</sub> 10 <sup>-5</sup> m/s |
| DIN 18130 (mit kons                  | tantem          |                    | -                      | -                           | · ·             | •               | ht erbracht                           |
| hydralischem Ge<br>gemittelte Wer    | •               |                    |                        |                             |                 |                 |                                       |
| gommono                              | ,               |                    |                        |                             |                 |                 |                                       |
| Wasseraufnahmefäh                    | igkeit im       | m                  | nax. Wassera           | ufnahmeverm                 | ögen in Bezı    | ıg zur Trock    | kenmasse                              |
| verdichteten Zus                     | tand            | WAV                | $' = (m_{WAV}/m_{d})$  | )*100                       | [%              | [o]             | 14,6                                  |
| Wasserhaltevermö                     | gen im          |                    | max. Wasse             | erhaltevermög               | en in Bezug     | zur Trocker     | nmasse                                |
| verdichteten Zus                     | _               | WHN                | $V = (m_{WHV}/m_{d})$  | )*100                       | [%              | [o]             | 10,5                                  |
| Manillana Ctalish                    | " L _           | Rohrdurchmesser o  |                        |                             |                 | [cm]            | 12                                    |
| Kapillare Steigh                     | one             |                    | kapillare St           | eighöhe h:                  |                 | [cm]            | 36,5                                  |
| - kannta night armittalt word        |                 |                    |                        |                             |                 |                 | @ Wasaha 00                           |

<sup>- =</sup> konnte nicht ermittelt werden, n. d. = nicht durchführbar

|                                                                                         |                              |                                       |                     | Inctit                 | ıt für Gooloo               | nio una             | d Paläontologie              |
|-----------------------------------------------------------------------------------------|------------------------------|---------------------------------------|---------------------|------------------------|-----------------------------|---------------------|------------------------------|
|                                                                                         | . <del>-</del>               | Westfälische                          |                     |                        | _                           |                     | -                            |
|                                                                                         |                              | WILHELMS-UNIVER                       | RSITÄT              | AD                     |                             |                     | Ite Geologie                 |
|                                                                                         |                              | MÜNSTER                               |                     | at the state of        | PD Dr. P                    | atrıcıa             | Göbel                        |
| Probe:                                                                                  | Drär                         | sand NL                               |                     |                        |                             |                     |                              |
| Auftraggebe                                                                             | er:                          | DBU                                   |                     |                        | *                           |                     |                              |
| Projektnum                                                                              | mer:                         | AZ.:23277-23                          |                     |                        |                             |                     |                              |
| Untersuchu                                                                              | ngszweck:                    | Materialprüfung                       |                     |                        |                             |                     |                              |
| Entnahmeo                                                                               | rt:                          |                                       |                     |                        |                             |                     |                              |
| Tiefe der Er                                                                            | ntnahme:                     |                                       |                     |                        |                             |                     |                              |
| Art der Entn                                                                            | nahme                        |                                       |                     |                        |                             |                     |                              |
| Tag der Ent                                                                             | tnahme:                      |                                       |                     |                        |                             |                     |                              |
| durch:                                                                                  |                              | Starke, P.                            |                     |                        | The second                  |                     |                              |
| Bodenart n                                                                              | ach DIN 4022                 |                                       |                     | fS,                    | ms′                         |                     |                              |
|                                                                                         | Schlämmkorn                  |                                       |                     | 9                      | Siebkorn                    |                     |                              |
| Feinstes<br>100                                                                         | Schluffkorn<br>Fein- Mittel- | Grob- Fein-                           | Sandkorn<br>Mittel- | Grob-                  | Fein -                      | Kieskorn<br>Mittel- | Steine<br>Grob-              |
| 90                                                                                      |                              |                                       |                     |                        |                             |                     |                              |
| g 80                                                                                    |                              |                                       |                     |                        |                             |                     |                              |
| Massemantelle der Körner « d.in % der Gesamtmenge 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                              | <u> </u>                              |                     |                        |                             |                     |                              |
| 99 eo                                                                                   |                              |                                       |                     |                        |                             |                     |                              |
| 8 50 × 50                                                                               |                              | <u> </u>                              |                     |                        |                             |                     |                              |
| E KÖÜLE                                                                                 |                              |                                       |                     |                        |                             |                     |                              |
| anteile 30                                                                              |                              |                                       |                     |                        |                             |                     |                              |
| 88<br>88 20<br>3E 20                                                                    |                              |                                       |                     |                        |                             |                     |                              |
| 10                                                                                      |                              |                                       |                     |                        |                             |                     |                              |
| 0.001 0.00                                                                              | 2 0.006 0.01 0.02            | 0.06 0.1 0.2                          | 0.8                 | 1 1                    | 2 6                         | 10                  | 20 60 10                     |
|                                                                                         |                              | Korndurchmesser d in mm               |                     |                        |                             |                     |                              |
| Gostoir                                                                                 | nsgeometrische               | $k_{\rm f}$ nach HAZEN:               | [m                  | /s]                    |                             | 5,0 *               | · 10 <sup>-5</sup>           |
|                                                                                         | enngrößen                    | <i>U / C</i> c:                       | [                   | _                      |                             |                     | / 0,8                        |
|                                                                                         |                              | Gesamt-Plattigk                       | eitskennz           | ahl <i>FI</i> =        | $(M_2/M_1) \times 1$        | 00 =                | n.d.                         |
| Z                                                                                       | Kornklasse                   | Anteile, auf                          | die nächs           | te ganze               |                             | det                 | [%]                          |
| Anteile gebrochener Körner in<br>groben Gesteinskörnungen DIN EN<br>933-5               |                              | C <sub>c</sub>                        | einschli            | eßl. $C_{\mathrm{tc}}$ | C <sub>r</sub>              |                     | einschließl. C <sub>tr</sub> |
| ner<br>Jen                                                                              | 31,5 / 45,0                  |                                       |                     |                        |                             |                     |                              |
| Kör                                                                                     | 22,4 / 31,5                  |                                       |                     |                        |                             |                     |                              |
| ener<br>körr                                                                            | 16,0 / 22,4                  | n.d.                                  | n.                  | d.                     | n.d.                        |                     | n.d.                         |
| och(<br>eins                                                                            | 11,2 / 16,0                  |                                       |                     |                        |                             |                     |                              |
| lebro<br>jesto                                                                          | 8,0 / 11,2                   |                                       |                     |                        |                             |                     |                              |
| ile g<br>en G                                                                           | 5,0 / 8,0                    |                                       |                     |                        |                             |                     |                              |
| Anteile gebrochener Körner in<br>groben Gesteinskörnungen DI<br>933-5                   |                              | rochene Körner<br>g gebrochene Körner |                     |                        | r: gerun<br>tr: vollständig |                     |                              |
|                                                                                         | tc: volistandi               |                                       |                     |                        | แ. volistandig              | yerund              | @ Wesche 09                  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

| <u> </u>                                                                            |                                     |                                         |                                                                                 | Institu                                      | t für Geolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ogie und f                         | Paläontologie                         |  |  |
|-------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------|--|--|
|                                                                                     |                                     | TFÄLISCHE<br>HELMS-UN                   |                                                                                 | Ab                                           | teilung An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gewandte                           | e Geologie                            |  |  |
|                                                                                     |                                     | ISTER                                   | VERSITAT                                                                        |                                              | PD Dr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Patricia G                         | Söbel                                 |  |  |
| Probe:                                                                              | Dränsa                              | nd NL                                   |                                                                                 |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |  |  |
| Auftraggeber:                                                                       |                                     | DBU                                     |                                                                                 |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |  |  |
| Projektnummer:                                                                      | Α                                   | Z.:23277-2                              | 23                                                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |  |  |
| Untersuchungszweck:                                                                 | Ma                                  | aterialprüfu                            | ng                                                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |  |  |
| Entnahmeort:                                                                        |                                     |                                         |                                                                                 |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |  |  |
| Tiefe der Entnahme:                                                                 |                                     |                                         |                                                                                 |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |  |  |
| Art der Entnahme                                                                    |                                     |                                         |                                                                                 |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |  |  |
| Tag der Entnahme:                                                                   |                                     |                                         |                                                                                 |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |  |  |
| durch:                                                                              |                                     | Starke, P.                              |                                                                                 |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |  |  |
|                                                                                     | .,                                  |                                         |                                                                                 | 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | The State of the S |                                    |                                       |  |  |
| Filterstabilität                                                                    | Verwer                              | ndung als T                             | ragschich                                                                       | tmaterial n                                  | nit folgend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | en Bettur                          | ngsmaterialien                        |  |  |
| Bettungsmaterial                                                                    | D <sub>15</sub>                     | $D_{50}$                                | d <sub>85</sub>                                                                 | d <sub>50</sub>                              | $D_{15}/d_{85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $D_{50}/d_{50}$                    | Nachweis der<br>Filterstabilität      |  |  |
| Splitt (Stratiebo)                                                                  | 0,068                               | 0,090                                   | -                                                                               | 3,331                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0                                | nicht erbracht                        |  |  |
| Splitt (Klostermann)                                                                | 0,068                               | 0,090                                   | -                                                                               | 3,563                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0                                | nicht erbracht                        |  |  |
| Glasasche                                                                           | 0,068                               | 0,090                                   | 4,380                                                                           | 1,831                                        | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                | erbracht                              |  |  |
| Glasasche/Sand-Gem. gewaschener Sand                                                | 0,068<br>0,068                      | 0,090                                   | 2,515                                                                           | 0,529                                        | 0,0<br>0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,2                                | erbracht<br>erbracht                  |  |  |
| Pflastermörtel                                                                      | 0,068                               | 0,090<br>0,090                          | 0,660<br>0,785                                                                  | 0,311<br>0,359                               | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,3<br>0,2                         | erbracht                              |  |  |
| Korndichte -                                                                        |                                     | - ,                                     |                                                                                 | ρ <sub>1</sub>                               | $\rho_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\rho_3$                           | Mittelwert                            |  |  |
| Kapillarpyknometer i                                                                | nach DIN                            | ρ [g                                    | /cm³]                                                                           | 2,60                                         | 2,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,62                               | 2,61                                  |  |  |
| 18124<br>Korndichte -                                                               |                                     |                                         |                                                                                 | 2,00                                         | 2,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,02                               |                                       |  |  |
| Weithalspyknometer                                                                  |                                     | $ ho_{\scriptscriptstyle 	ext{ssd}}$ [N | /lg/m³]                                                                         | ρ <sub>1</sub>                               | $\rho_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\rho_3$                           | Mittelwert                            |  |  |
| EN 1097-6                                                                           |                                     | , 550 1                                 |                                                                                 |                                              | n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                       |  |  |
| Drootory orough noch                                                                | DIN 49427                           | 1                                       | 00% Proct                                                                       | ordichte $ ho$ P                             | 'r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [g/cm³]                            | 1,35                                  |  |  |
| Proctorversuch nach                                                                 | DIN 10127                           | opt                                     | imaler Was                                                                      | sergehalt เ                                  | W <sub>Pr</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [%]                                | 0,0                                   |  |  |
|                                                                                     |                                     |                                         | sigkeits-                                                                       | Infiltratio                                  | onsrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | orderung von                          |  |  |
| Wasserdurchlässigk                                                                  |                                     | beiwert                                 | k <sub>f</sub> [m/s] :                                                          | $_{V}$ [l/(s*h                               | na)] :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | k <sub>f</sub> ≥                   | 5,4 <sub>∗</sub> 10 <sup>-5</sup> m/s |  |  |
| DIN 18130 (mit konstantem                                                           |                                     | 4,06                                    | E-05                                                                            | 338                                          | ,63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nic                                | ht erbracht                           |  |  |
| hydrolicaham Ca                                                                     | fälla                               |                                         |                                                                                 |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nicht erbracht                     |                                       |  |  |
| hydralischem Ge<br>gemittelte Wer                                                   |                                     | 4,72                                    | E-05                                                                            | 589                                          | ,46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nic                                | ht erbracht                           |  |  |
| hydralischem Ge<br>gemittelte Wer                                                   |                                     | 4,72                                    | E-05<br>-                                                                       | 589                                          | ,46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | ht erbracht<br>ht erbracht            |  |  |
| gemittelte Wer                                                                      | te)                                 |                                         | -                                                                               | 589<br>-<br>ufnahmeverm                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nic                                | ht erbracht                           |  |  |
| _                                                                                   | te)<br>igkeit im                    | m                                       | -                                                                               | ufnahmeverm                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>nic</b><br>ug zur Trock         | ht erbracht                           |  |  |
| gemittelte Wer Wasseraufnahmefäh verdichteten Zus                                   | igkeit im                           | m                                       | nax. Wasseral                                                                   | ufnahmeverm                                  | ögen in Bezu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nic                                | ht erbracht<br>kenmasse<br>24,5       |  |  |
| gemittelte Wer Wasseraufnahmefäh                                                    | igkeit im<br>tand<br>gen im         | m<br>WAV                                | nax. Wasseral                                                                   | ufnahmeverm<br>)*100<br>erhaltevermög        | ögen in Bezu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nic  ug zur Trock  6]  zur Trocker | ht erbracht<br>kenmasse<br>24,5       |  |  |
| gemittelte Wer Wasseraufnahmefäh verdichteten Zus Wasserhaltevermö verdichteten Zus | igkeit im<br>tand<br>gen im<br>tand | m<br>WAV<br>WHV                         | max. Wasserar<br>$y' = (m_{WAV}/m_d)$<br>max. Wasse                             | ufnahmeverm )*100 erhaltevermög              | ögen in Bezu<br>[%<br>en in Bezug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nic  ug zur Trock  6]  zur Trocker | ht erbracht enmasse 24,5              |  |  |
| gemittelte Wer Wasseraufnahmefäh verdichteten Zus Wasserhaltevermö                  | igkeit im<br>tand<br>gen im<br>tand | m<br>WAV<br>WHV                         | max. Wasseran $y' = (m_{WAV}/m_d)$ max. Wasseran $y' = (m_{WHV}/m_d)$ Rohrdurch | ufnahmeverm )*100 erhaltevermög              | ögen in Bezu<br>[%<br>en in Bezug<br>[%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nic  ug zur Trock  zur Trocker     | ht erbracht kenmasse 24,5 masse 22,3  |  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n. d. = nicht durchführbar

Institut für Geologie und Paläontologie WESTFÄLISCHE Abteilung Angewandte Geologie WILHELMS-UNIVERSITÄT PD Dr. Patricia Göbel MÜNSTER Feld 4 unterer Bereich TL - SoB Probe: Auftraggeber: DBU AZ::23277-23 Projektnummer: Untersuchungszweck: Materialprüfung Entnahmeort: Tiefe der Entnahme: Art der Entnahme Tag der Entnahme: durch: Starke, P. **Bodenart nach DIN 4022** S, G Schlämmkorn Siebkorn Feinstes Mitte I 50 30 20 k<sub>f</sub> nach HAZEN: [m/s]  $5.3 * 10^{-4}$ Gesteinsgeometrische U/Cc: 26,1 / 0,3 [] Kenngrößen Gesamt-Plattigkeitskennzahl  $FI = (M_2/M_1) \times 100 =$ 30 Anteile, auf die nächste ganze Zahl gerundet Ш Kornklasse einschließl. Ctc einschließl. C<sub>tr</sub> Anteile gebrochener Körner in groben Gesteinskörnungen DIN 933-5  $C_{c}$  $C_r$ 31,5 / 45,0 0 0 0 0 22,4 / 31,5 0 100 0 0 16,0 / 22,4 18 100 0 0 100 0 11,2 / 16,0 8 0 8,0 / 11,2 7 100 0 0 5,0 / 8,0 100 c: gebrochene Körner r: gerundete Körner tc: vollständig gebrochene Körner tr: vollständig gerundete Körner

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

Probe: Feld 4 unterer Bereich TL - SoB

Auftraggeber: DBU

Projektnummer: AZ.:23277-23 Untersuchungszweck: Materialprüfung

Entnahmeort:

Tiefe der Entnahme: Art der Entnahme Tag der Entnahme:

\_

durch: Starke, P.

| Filterstabilität                     | Verwer          | ndung als <b>T</b>            | ragschich              | <b>tmateria</b> l n | nit folgend     | en Bettur        | ngsmaterialien                        |
|--------------------------------------|-----------------|-------------------------------|------------------------|---------------------|-----------------|------------------|---------------------------------------|
| Bettungsmaterial                     | D <sub>15</sub> | D <sub>50</sub>               | d <sub>85</sub>        | d <sub>50</sub>     | $D_{15}/d_{85}$ | $D_{50}/d_{50}$  | Nachweis der<br>Filterstabilität      |
| Splitt (Stratiebo)                   | 0,290           | 2,727                         | ı                      | 3,331               | -               | 0,8              | nicht erbracht                        |
| Splitt (Klostermann)                 | 0,290           | 2,727                         | -                      | 3,563               | -               | 0,8              | nicht erbracht                        |
| Glasasche                            | 0,290           | 2,727                         | 4,380                  | 1,831               | 0,1             | 1,5              | erbracht                              |
| Glasasche/Sand-Gem.                  | 0,290           | 2,727                         | 2,515                  | 0,529               | 0,1             | 5,2              | erbracht                              |
| gewaschener Sand                     | 0,290           | 2,727                         | 0,660                  | 0,311               | 0,4             | 8,8              | erbracht                              |
| Pflastermörtel                       | 0,290           | 2,727                         | 0,785                  | 0,359               | 0,4             | 7,6              | erbracht                              |
| Korndichte -<br>Kapillarpyknometer r | ach DIN         | ρ [g/                         | /om <sup>3</sup> 1     | $\rho_1$            | $\rho_2$        | $\rho_3$         | Mittelwert                            |
| 18124                                | iach din        | p <sub>[g/</sub>              | Citi J                 | 2,67                | 2,66            | 2,65             | 2,66                                  |
| Korndichte -                         | ach DIN         | 0 [1                          | //a/m <sup>31</sup>    | $\rho_1$            | $\rho_2$        | $\rho_3$         | Mittelwert                            |
| Weithalspyknometer r<br>EN 1097-6    | iach Din-       | $ ho_{ m ssd}$ [N             | /ig/iii j              | 2,71                | 2,72            | 2,71             | 2,71                                  |
| Dreetewyereyek week I                | DIN 40407       | 100% Proctordichte $ ho_{Pr}$ |                        |                     | r               | [g/cm³]          | 2,42                                  |
| Proctorversuch nach I                | JIN 18127       | opti                          | maler Was              | sergehalt ı         | W <sub>Pr</sub> | [%]              | 7,8                                   |
|                                      |                 | Durchläs                      | •                      | Infiltration        | onsrate         |                  | orderung von                          |
| Wasserdurchlässigk                   | eit nach        | beiwert i                     | k <sub>f</sub> [m/s] : | $\dot{V}$ [I/(s*h   | na)] :          | k <sub>f</sub> ≥ | 5,4 <sub>∗</sub> 10 <sup>-5</sup> m/s |
| DIN 18130 (mit kons                  |                 | 5,89                          | E-05                   | 377                 | ,26             | (                | erbracht                              |
| hydralischem Ge<br>gemittelte Wert   | · ·             | 5,80                          | E-05                   | 463                 | ,84             | (                | erbracht                              |
| Ü                                    | ,               | 5,36                          | E-05                   | 514                 | ,44             | •                | erbracht                              |
| Wasseraufnahmefähi                   | gkeit im        | m                             | ax. Wassera            | ufnahmeverm         | ögen in Bezı    | ug zur Trock     | kenmasse                              |
| verdichteten Zus                     | tand            | WAV                           | $' = (m_{WAV}/m_{d})$  | )*100               | [%              | [o]              | 13,4                                  |
| Wasserhaltevermö                     | gen im          |                               | max. Wasse             | erhaltevermög       | en in Bezug     | zur Trocker      | nmasse                                |
| verdichteten Zus                     | _               | WHV                           | $' = (m_{WHV}/m_{d})$  | )*100               | [%              | [6]              | 11,5                                  |
| Maniffer Otal 1                      | " I             |                               | messer d:              |                     | [cm]            | 12               |                                       |
| Kapillare Steigh                     | one             | ŀ                             | kapillare St           | eighöhe <i>h</i> :  |                 | [cm]             | 33                                    |
| - = konnte nicht ermittelt werd      |                 |                               |                        |                     | © Wesche 09     |                  |                                       |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie WESTFÄLISCHE Abteilung Angewandte Geologie WILHELMS-UNIVERSITÄT PD Dr. Patricia Göbel MÜNSTER Feld 5 oberer Bereich TL - SoB Probe: Auftraggeber: DBU AZ::23277-23 Projektnummer: Untersuchungszweck: Materialprüfung Entnahmeort: Tiefe der Entnahme: Art der Entnahme Tag der Entnahme: durch: Starke, P. **Bodenart nach DIN 4022** S, G Schlämmkorn Siebkorn Feinstes 100 0.06 0.1 Korndurchmesser d in mm k<sub>f</sub> nach HAZEN: [m/s]  $3.5 * 10^{-4}$ Gesteinsgeometrsche U/Cc: 28,0 / 0,3 [] Kenngrößen Gesamt-Plattigkeitskennzahl  $FI = (M_2/M_1) \times 100 =$ 28 Anteile, auf die nächste ganze Zahl gerundet Ш Kornklasse einschließl. Ctc einschließl. C<sub>tr</sub> Anteile gebrochener Körner in groben Gesteinskörnungen DIN 933-5  $C_{c}$  $C_r$ 31,5 / 45,0 0 0 0 0 22,4 / 31,5 3 100 0 0 16,0 / 22,4 5 100 0 0 99 11,2 / 16,0 7 8,0 / 11,2 8 99

c: gebrochene Körner

tc: vollständig gebrochene Körner

5,0 / 8,0

tr: vollständig gerundete Körner

100

0

r: gerundete Körner

<sup>=</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

Probe: Feld 5 oberer Bereich TL - SoB

Auftraggeber: DBU

\_

Projektnummer: AZ.:23277-23 Untersuchungszweck: Materialprüfung

Entnahmeort:

Tiefe der Entnahme: Art der Entnahme Tag der Entnahme:

durch: Starke, P.

| Filterstabilität                        | Verwer          | ndung als <b>T</b>                  | ragschich              | <b>tmateria</b> l n | nit folgend     | en Bettur       | ngsmaterialien                        |  |      |    |
|-----------------------------------------|-----------------|-------------------------------------|------------------------|---------------------|-----------------|-----------------|---------------------------------------|--|------|----|
| Bettungsmaterial                        | D <sub>15</sub> | D <sub>50</sub>                     | d <sub>85</sub>        | d <sub>50</sub>     | $D_{15}/d_{85}$ | $D_{50}/d_{50}$ | Nachweis der<br>Filterstabilität      |  |      |    |
| Splitt (Stratiebo)                      | 0,248           | 2,471                               | -                      | 3,331               | -               | 0,7             | nicht erbracht                        |  |      |    |
| Splitt (Klostermann)                    | 0,248           | 2,471                               | -                      | 3,563               | -               | 0,7             | nicht erbracht                        |  |      |    |
| Glasasche                               | 0,248           | 2,471                               | 4,380                  | 1,831               | 0,1             | 1,3             | erbracht                              |  |      |    |
| Glasasche/Sand-Gem.                     | 0,248           | 2,471                               | 2,515                  | 0,529               | 0,1             | 4,7             | erbracht                              |  |      |    |
| gewaschener Sand                        | 0,248           | 2,471                               | 0,660                  | 0,311               | 0,4             | 7,9             | erbracht                              |  |      |    |
| Pflastermörtel                          | 0,248           | 2,471                               | 0,785                  | 0,359               | 0,3             | 6,9             | erbracht                              |  |      |    |
| Korndichte -<br>Kapillarpyknometer n    | ach DIN         | ρ [a                                | /cm³]                  | $\rho_1$ $\rho_2$   |                 | $\rho_3$        | Mittelwert                            |  |      |    |
| 18124                                   |                 | P 19                                | ···· 1                 | 2,75                | 2,72            | 2,68            | 2,72                                  |  |      |    |
| Korndichte -<br>Weithalspyknometer r    | ach DIN-        | ο . [1                              | Mg/m³]                 | $\rho_1$            | $\rho_2$        | $\rho_3$        | Mittelwert                            |  |      |    |
| EN 1097-6                               | P ssd L         | vig/iii ]                           | 2,70                   | 2,69                | 2,70            | 2,70            |                                       |  |      |    |
| Proctorversuch nach [                   | NN 19127        | 1                                   | 00% Procto             | ordichte $ ho$ P    | r.              | [g/cm³]         | 2,21                                  |  |      |    |
| Proctorversuch nach i                   | JIN 10127       | opt                                 | imaler Was             | sergehalt ı         | N <sub>Pr</sub> | [%]             | 3,29                                  |  |      |    |
|                                         |                 | Durchläs                            | sigkeits-              | Infiltration        | onsrate         | Anfo            | orderung von                          |  |      |    |
| Wasserdurchlässigk                      | eit nach        |                                     | k <sub>f</sub> [m/s] : | $\dot{V}$ [l/(s*h   |                 |                 | 5,4 <sub>∗</sub> 10 <sup>-5</sup> m/s |  |      |    |
| DIN 18130 (mit kons<br>hydralischem Get |                 | 4,02                                | E-05                   | 321                 | ,53             | nic             | ht erbracht                           |  |      |    |
| gemittelte Wert                         | •               | 4,33                                | E-05                   | 416                 | ,09             | nic             | ht erbracht                           |  |      |    |
| _                                       | •               | 4,21                                | E-05                   | 404                 | ,20             | nic             | ht erbracht                           |  |      |    |
| Wasseraufnahmefähi                      | gkeit im        | m                                   | nax. Wassera           | ufnahmeverm         | ögen in Bezı    | ug zur Trock    | kenmasse                              |  |      |    |
| verdichteten Zus                        | _               | $WAV = (m_{WAV}/m_d)^*100$ [%] 12,5 |                        |                     |                 |                 |                                       |  |      |    |
| Wasserhaltevermög                       | gen im          |                                     | max. Wasse             | erhaltevermög       | en in Bezug     | zur Trocker     | nmasse                                |  |      |    |
| verdichteten Zus                        | WHN             | $V = (m_{WHV}/m_{d})$               | )*100                  | [%                  | [6]             | 11,9            |                                       |  |      |    |
| Kandillana Or i I I                     |                 |                                     | Rohrdurchmesser d:     |                     |                 |                 | Rohrdurchmesser d: [cm]               |  | [cm] | 12 |
| Kapillare Steigh                        | one             |                                     | kapillare St           | eighöhe h:          |                 | [cm]            | 32,5                                  |  |      |    |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie WESTFÄLISCHE Abteilung Angewandte Geologie WILHELMS-UNIVERSITÄT PD Dr. Patricia Göbel MÜNSTER Feld 5 oberer Bereich TL-SoB Probe: Projehktfördere: DBU AZ::23277-23 Projektnummer: Untersuchungszweck: Materialprüfung Entnahmeort: Tiefe der Entnahme: Art der Entnahme Tag der Entnahme: durch: Starke, P. **Bodenart nach DIN 4022** S, G Siebkorn Schlämmkorn Schluffkorn Kieskorn Feinstes Korndurchmesser d in mm k<sub>f</sub> nach HAZEN: [m/s]  $4.8 * 10^{-4}$ Gesteinsgeometrische U/Cc: 37,6 / 0,3 [] Kenngrößen Gesamt-Plattigkeitskennzahl  $FI = (M_2/M_1) \times 100 =$ 28 Anteile, auf die nächste ganze Zahl gerundet Ш Kornklasse einschließl. Ctc einschließl. C<sub>tr</sub> Anteile gebrochener Körner in groben Gesteinskörnungen DIN 933-5  $C_{c}$  $C_r$ 31,5 / 45,0 0 0 0 0 22,4 / 31,5 3 100 0 0 16,0 / 22,4 5 100 0 0

11,2 / 16,0

8,0 / 11,2

5,0 / 8,0

tr: vollständig gerundete Körner

7

8

c: gebrochene Körner

tc: vollständig gebrochene Körner

99

99

100

0

r: gerundete Körner

<sup>=</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

Probe: Feld 5 oberer Bereich TL-SoB

Auftraggeber: DBU

\_

Projektnummer: AZ.:23277-23 Untersuchungszweck: Materialprüfung

Entnahmeort:

Tiefe der Entnahme: Art der Entnahme Tag der Entnahme:

durch: Starke, P.

| Filterstabilität                            | Verwer          | ndung als <b>T</b> | ragschich              | <b>tmateria</b> l n           | nit folgend     | en Bettur       | ngsmaterialien                        |  |
|---------------------------------------------|-----------------|--------------------|------------------------|-------------------------------|-----------------|-----------------|---------------------------------------|--|
| Bettungsmaterial                            | D <sub>15</sub> | D <sub>50</sub>    | d <sub>85</sub>        | d <sub>50</sub>               | $D_{15}/d_{85}$ | $D_{50}/d_{50}$ | Nachweis der<br>Filterstabilität      |  |
| Splitt (Stratiebo)                          | 0,248           | 2,471              | -                      | 3,331                         | -               | 0,7             | nicht erbracht                        |  |
| Splitt (Klostermann)                        | 0,248           | 2,471              | -                      | 3,563                         | -               | 0,7             | nicht erbracht                        |  |
| Glasasche                                   | 0,248           | 2,471              | 4,380                  | 1,831                         | 0,1             | 1,3             | erbracht                              |  |
| Glasasche/Sand-Gem.                         | 0,248           | 2,471              | 2,515                  | 0,529                         | 0,1             | 4,7             | erbracht                              |  |
| gewaschener Sand                            | 0,248           | 2,471              | 0,660                  | 0,311                         | 0,4             | 7,9             | erbracht                              |  |
| Pflastermörtel                              | 0,248           | 2,471              | 0,785                  | 0,359                         | 0,3             | 6,9             | erbracht                              |  |
| Korndichte -<br>Kapillarpyknometer nach DIN |                 | o [a               | /cm³]                  | $\rho_1$                      | $\rho_2$        | $\rho_3$        | Mittelwert                            |  |
| 18124                                       |                 | P 19               | o <sub>1</sub>         | 2,75                          | 2,72            | 2,68            | 2,72                                  |  |
| Korndichte -<br>Weithalspyknometer r        | ach DIN-        | 0 . [1             | Mg/m³]                 | $\rho_1$                      | $\rho_2$        | $\rho_3$        | Mittelwert                            |  |
| EN 1097-6                                   | Iacii Diin-     | P ssd Li           | vig/iii ]              | 2,70                          | 2,69            | 2,70            | 2,70                                  |  |
| Proctorversuch nach [                       | NN 18127        | 1                  | 00% Procto             | 'r                            | [g/cm³]         | 2,21            |                                       |  |
| Proctorversuch nach i                       | JIN 10127       | opt                | imaler Was             | [%]                           | 3,29            |                 |                                       |  |
|                                             |                 | Durchläs           | sigkeits-              | Infiltration                  | onsrate         | Anfo            | orderung von                          |  |
| Wasserdurchlässigk                          | eit nach        |                    | k <sub>f</sub> [m/s] : | $\stackrel{\cdot}{V}$ [l/(s*h |                 |                 | 5,4 <sub>∗</sub> 10 <sup>-5</sup> m/s |  |
| DIN 18130 (mit kons<br>hydralischem Gef     |                 | 4,02               | E-05                   | 321                           | ,53             | nic             | ht erbracht                           |  |
| gemittelte Wert                             |                 | 4,33               | E-05                   | 416                           | ,09             | nic             | ht erbracht                           |  |
|                                             | Ī               | 4,21               | E-05                   | 404                           | ,20             | nic             | ht erbracht                           |  |
| Wasseraufnahmefähi                          | gkeit im        | m                  | ıax. Wasseraı          | ufnahmeverm                   | ögen in Bezı    | ıg zur Trock    | kenmasse                              |  |
| verdichteten Zus                            | tand            | WAV                | $' = (m_{WAV}/m_{d})$  | )*100                         | [%              | [o]             | 12,5                                  |  |
| Wasserhaltevermög                           | gen im          |                    | max. Wasse             | erhaltevermög                 | en in Bezug     | zur Trocker     | nmasse                                |  |
| verdichteten Zus                            | -               | WHN                | $V = (m_{WHV}/m_{d})$  | )*100                         | [%              | [6]             | 11,9                                  |  |
| Kan III Or i i i                            |                 |                    |                        | Rohrdurchmesser d:            |                 |                 |                                       |  |
| Kapillare Steigh                            |                 | kapillare St       | [cm] <b>32,5</b>       |                               |                 |                 |                                       |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie
Abteilung für Angewandte Geologie
PD Dr. Patricia Göbel

Probe: Recyclingmaterial

Auftraggeber: DBU

Projektnummer: AZ.:23277-23
Untersuchungszweck: Materialprüfung

Entnahmeort: Gelände der Firma Stratiebo

Tiefe der Entnahme:

Art der Entnahme Haufwerksbeprobung

Tag der Entnahme:

durch: Starke, P.

| ode | enart    | nac  | ch    | DI | N    | 4( | 02  | 2              |   |     |   | Bauschutt |      |           |  |   |            |       |     |   |                |     |       |   |       |      |    |                     |   |              |   |            |          |     |  |      |     |    |  |   |
|-----|----------|------|-------|----|------|----|-----|----------------|---|-----|---|-----------|------|-----------|--|---|------------|-------|-----|---|----------------|-----|-------|---|-------|------|----|---------------------|---|--------------|---|------------|----------|-----|--|------|-----|----|--|---|
|     |          |      |       | S  | chl  | äm | mŀ  | orr            | 1 |     |   |           |      |           |  |   |            |       |     |   |                |     |       |   | S     | iebk | om |                     |   |              |   |            |          |     |  |      |     |    |  |   |
| 100 | Feinstes |      | Fein- |    |      |    |     | uffko<br>Mitte |   | 1   |   | Gro       | b-   |           |  |   |            | Fein- | I   |   | ndko<br>Mittel | I   | Grob- |   | Fein- |      |    | Kieskorn<br>Mittel- |   |              |   | Gr         | rob-     |     |  | Stei | ine |    |  |   |
| 90  |          |      |       |    |      |    |     |                |   |     |   |           |      |           |  |   |            |       |     |   |                |     |       |   |       |      |    |                     |   |              |   |            |          | L   |  | _    | ש   |    |  |   |
| 80  |          |      |       |    | Ц    |    | Ш   |                |   |     |   |           |      |           |  | Ц |            |       |     |   |                |     |       |   |       |      |    |                     |   | Ц            |   |            |          | 100 |  |      |     |    |  |   |
| 70  |          |      |       |    |      |    |     |                |   |     |   |           |      |           |  | Ц |            |       |     |   |                |     |       |   |       |      |    |                     |   |              |   |            | <u>*</u> |     |  |      |     |    |  |   |
| 60  |          |      |       |    |      |    |     |                |   |     |   |           |      |           |  | Ш |            |       | L   |   |                |     |       |   |       |      |    |                     |   |              |   | <i>p x</i> |          |     |  |      |     |    |  |   |
| 50  |          |      |       |    |      |    |     |                |   |     |   |           |      |           |  |   |            |       |     |   |                |     |       | l |       |      |    |                     |   | $\downarrow$ | 1 |            |          |     |  |      |     |    |  |   |
| 40  |          |      |       |    |      |    |     |                |   |     |   |           |      |           |  | П |            |       | Γ   |   |                |     |       | T |       |      |    | Ţ                   | 1 |              |   |            |          |     |  |      |     | T  |  |   |
| 30  |          |      |       |    |      |    |     |                |   | I   |   |           |      |           |  |   |            |       |     |   |                |     |       | Ī |       |      | 1  | T                   |   |              |   |            |          |     |  |      |     |    |  |   |
| 20  |          |      |       |    |      |    | П   |                |   |     |   |           |      |           |  |   |            |       |     |   |                |     | Ŋ     | ļ |       |      |    |                     |   |              |   |            |          |     |  |      |     |    |  | П |
| 10  |          |      |       |    |      |    |     |                |   |     |   |           |      |           |  | П |            |       | Γ   |   |                | 7   |       | T |       |      |    | T                   |   |              | T |            |          |     |  |      |     | T  |  |   |
| 0   |          |      |       |    |      |    |     |                |   | ]   |   |           |      |           |  | ļ | F          |       |     | 5 |                |     |       | Ī | l     |      |    |                     |   |              |   | Ι.         |          | L.  |  |      |     |    |  |   |
| 0.0 | 01 0     | .002 |       |    | 0.00 | 6  | 0.0 | )1             |   | 0.0 | 2 | Kon       | ndur | 0.<br>chm |  |   | 0.1<br>n m |       | 0.2 |   |                | 0.6 |       |   | 1     | 2    |    |                     |   | 6            |   | 10         |          | 20  |  |      |     | 60 |  |   |

| _                                 | ماند کرد. در ادر در ا   |                     | Zalal araw wadat 10/1      |    |
|-----------------------------------|-------------------------|---------------------|----------------------------|----|
|                                   | Gesamt-Plattigkeit      | skennzahl <i>Fl</i> | $= (M_2/M_1) \times 100 =$ | 26 |
| Gesteinsgeometrsche<br>Kenngrößen | U / Cc:                 | []                  | 30,8/1,2                   |    |
| 0                                 | $k_{\rm f}$ nach HAZEN: | [m/s]               |                            |    |

| N<br>N                                  | Kornklasse  | Anteile, auf   | die nächste ganze                                       | Zahl gerundet | [%]                      |  |  |  |  |
|-----------------------------------------|-------------|----------------|---------------------------------------------------------|---------------|--------------------------|--|--|--|--|
| Z                                       | Normasse    | C <sub>c</sub> | einschließl. $C_{ m tc}$                                | Cr            | einschließl. $C_{ m tr}$ |  |  |  |  |
|                                         | 31,5 / 45,0 | 6              | 100                                                     | 0             | 0                        |  |  |  |  |
| Körnerin<br>ungen D                     | 22,4 / 31,5 | 0              | 100                                                     | 0             | 0                        |  |  |  |  |
| gebrochener Körnel<br>Gesteinskörnungen | 16,0 / 22,4 | 5              | 95                                                      | 5             | 5                        |  |  |  |  |
| oche                                    | 11,2 / 16,0 | 3              | 100                                                     | 0             | 0                        |  |  |  |  |
| ebro                                    | 8,0 / 11,2  | 1              | 98                                                      | 1             | 2                        |  |  |  |  |
|                                         | 5,0 / 8,0   | 1              | 99                                                      | 1             | 1                        |  |  |  |  |
| Anteile<br>groben<br>933-5              | ŭ           | ochene Körner  | r: gerundete Körner<br>tr: vollständig gerundete Körner |               |                          |  |  |  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie
Abteilung für Angewandte Geologie
PD Dr. Patricia Göbel

Probe: Recyclingmaterial

Auftraggeber: DBU

\_

Projektnummer: AZ.:23277-23
Untersuchungszweck: Materialprüfung

Entnahmeort:

Tiefe der Entnahme: Art der Entnahme Tag der Entnahme:

durch: Starke, P.



| Filterstabilität                       | Verwendung als Fugenmaterial mit folgenden Bettungsmaterialien |                     |                       |                  |                 |                 |                                                       |  |  |
|----------------------------------------|----------------------------------------------------------------|---------------------|-----------------------|------------------|-----------------|-----------------|-------------------------------------------------------|--|--|
| Bettungsmaterial                       | D <sub>15</sub>                                                | D <sub>50</sub>     | d <sub>85</sub>       | d <sub>50</sub>  | $D_{15}/d_{85}$ | $D_{50}/d_{50}$ | Nachweis der<br>Filterstabilität                      |  |  |
| Splitt (Stratiebo)                     |                                                                |                     |                       |                  |                 |                 |                                                       |  |  |
| Splitt (Klostermann)                   |                                                                |                     |                       |                  |                 |                 |                                                       |  |  |
| Glasasche Glasasche/Sand-Gem.          |                                                                |                     |                       |                  |                 |                 |                                                       |  |  |
| Pflastermörtel                         |                                                                |                     |                       |                  |                 |                 |                                                       |  |  |
| gewaschener Sand                       |                                                                |                     |                       |                  |                 |                 |                                                       |  |  |
| Korndichte -                           |                                                                |                     |                       | $\rho_1$         | $\rho_2$        | $\rho_3$        | Mittelwert                                            |  |  |
| Kapillarpyknometer r<br>18124          | nach DIN                                                       | ρ [g/               | /cm³]                 | -                | -               | -               | -                                                     |  |  |
| Korndichte -<br>Weithalspyknometer r   |                                                                | $ ho_{ m ssd}$ [N   | /la/m³1               | $\rho_1$         | $\rho_2$        | $\rho_3$        | Mittelwert                                            |  |  |
| EN 1097-6                              | iach bin-                                                      | P ssd L             | vig/iii ]             | -                | -               | -               | -                                                     |  |  |
| Proctorversuch nach I                  | DIN 19127                                                      | 1                   | 00% Procto            | ordichte $ ho$ P | r               | [g/cm³]         | -                                                     |  |  |
| Proctorversuch nach i                  | DIN 10127                                                      | opt                 | maler Was             | sergehalt ı      | V <sub>Pr</sub> | [%]             | -                                                     |  |  |
|                                        |                                                                | Durchläs<br>beiwert | sigkeits-             | Infiltratio      |                 |                 | orderung von<br>5,4 <sub>*</sub> 10 <sup>-5</sup> m/s |  |  |
| Wasserdurchlässigk                     |                                                                |                     |                       | V [l/(s*h        |                 |                 |                                                       |  |  |
| DIN 18130 (mit kons<br>hydralischem Ge |                                                                | 1,//                | E-03                  | 1414             | 1,/1            | (               | erbracht                                              |  |  |
| gemittelte Wer                         |                                                                | 5,90                | E-04                  | 2357             | 7,85            | •               | erbracht                                              |  |  |
| J                                      | ,                                                              | 5,70                | E-04                  | 2263             | 3,54            | (               | erbracht                                              |  |  |
| Wasseraufnahmefähi                     | igkeit im                                                      | m                   | ax. Wasserau          | ıfnahmevermö     | ögen im Bez     | ug zur Trocl    | kenmasse                                              |  |  |
| verdichteten Zus                       | tand                                                           | WAV                 | $' = (m_{WAV}/m_{d})$ | )*100            | [%              | [b]             | 12,9                                                  |  |  |
| Wasserhaltevermö                       | gen in                                                         |                     | max. Wasse            | rhaltevermöge    | en im Bezug     | zur Trockei     | nmasse                                                |  |  |
| vedichteten Zust                       | and                                                            | WHV                 | $' = (m_{WHV}/m_{d})$ | )*100            | [%              | [b]             | 9,6                                                   |  |  |
| Maniffer Otal I                        |                                                                |                     | Rohrdurch             | [cm]             | 4               |                 |                                                       |  |  |
| Kapillare Steigh                       |                                                                | kapillare St        | [cm]                  | :m] -            |                 |                 |                                                       |  |  |
| - = konnte nicht ermittelt werd        | on nd = nich                                                   | t durchführhe       | r                     |                  | _               |                 | © Wesche 09                                           |  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

Probe: HKS 0/45

Auftraggeber: DBU

Projektnummer: AZ.:23277-23
Untersuchungszweck: Materialprüfung
Entnahmeort: Fa. Stratiebo

Tiefe der Entnahme:

Art der Entnahme Haufwerksentnahme

Tag der Entnahme: 14.01.2008 durch: Starke, P.



#### Bodenart nach DIN 4022

G, fs`, gs`

|                                                                  |          | Sc    | hlämmkorn   |       |               |                                                  | S     | iebkom       |                          |                |        |
|------------------------------------------------------------------|----------|-------|-------------|-------|---------------|--------------------------------------------------|-------|--------------|--------------------------|----------------|--------|
|                                                                  | Feinstes |       | Schluffkorn |       |               | Sandkorn                                         |       |              | Kieskorn                 |                | Steine |
| 100                                                              | · OIIDEO | Fein- | Mittel-     | Grob- | Fein-         | Mittel-                                          | Grob- | Fein-        | Mittel-                  | Grob-          | Ownie  |
|                                                                  |          |       |             |       |               |                                                  |       |              |                          |                |        |
| 90                                                               |          |       |             |       |               |                                                  |       |              |                          |                | Ш      |
|                                                                  |          |       |             |       |               |                                                  |       |              |                          |                |        |
| g 80                                                             |          |       |             |       |               |                                                  |       |              |                          | <b>       </b> | Ш      |
| 70                                                               |          |       |             |       |               |                                                  |       |              |                          | /              |        |
| 98                                                               |          |       |             |       |               |                                                  |       |              |                          | <i>A</i>       |        |
| <del>8</del> 60                                                  |          |       | ++++        |       | ++++          | <del>                                     </del> |       | <del> </del> | <del>            /</del> | 1              | +++    |
| 0<br>50<br>50                                                    |          |       |             |       |               |                                                  |       |              |                          |                |        |
| Masse rantelle der Körner og 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |          |       |             |       |               |                                                  |       |              |                          |                |        |
| 8                                                                |          |       |             |       |               |                                                  |       |              |                          |                | Ш      |
| 量 30                                                             |          |       |             |       |               |                                                  |       |              |                          |                | ш      |
| 88<br>88<br>20                                                   |          |       |             |       |               |                                                  |       |              |                          |                |        |
|                                                                  |          |       |             |       |               |                                                  | •     |              |                          |                |        |
| 10                                                               |          |       |             |       | 0             |                                                  |       |              |                          |                |        |
|                                                                  | 001 0.0  | 02 0  | .006 0.01 ( | 0.02  | .06 0.1 0     | 0.2 0                                            | .6 1  | 2            | 6 10 2                   | 20             | 60 1   |
|                                                                  |          |       |             |       | esser d in mm |                                                  |       |              |                          |                |        |

Gesteinsgeometrische Kenngrößen

| $k_{\rm f}$ nach HAZEN: | [m/s] | 6,7 * 10 <sup>-4</sup> |
|-------------------------|-------|------------------------|
| <i>U / C</i> c:         | []    | 79,9 / 6,6             |

Gesamt-Plattigkeitskennzahl  $FI = (M_2/M_1) \times 100 = 48$ 

| E N                        | Kornklasse  | Anteile, auf                         | die nächste ganze              | Zahl gerundet                                           | [%]                      |  |  |  |  |
|----------------------------|-------------|--------------------------------------|--------------------------------|---------------------------------------------------------|--------------------------|--|--|--|--|
| n <u>N</u>                 | Rominasse   | C <sub>c</sub>                       | einschließl. $C_{\mathrm{tc}}$ | Cr                                                      | einschließl. $C_{ m tr}$ |  |  |  |  |
| _                          | 31,5 / 45,0 | 0                                    | 100                            | 0                                                       | 0                        |  |  |  |  |
| Körner<br>ıungen           | 22,4 / 31,5 | 2                                    | 100                            | 0                                                       | 0                        |  |  |  |  |
| _                          | 16,0 / 22,4 | 3                                    | 100                            | 0                                                       | 0                        |  |  |  |  |
| che                        | 11,2 / 16,0 | 1                                    | 99                             | 0                                                       | 1                        |  |  |  |  |
| gebrochener<br>Gesteinskör | 8,0 / 11,2  | 1                                    | 100                            | 0                                                       | 0                        |  |  |  |  |
| 0, -                       | 5,0 / 8,0   | 0                                    | 100                            | 0                                                       | 0                        |  |  |  |  |
| Anteile<br>grobei<br>933-5 | · ·         | ochene Körner<br>g gebrochene Körner |                                | r: gerundete Körner<br>tr: vollständig gerundete Körner |                          |  |  |  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

MÜNSTER

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

Probe: **HKS 0/45** 

\_

Auftraggeber: DBU

Projektnummer: AZ.:23277-23
Untersuchungszweck: Materialprüfung
Entnahmeort: Fa. Stratiebo

Tiefe der Entnahme:

Art der Entnahme Haufwerksentnahme

Tag der Entnahme: 14.01.2008 durch: Starke, P.



| Filterstabilität                     | Verwer                      | ndung als <b>1</b>               | <b>Fragschich</b>              | <b>tmateria</b> l r | nit folgend     | en Bettur                                   | ngsmaterialien                   |  |
|--------------------------------------|-----------------------------|----------------------------------|--------------------------------|---------------------|-----------------|---------------------------------------------|----------------------------------|--|
| Bettungsmaterial                     | D <sub>15</sub>             | D <sub>50</sub>                  | d <sub>85</sub>                | d <sub>50</sub>     | $D_{15}/d_{85}$ | $D_{50}/d_{50}$                             | Nachweis der<br>Filterstabilität |  |
| Splitt (Stratiebo)                   |                             |                                  |                                |                     |                 |                                             |                                  |  |
| Splitt (Klostermann) Glasasche       |                             |                                  |                                |                     |                 |                                             |                                  |  |
| Glasasche/Sand-Gem.                  |                             |                                  |                                |                     |                 |                                             |                                  |  |
| gewaschener Sand                     |                             |                                  |                                |                     |                 |                                             |                                  |  |
| Pflastermörtel  Korndichte -         |                             |                                  |                                |                     |                 |                                             |                                  |  |
|                                      | Kapillarpyknometer nach DIN |                                  | /cm³]                          | $\rho_1$            | $\rho_2$        | $\rho_3$                                    | Mittelwert                       |  |
| 18124                                |                             | <i>P</i> 19                      | /CIII ]                        | 2,65                | 2,66            | 2,61                                        | 2,64                             |  |
| Korndichte -<br>Weithalspyknometer i | اا م                        | Mg/m³]                           | $\rho_1$                       | $\rho_2$            | $\rho_3$        | Mittelwert                                  |                                  |  |
| EN 1097-6                            | iacii biiv-                 | P ssd L                          | wig/iii ]                      |                     | n.d.            |                                             |                                  |  |
| Proctorversuch nach I                | DIN 19127                   | 1                                | 100% Proct                     | Pr                  | [g/cm³]         | -                                           |                                  |  |
| Proctorversuch nach i                | DIN 10127                   | opt                              | imaler Was                     | sergehalt i         | W <sub>Pr</sub> | [%]                                         | -                                |  |
|                                      |                             | Durchläs                         | ssigkeits-                     | Infiltratio         | onsrate         |                                             | orderung von                     |  |
| Wasserdurchlässigk                   | eit nach                    | beiwert                          | k <sub>f</sub> [m/s] :         | <i>v</i> [l/(s*l    | na)] :          | $k_{\rm f}^{\geq}$ 5,4.10 <sup>-5</sup> m/s |                                  |  |
| DIN 18130 (mit kons                  |                             | 7,07                             | 'E-03                          | 5658                | 8,84            |                                             | erbracht                         |  |
| hydralischem Ge<br>gemittelte Wer    |                             | 7,07                             | 'E-03                          | 5658                | 8,84            |                                             | erbracht                         |  |
| geene rrei                           | ,                           | 8,84                             | E-03                           | 7073                | 3,55            | (                                           | erbracht                         |  |
| Wasseraufnahmefäh                    | igkeit im                   | n                                | nax. Wassera                   | ufnahmeverm         | ögen in Bezı    | ug zur Trock                                | kenmasse                         |  |
| verdichteten Zus                     | tand                        | WA                               | $/ = (m_{WAV}/m_{d})$          | )*100               | [%              | [6]                                         | 17,6                             |  |
| Wasserhaltevermö                     | gen im                      |                                  | max. Wasse                     | erhaltevermög       | en in Bezug     | zur Trocker                                 | nmasse                           |  |
| verdichteten Zus                     | tand                        | WH                               | $WHV = (m_{WHV}/m_{d})^{*}100$ |                     |                 | [6]                                         | 7,5                              |  |
| Kapillare Steigh                     | Kanillana Otainkiika        |                                  | Rohrdurch                      | [cm]                | n.d.            |                                             |                                  |  |
| Napiliare Steigh                     | OHE                         | kapillare Steighöhe h: [cm] n.d. |                                |                     |                 |                                             |                                  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                     | 1               | 4.6% 01 - 1               | I Dalvant !               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------|-----------------|---------------------------|---------------------------|
| l <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                     |                 | ıt für Geologie und       | •                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WESTFÄLISCHE<br>WILHELMS-UNIVER | RSITÄT              | Ab              | teilung Angewand          | _                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Münster                         |                     |                 | PD Dr. Patricia           | Göbel                     |
| Probe: 0/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32 rot/grün                     |                     |                 |                           |                           |
| Auftraggeber:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DBU                             |                     |                 |                           |                           |
| Projektnummer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AZ.:23277-23                    |                     |                 |                           |                           |
| Untersuchungszweck:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Materialprüfung                 |                     |                 |                           |                           |
| Entnahmeort:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                     |                 |                           |                           |
| Tiefe der Entnahme:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                     |                 |                           |                           |
| Art der Entnahme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                     |                 |                           |                           |
| Tag der Entnahme:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                     |                 |                           |                           |
| durch:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Starke, P.                      |                     |                 |                           |                           |
| Bodenart nach DIN 4022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | mG,                 | , gg, fs´,      | ms´, gs´, fg´             |                           |
| Schlämmkorn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                     | S               | ebkorn                    |                           |
| Feinstes Sohluffkorn 100 Fein- Mittel-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Grob- Fein-                     | Sandkorn<br>Mittel- | Grob-           | Kieskorn<br>Fein- Mittel- | Grob-                     |
| 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                     |                 |                           |                           |
| 90 S0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                     |                 |                           |                           |
| 70 essential 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                     |                 | <u> </u>                  | <del>/</del>              |
| \$ 60<br>₩<br>⊆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                     |                 |                           |                           |
| 2 50 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                     |                 |                           |                           |
| ain 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                     |                 |                           |                           |
| W Wassesmanthere of the Kerner A of the Market |                                 |                     |                 |                           |                           |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | -                   |                 |                           |                           |
| 0 0.001 0.002 0.006 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02 0.06 0.1 0.2               | 0.6                 | Щ               | 2 6 10                    | 20 60 100                 |
| 5.351 5.352 5.356 5.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Korndurohmesser d in mm         | 0.0                 |                 | . ,                       | 25 00 100                 |
| Gesteinsgeometrische                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $k_{\rm f}$ nach HAZEN:         | [m                  | /s]             | 1,0 '                     | * 10 <sup>-3</sup>        |
| Kenngrößen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>U / C</i> c:                 | ]                   |                 | -                         | / 1,6                     |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gesamt-Plattigk                 | eitskennz           | ahl <i>FI</i> = | $(M_2/M_1) \times 100 =$  | 26                        |
| Kornklasse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                     |                 |                           | [%]                       |
| I Z I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>c</sub>                  | einschli            |                 | C <sub>r</sub>            | einschließl. $C_{\rm tr}$ |
| 31,5 / 45,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | 0 10                |                 | 0                         | 0                         |
| 22,4 / 31,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                              |                     | 00              | 0                         | 0                         |
| 16,0 / 22,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                              |                     | 100 0<br>100 0  |                           | 0                         |
| 11,2 / 16,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                               |                     |                 | 0                         | 0                         |
| 8,0 / 11,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                               | 10                  |                 | 0                         | 0                         |
| 31,5 / 45,0  22,4 / 31,5  16,0 / 22,4  11,2 / 16,0  8,0 / 11,2  5,0 / 8,0  c: tc: vollsta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gebrochene Körner               | 9                   | 4               | 0<br>r: gerundete Kö      | 0<br>örner                |
| tc: vollsta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | andig gebrochene Körner         |                     |                 | tr: vollständig gerund    |                           |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

| <u> </u>                                  | WILI            | TFÄLISCHE<br>HELMS-UNI<br>ISTER |                                      |                         | teilung An                              | •                   | Paläontologie<br>e Geologie<br>Böbel                  |  |  |
|-------------------------------------------|-----------------|---------------------------------|--------------------------------------|-------------------------|-----------------------------------------|---------------------|-------------------------------------------------------|--|--|
| Probe:                                    | 0/32 ro         | t/grün                          |                                      |                         |                                         |                     |                                                       |  |  |
| Auftraggeber:                             |                 | DBU                             |                                      |                         |                                         |                     |                                                       |  |  |
| Projektnummer:                            | Α               | Z.:23277-2                      | 23                                   |                         |                                         |                     |                                                       |  |  |
| Untersuchungszweck:                       | Ma              | aterialprüfu                    | ng                                   |                         |                                         |                     |                                                       |  |  |
| Entnahmeort:                              |                 |                                 |                                      |                         |                                         |                     |                                                       |  |  |
| Tiefe der Entnahme:                       |                 |                                 |                                      |                         |                                         |                     |                                                       |  |  |
| Art der Entnahme                          |                 |                                 |                                      |                         |                                         |                     |                                                       |  |  |
| Tag der Entnahme:                         |                 |                                 |                                      |                         |                                         |                     |                                                       |  |  |
| durch:                                    |                 | Starke, P.                      |                                      |                         |                                         |                     |                                                       |  |  |
|                                           |                 |                                 |                                      |                         |                                         |                     |                                                       |  |  |
| Filterstabilität                          | Verwer          | ndung als <b>T</b>              | ragschich                            | <b>tmateria</b> l n     | nit folgend                             | en Bettur           | ngsmaterialien                                        |  |  |
| Bettungsmaterial                          | D <sub>15</sub> | D <sub>50</sub>                 | d <sub>85</sub>                      | d <sub>50</sub>         | $D_{15}/d_{85}$                         | $D_{50}/d_{50}$     | Nachweis der<br>Filterstabilität                      |  |  |
| Splitt (Stratiebo)                        | 0,595           | 9,727                           | _                                    | 3,331                   | _                                       | 2,9                 | nicht erbracht                                        |  |  |
| Splitt (Klostermann)                      | 0,595           | 9,727                           | _                                    | 3,563                   | -                                       | 2,7                 | nicht erbracht                                        |  |  |
| Glasasche                                 | 0,595           | 9,727                           | 4,380                                | 1,831                   | 0,1                                     | 5,3                 | erbracht                                              |  |  |
| Glasasche/Sand-Gem.                       | 0,595           | 9,727                           | 2,515                                | 0,529                   | 0,2                                     | 18,4                | erbracht                                              |  |  |
| gewaschener Sand                          | 0,595           | 9,727                           | 0,660                                | 0,311                   | 0,9                                     | 31,3                | nicht erbracht                                        |  |  |
| Pflastermörtel                            | 0,595           | 9,727                           | 0,785                                | 0,359                   | 0,8                                     | 27,1                | nicht erbracht                                        |  |  |
| Korndichte -                              |                 | _                               |                                      | $\rho_1$                | $\rho_2$                                | $\rho_3$            | Mittelwert                                            |  |  |
| Kapillarpyknometer r<br>18124             | nach DIN        | ρ [g                            | /cm³]                                | 2,67                    | 2,67                                    | 2,65                | 2,67                                                  |  |  |
| Korndichte -                              |                 |                                 |                                      | $\rho_1$                | $\rho_2$                                | $\rho_3$            | Mittelwert                                            |  |  |
| Weithalspyknometer r<br>EN 1097-6         | nach DIN-       | $ ho_{	ext{ssd}}$ [N            | Mg/m³]                               | 2,66                    | 2,63                                    | 2,66                | 2,65                                                  |  |  |
| EN 1097-0                                 |                 | 1                               | 00% Proct                            | ordichte $\rho_{\rm P}$ |                                         | [g/cm³]             | <u>,</u>                                              |  |  |
| Proctorversuch nach l                     | DIN 18127       |                                 |                                      | ssergehalt i            | •                                       | [%]                 | <u>-</u>                                              |  |  |
|                                           |                 |                                 |                                      |                         | • • • • • • • • • • • • • • • • • • • • |                     |                                                       |  |  |
|                                           |                 |                                 | ssigkeits-<br>k <sub>f</sub> [m/s] : | Infiltration            |                                         |                     | orderung von<br>5,4 <sub>*</sub> 10 <sup>-5</sup> m/s |  |  |
| Wasserdurchlässigk<br>DIN 18130 (mit kons |                 |                                 |                                      | V [l/(s*h               |                                         | •                   | •                                                     |  |  |
| hydralischem Ge                           |                 |                                 | E-05                                 | 416                     |                                         |                     | ht erbracht                                           |  |  |
| gemittelte Wer                            |                 | 5,20                            | E-05                                 | 416                     | ,09                                     | nic                 | ht erbracht                                           |  |  |
|                                           |                 | 5,36                            | E-05                                 | 428                     | ,70                                     | nic                 | ht erbracht                                           |  |  |
| Wasseraufnahmefäh                         | m               | nax. Wassera                    | ufnahmeverm                          | ögen in Bezı            | ıg zur Trock                            | kenmasse            |                                                       |  |  |
| verdichteten Zus                          | WAV             | $V = (m_{WAV}/m_{d})$           | )*100                                | [%                      | [%] 14,6                                |                     |                                                       |  |  |
| Wasserhaltevermögen im                    |                 |                                 | max. Wasse                           | erhaltevermög           | en in Bezug                             | ug zur Trockenmasse |                                                       |  |  |
| verdichteten Zus                          | WHN             | $V = (m_{WHV}/m_c)$             | ı)*100                               | [%                      | [6]                                     | 7,9                 |                                                       |  |  |
| Kapillare Steighöhe                       |                 |                                 | Rohrdurch                            | messer d:               |                                         | [cm]                | 12                                                    |  |  |
| Napiliale Steigh                          |                 | kapillare St                    | eighöhe <i>h</i> :                   |                         | [cm]                                    | 47                  |                                                       |  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie WESTFÄLISCHE Abteilung Angewandte Geologie WILHELMS-UNIVERSITÄT PD Dr. Patricia Göbel MÜNSTER 0/32 grün oben Probe: Auftraggeber: DBU AZ::23277-23 Projektnummer: Untersuchungszweck: Materialprüfung Entnahmeort: Tiefe der Entnahme: Art der Entnahme Tag der Entnahme: durch: Starke, P. **Bodenart nach DIN 4022** G, fs', ms', gs' Siebkorn Feinstes Steine k<sub>f</sub> nach HAZEN:  $4,2 \cdot 10^{-4}$ [m/s] Gesteinsgeometrische U/Cc: 46,3 / 0,9 [] Kenngrößen Gesamt-Plattigkeitskennzahl  $FI = (M_2/M_1) \times 100 =$ 28 Anteile, auf die nächste ganze Zahl gerundet Ш Kornklasse einschließl. Ctc einschließl. C<sub>tr</sub> Anteile gebrochener Körner in groben Gesteinskörnungen DIN 933-5  $C_c$  $C_r$ 31,5 / 45,0 0 100 0 0 22,4 / 31,5 0 100 0 0 16,0 / 22,4 6 100 0 0 100 11,2 / 16,0 10 0 0 8,0 / 11,2 11 100 0 0 5,0 / 8,0 100 c: gebrochene Körner r: gerundete Körner tc: vollständig gebrochene Körner tr: vollständig gerundete Körner

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

Probe: 0/32 grün oben

Auftraggeber: DBU

\_

Projektnummer: AZ.:23277-23
Untersuchungszweck: Materialprüfung

Entnahmeort:

Tiefe der Entnahme: Art der Entnahme Tag der Entnahme:

durch: Starke, P.

| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | A | VÖ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|----|
| The same of the sa | No.     |   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |   |    |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 Salar |   | 1  |

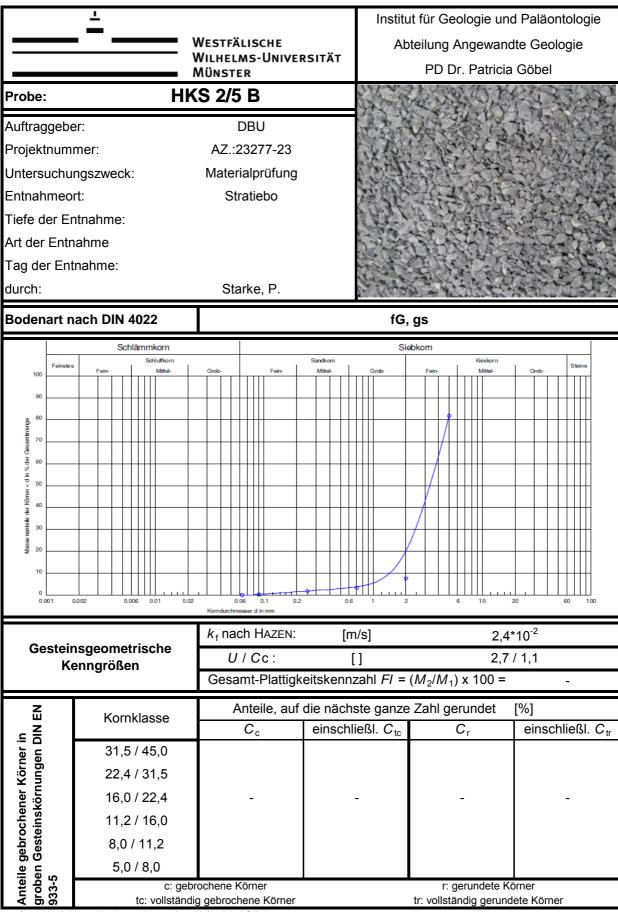
| Filterstabilität                     | Verwer              | ndung als <b>T</b> | ragschich                   | tmaterial r                    | nit folgend     | en Bettur                                  | ngsmaterialien                   |  |
|--------------------------------------|---------------------|--------------------|-----------------------------|--------------------------------|-----------------|--------------------------------------------|----------------------------------|--|
| Bettungsmaterial                     | D <sub>15</sub>     | D <sub>50</sub>    | d <sub>85</sub>             | d <sub>50</sub>                | $D_{15}/d_{85}$ | $D_{50}/d_{50}$                            | Nachweis der<br>Filterstabilität |  |
| Splitt (Stratiebo)                   | 0,329               | 5,885              | -                           | 3,331                          | -               | 1,8                                        | nicht erbracht                   |  |
| Splitt (Klostermann)                 | 0,329               | 5,885              | -                           | 3,563                          | -               | 1,7                                        | nicht erbracht                   |  |
| Glasasche                            | 0,329               | 5,885              | 4,380                       | 1,831                          | 0,1             | 3,2                                        | erbracht                         |  |
| Glasasche/Sand-Gem.                  | 0,329               | 5,885              | 2,515                       | 0,529                          | 0,1             | 11,1                                       | erbracht                         |  |
| gewaschener Sand                     | 0,329               | 5,885              | 0,660                       | 0,311                          | 0,5             | 18,9                                       | erbracht                         |  |
| Pflastermörtel                       | 0,329               | 5,885              | 0,785                       | 0,359                          | 0,4             | 16,4                                       | erbracht                         |  |
| Korndichte -<br>Kapillarpyknometer r | o [a                | /cm³]              | $\rho_1$                    | $\rho_2$                       | $\rho_3$        | Mittelwert                                 |                                  |  |
| 18124                                | lacii Dii           | P 19               | Citi j                      | 2,62                           | 2,62            | 2,64                                       | 2,62                             |  |
| Korndichte -<br>Weithalspyknometer r | ach DIN             | 0 . [1             | /lg/m³]                     | $\rho_1$                       | $\rho_2$        | $\rho_3$                                   | Mittelwert                       |  |
| EN 1097-6                            | iacii biiv-         | P ssd L            | vig/iii ]                   |                                | n.d.            |                                            |                                  |  |
| Proctorversuch nach I                | 1                   | 00% Procto         | ordichte $ ho$ <sub>P</sub> | 'r                             | [g/cm³]         | -                                          |                                  |  |
| Proctorversuch hach i                | JIN 16127           | opt                | imaler Was                  | sergehalt i                    | W <sub>Pr</sub> | [%]                                        | -                                |  |
|                                      |                     | Durchläs           | sigkeits-                   | Infiltration                   | onsrate         | Anfo                                       | orderung von                     |  |
| Wasserdurchlässigk                   | eit nach            |                    | k <sub>f</sub> [m/s] :      | $\dot{V}$ [l/(s*h              |                 | $k_{\rm f} \ge 5.4 \cdot 10^{-5}  \rm m/s$ |                                  |  |
| DIN 18130 (mit kons                  | tantem              | ,                  | •                           | -                              |                 | nicht erbracht                             |                                  |  |
| hydralischem Ge<br>gemittelte Wert   | •                   |                    |                             |                                |                 |                                            |                                  |  |
| gominione work                       | .5,                 |                    |                             |                                |                 |                                            |                                  |  |
| Wasseraufnahmefähi                   | igkeit im           | m                  | nax. Wassera                | ufnahmeverm                    | ögen in Bezı    | ıg zur Trock                               | kenmasse                         |  |
| verdichteten Zus                     | _                   | WAV                | $' = (m_{WAV}/m_{d})$       | )*100                          | [%              | [6]                                        | 11,9                             |  |
| Wasserhaltevermö                     | gen im              |                    | max. Wasse                  | erhaltevermög                  | en in Bezug     | zur Trocker                                | nmasse                           |  |
| verdichteten Zus                     | _                   | WHN                | $V = (m_{WHV}/m_{d})$       | )*100                          | [%              | [6]                                        | 8,5                              |  |
| Vanillara Ctalala                    | Kapillare Steighöhe |                    |                             | Rohrdurchmesser d:             |                 |                                            |                                  |  |
| Kapiliare Steigh                     |                     |                    |                             | kapillare Steighöhe <i>h</i> : |                 |                                            |                                  |  |
| - kannta night armittalt word        |                     |                    |                             |                                | @ Wasaha 00     |                                            |                                  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

|                                                                        |                           | Nestfälische<br>Nilhelms-Univer<br>Nünster                                         | RSITÄT              |                      | it für Geologie und<br>teilung Angewand<br>PD Dr. Patricia | Ite Geologie             |  |
|------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------|---------------------|----------------------|------------------------------------------------------------|--------------------------|--|
| Probe:                                                                 | 0/32                      | rot unten                                                                          |                     |                      |                                                            |                          |  |
| Auftraggebe                                                            | er:                       | DBU                                                                                |                     |                      |                                                            |                          |  |
| Projektnum                                                             | mer:                      | AZ.:23277-23                                                                       |                     |                      |                                                            |                          |  |
| Untersuchu                                                             | ngszweck:                 | Materialprüfung                                                                    |                     |                      |                                                            |                          |  |
| Entnahmeo                                                              | rt:                       |                                                                                    |                     |                      |                                                            |                          |  |
| Tiefe der Ei                                                           | ntnahme:                  |                                                                                    |                     |                      |                                                            |                          |  |
| Art der Entr                                                           | nahme                     |                                                                                    |                     |                      |                                                            |                          |  |
| Tag der En                                                             | tnahme:                   |                                                                                    |                     |                      |                                                            |                          |  |
| durch:                                                                 |                           | Starke, P.                                                                         |                     |                      |                                                            |                          |  |
| Bodenart n                                                             | nach DIN 4022             |                                                                                    |                     | G, fs´, r            | ns´, gs´                                                   |                          |  |
|                                                                        | Schlämmkorn               |                                                                                    |                     | S                    | iebkorn                                                    |                          |  |
| Feinstes  100  00  00  00  00  00  00  00  00                          | Schluffkorn Fein- Mittel- | Srob-Fein-Fein-  0.00 0.1 0.2  Korndurchmesser d in mm  K <sub>f</sub> nach HAZEN: | Sandkorn<br>Mittel- | (Srob.               | Kieskorn Mittel.                                           | 6 rob. Steine            |  |
|                                                                        | nsgeometrische            | U / Cc:                                                                            | [                   | _                    |                                                            | / 1,6                    |  |
| K                                                                      | enngrößen                 | Gesamt-Plattigk                                                                    |                     |                      | -                                                          | 27                       |  |
| Z                                                                      | 17                        | Anteile, auf                                                                       | die nächs           | ste ganze            | Zahl gerundet                                              | [%]                      |  |
| n<br>SIN<br>E                                                          | Kornklasse                | C <sub>c</sub>                                                                     |                     | eßl. C <sub>tc</sub> | C <sub>r</sub>                                             | einschließl. $C_{ m tr}$ |  |
| ner i<br>Jen [                                                         | 31,5 / 45,0               | 0                                                                                  | 10                  | 00                   | 0                                                          | 0                        |  |
| . Kör<br>nung                                                          | 22,4 / 31,5               | 9                                                                                  | 10                  | 00                   | 0                                                          | 0                        |  |
| ener                                                                   | 16,0 / 22,4               | 5                                                                                  |                     | 00                   | 0                                                          | 0                        |  |
| roch                                                                   | 11,2 / 16,0               | 9                                                                                  |                     | 00                   | 0                                                          | 0                        |  |
| geb                                                                    | 8,0 / 11,2                | 5                                                                                  |                     | 00                   | 0                                                          | 0                        |  |
| Anteile gebrochener Körner in<br>groben Gesteinskörnungen DIN<br>933-5 | 5,0 / 8,0<br>c: gebr      | 10 ochene Körner                                                                   | 10                  | 00                   | 0<br>r: gerundete Kö                                       | 0<br>örner               |  |
| Ar<br>gr                                                               |                           | ollständig gebrochene Körner tr: vollständig gerundete Körner                      |                     |                      |                                                            |                          |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

| <u> </u>                          | WILI                                           | TFÄLISCHE<br>HELMS-UNI<br>ISTER |                        |                     | teilung An             |                  | Paläontologie<br>e Geologie<br>söbel  |  |
|-----------------------------------|------------------------------------------------|---------------------------------|------------------------|---------------------|------------------------|------------------|---------------------------------------|--|
| Probe:                            | 0/32 rot                                       | unten                           |                        |                     |                        |                  |                                       |  |
| Auftraggeber:                     |                                                | DBU                             |                        |                     |                        |                  |                                       |  |
| Projektnummer:                    | А                                              | Z.:23277-2                      | 23                     |                     |                        |                  |                                       |  |
| Untersuchungszweck:               | Ma                                             | aterialprüfu                    | ng                     |                     |                        |                  |                                       |  |
| Entnahmeort:                      |                                                |                                 |                        |                     |                        |                  |                                       |  |
| Tiefe der Entnahme:               |                                                |                                 |                        |                     |                        |                  |                                       |  |
| Art der Entnahme                  |                                                |                                 |                        |                     |                        |                  |                                       |  |
| Tag der Entnahme:                 |                                                |                                 |                        |                     |                        |                  |                                       |  |
| durch:                            |                                                | Starke, P.                      |                        |                     |                        |                  |                                       |  |
| durcii.                           |                                                | Starke, F.                      |                        |                     |                        |                  |                                       |  |
| Filterstabilität                  | Verwer                                         | ndung als <b>T</b>              | ragschich              | <b>tmateria</b> l n | nit folgend            | en Bettur        | ngsmaterialien                        |  |
| Bettungsmaterial                  | D <sub>15</sub>                                | D <sub>50</sub>                 | d <sub>85</sub>        | d <sub>50</sub>     | $D_{15}/d_{85}$        | $D_{50}/d_{50}$  | Nachweis der<br>Filterstabilität      |  |
| Splitt (Stratiebo)                | 0,741                                          | 8,338                           | _                      | 3,331               | _                      | 2,5              | nicht erbracht                        |  |
| Splitt (Klostermann)              | 0,741                                          | 8,338                           | _                      | 3,563               | -                      | 2,3              | nicht erbracht                        |  |
| Glasasche                         | 0,741                                          | 8,338                           | 4,380                  | 1,831               | 0,2                    | 4,6              | erbracht                              |  |
| Glasasche/Sand-Gem.               | 0,741                                          | 8,338                           | 2,515                  | 0,529               | 0,3                    | 15,8             | erbracht                              |  |
| gewaschener Sand                  | 0,741                                          | 8,338                           | 0,660                  | 0,311               | 1,1                    | 26,8             | nicht erbracht                        |  |
| Pflastermörtel                    | 0,741                                          | 8,338                           | 0,785                  | 0,359               | 0,9                    | 23,2             | nicht erbracht                        |  |
| Korndichte -                      |                                                |                                 |                        | $\rho_1$            | $\rho_2$               | $\rho_3$         | Mittelwert                            |  |
| Kapillarpyknometer r<br>18124     | nach DIN                                       | <b>ρ</b> [g.                    | /cm³]                  | 2,65                | 2,62                   | 2,62             | 2,63                                  |  |
| Korndichte -                      |                                                |                                 |                        | 0                   | 0                      | 0                | Mittelwert                            |  |
| Weithalspyknometer i              | nach DIN-                                      | $ ho$ $_{ssd}$ [N               | ∕lg/m³]                | ρ <sub>1</sub>      | ρ <sub>2</sub><br>n.d. | $\rho_3$         | witterwert                            |  |
| EN 1097-6                         |                                                |                                 |                        |                     |                        |                  |                                       |  |
| Proctorversuch nach               | DIN 18127                                      | 1                               | 00% Proct              | ordichte $ ho_{P}$  | 'r                     | [g/cm³]          | -                                     |  |
| Trodiorvorouon nuon               | J. 10127                                       | opt                             | imaler Was             | sergehalt ı         | W <sub>Pr</sub>        | [%]              | -                                     |  |
|                                   |                                                | Durchläs                        | sigkeits-              | Infiltration        | onsrate                |                  | orderung von                          |  |
| Wasserdurchlässigk                | eit nach                                       | beiwert                         | k <sub>f</sub> [m/s] : | $\dot{V}$ [l/(s*h   | na)] :                 | k <sub>f</sub> ≥ | 5,4 <sub>∗</sub> 10 <sup>-5</sup> m/s |  |
| DIN 18130 (mit kons               |                                                | 3,27                            | E-05                   | 314                 | ,38                    | nic              | ht erbracht                           |  |
| hydralischem Ge<br>gemittelte Wer |                                                | 8,67                            | E-05                   | 832                 | ,18                    |                  | erbracht                              |  |
| gee.                              | ,                                              | 1,23                            | E-04                   | 1178                | 3,93                   | (                | erbracht                              |  |
| Wasseraufnahmefäh                 | iakeit im                                      | m                               | nax. Wassera           | ufnahmeverm         | ögen in Bezı           | ıg zur Trock     | kenmasse                              |  |
| verdichteten Zus                  | _                                              | WAV                             | $V = (m_{WAV}/m_{d})$  | )*100               | [%                     | [o]              | 11,9                                  |  |
| Wasserhaltevermö                  | Wassarhaltovermögen im                         |                                 | max. Wasse             | erhaltevermög       | en in Bezug            | zur Trocker      | nmasse                                |  |
|                                   | Wasserhaltevermögen im<br>verdichteten Zustand |                                 | $V = (m_{WHV}/m_c)$    | ı)*100              | [%                     | [6]              | 7,1                                   |  |
| Kanillana Otalub                  | " la a                                         |                                 | Rohrdurch              | messer d:           |                        | [cm]             | 12                                    |  |
| Kapillare Steighöhe               |                                                | I                               | kapillare St           | eighöhe <i>h</i> :  |                        | [cm]             | n.d.                                  |  |


<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

|                                                                                          | <u></u>                      |                                                  |                     | Inotitu         | ıt für Coologio ur                                | nd Daläantalagia                                 |
|------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------|---------------------|-----------------|---------------------------------------------------|--------------------------------------------------|
|                                                                                          | . <del> –</del> ,            | <b>N</b> ESTFÄLISCHE                             |                     |                 | ıt für Geologie ur                                | _                                                |
|                                                                                          |                              | WILHELMS-UNIVER                                  | RSITÄT              | AD              | teilung Angewan                                   | •                                                |
|                                                                                          |                              | MÜNSTER                                          |                     | V. C. S. Z.     | PD Dr. Patricia                                   | a Gobel                                          |
| Probe:                                                                                   | HK                           | S 2/5 A                                          | į.                  | 11/2            | 是一個                                               | 1075                                             |
| Auftraggebe                                                                              | er:                          | DBU                                              |                     | Sec.            | 是给到                                               | 的分类的                                             |
| Projektnum                                                                               | mer:                         | AZ.:23277-23                                     |                     |                 | Sales Sales                                       | 首其,阿姆德                                           |
| Untersuchu                                                                               | ngszweck:                    | Materialprüfung                                  |                     | Y.V.K           | <b>出去和邓</b> 军                                     | 是於於                                              |
| Entnahmeo                                                                                | rt:                          | Klostermann                                      |                     | を記し             | 的不是                                               | 經到人學院                                            |
| Tiefe der Er                                                                             | ntnahme:                     |                                                  | 9                   | 是信仰             | 是四分,必                                             | 在1995年                                           |
| Art der Entn                                                                             | nahme                        |                                                  |                     | STA!            | <b>经验证</b>                                        | 经分类                                              |
| Tag der Ent                                                                              | nahme:                       |                                                  |                     |                 | 是是是                                               | To the second                                    |
| durch:                                                                                   |                              | Starke, P.                                       | Š                   | をよう             | をからかる                                             | でもとれてい                                           |
| Bodenart n                                                                               | ach DIN 4022                 |                                                  |                     | fG,             | gs'                                               |                                                  |
|                                                                                          | Schlämmkorn                  |                                                  |                     | Sie             | bkom                                              |                                                  |
| Feinstes                                                                                 | Schluffkorn<br>Fein- Mittel- | Grob- Fein-                                      | Sandkorn<br>Mittel- | Grob-           | Kieskorn<br>Fein- Mittel-                         | Grob- Steine                                     |
| 90                                                                                       |                              |                                                  |                     |                 |                                                   |                                                  |
| 80                                                                                       |                              |                                                  |                     |                 |                                                   | <del>                                     </del> |
| 70                                                                                       |                              |                                                  |                     |                 | <del></del>                                       | <del>                                     </del> |
| 60                                                                                       |                              |                                                  |                     |                 | <del></del>                                       |                                                  |
| 50 p                                                                                     |                              |                                                  |                     |                 | <del>-   /              -  </del>                 |                                                  |
| 9 40                                                                                     |                              | <del>                                     </del> |                     |                 | <del></del>                                       | + + + + + + + + + + + + + + + + + + + +          |
| Masse namelle der Pörner < d in % der Gesammernge 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                              |                                                  |                     |                 | <del>/                                     </del> | + + + + + + + + + + + + + + + + + + + +          |
| 8 20                                                                                     |                              |                                                  |                     |                 | <del>/                                    </del>  |                                                  |
| 10                                                                                       |                              | <del>                                     </del> |                     |                 |                                                   | + + + + + + + + + + + + + + + + + + + +          |
| 0.001                                                                                    | 0.002 0.006 0.01 0.02        | 0.06 0.1 0.2  Korndurchmesser d in mm            | 0.6                 | 1 2             | 6 10                                              | 20 60 100                                        |
|                                                                                          |                              | $k_{\rm f}$ nach HAZEN:                          | [m/s                | sl              | 3.4                                               | 1*10 <sup>-2</sup>                               |
|                                                                                          | nsgeometrische               | U / Cc:                                          | []                  | ~1              |                                                   | 4/1,0                                            |
| Ke                                                                                       | enngrößen                    |                                                  |                     | ahl <i>FI</i> = | $(M_2/M_1) \times 100 =$                          | •                                                |
| 7                                                                                        |                              |                                                  |                     |                 | Zahl gerundet                                     | [%]                                              |
| Z<br>Ü                                                                                   | Kornklasse                   | C <sub>c</sub>                                   | einschlie           |                 | C <sub>r</sub>                                    | einschließl. C <sub>tr</sub>                     |
| er in<br>n DI                                                                            | 31,5 / 45,0                  | 0.0                                              | 0000                | O [C            | 01                                                | u conservation of                                |
| Körne                                                                                    | 22,4 / 31,5                  |                                                  |                     |                 |                                                   |                                                  |
| ner K<br>örnu                                                                            | 16,0 / 22,4                  | -                                                | -                   |                 | -                                                 | _                                                |
| cher                                                                                     | 11,2 / 16,0                  |                                                  |                     |                 |                                                   |                                                  |
| sbro                                                                                     | 8,0 / 11,2                   |                                                  |                     |                 |                                                   |                                                  |
| e ge                                                                                     | 5,0 / 8,0                    |                                                  |                     |                 |                                                   |                                                  |
| Anteile gebrochener Körner in<br>groben Gesteinskörnungen DIN EN<br>933-5                | c: gebi                      | rochene Körner                                   | <u> </u>            |                 | r: gerundete k                                    |                                                  |
|                                                                                          | tc: vollständi               | g gebrochene Körner                              |                     |                 | tr: vollständig gerun                             | dete Körner                                      |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

| WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER  HKS 2/5 A  traggeber: jektnummer: ersuchungszweck: nahmeort: fe der Entnahme: der Entnahme je der Entnahme: ch: Starke, P.  Verwendung als Bettungsma |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Institut für Geologie und Paläontologie Abteilung Angewandte Geologie PD Dr. Patricia Göbel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Verwer                                                                                                                                                                                           | ndung als <b>E</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bettungsm                     | aterial mit                    | folgenden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tragschi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | chtmaterialien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 0,29 2,50 - 3                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | d <sub>50</sub> 3,56           | D <sub>15</sub> /d <sub>85</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $D_{50}/d_{50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nachweis der<br>Filterstabilität<br>nicht erbracht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 0,29<br>0,25<br>0,60                                                                                                                                                                             | 2,73<br>2,47<br>9,73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -<br>-<br>-                   | 3,56<br>3,56<br>3,56           | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,8<br>0,7<br>2,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nicht erbracht<br>nicht erbracht<br>nicht erbracht<br>nicht erbracht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 0,33<br>0,74                                                                                                                                                                                     | 5,88<br>8,34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                             | 3,56<br>3,56                   | <del>-</del><br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,7<br>2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nicht erbracht<br>nicht erbracht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| ach DIN                                                                                                                                                                                          | ρ [g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /cm³]                         | ρ <sub>1</sub><br>2,76         | ρ <sub>2</sub><br>2,66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ρ <sub>3</sub><br>2,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mittelwert 2,71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| ach DIN-                                                                                                                                                                                         | ρ <sub>ssd</sub> [N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mg/m³]                        | ρ <sub>1</sub>                 | ρ <sub>2</sub><br>n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ρ <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mittelwert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| IN 4040=                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00% Proct                     | ordichte $ ho$ P               | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [g/cm³]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 'IN 1812/                                                                                                                                                                                        | opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | imaler Was                    | ssergehalt ı                   | W <sub>Pr</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| eit nach<br>tantem<br>älle,<br>e)                                                                                                                                                                | beiwert 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k <sub>f</sub> [m/s] :<br>051 | <i>v</i> [l/(s*t               | na)] :<br>1,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | k <sub>f</sub> ≥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,4.10 <sup>-5</sup> m/s<br>erbracht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                  | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )38                           | 3183                           | 0,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | erbracht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| gkeit im<br>and                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| en im                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | max. Wasse                    | erhaltevermög                  | en in Bezug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | zur Trocker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nmasse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| and                                                                                                                                                                                              | WHV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $V = (m_{WHV}/m_c)$           | <sub>i</sub> )*100             | [%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| ihe                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [cm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br>7,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                  | Verwer  Verwer  D <sub>15</sub> 0,29 0,07 0,29 0,25 0,60 0,33 0,74  ach DIN-  eit nach tantem ta | WILHELMS-UNIMUNSTER           | WILHELMS-UNIVERSITÄT   MÜNSTER | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER         Ab           HKS 2/5 A           DBU           AZ.:23277-23         Materialprüfung Klostermann           Klostermann         Klostermann           D15         D50         d85         d50           0,29         2,50         -         3,56           0,07         0,09         -         3,56           0,29         2,73         -         3,56           0,29         2,73         -         3,56           0,29         2,73         -         3,56           0,03         5,88         -         3,56           0,74         8,34         -         3,56           0,74         8,34         -         3,56           0,74         8,34         -         3,56           ach DIN- $\rho$ [Mg/m³] $\rho$ 1           2,76 $\rho$ 1 $\rho$ 2,76           ach DIN- $\rho$ [Mg/m³] $\rho$ 1           ach DIN- $\rho$ [Mg/m³] $\rho$ 1           beit nach ather at | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER         Abteilung An PD Dr.           HKS 2/5 A           DBU AZ.:23277-23 Materialprüfung Klostermann           Starke, P.           Verwendung als Bettungsmaterial mit folgenden $D_{15}$ $D_{50}$ $d_{85}$ $d_{50}$ $D_{15}/d_{85}$ 0,29         2,50         -         3,56         -           0,07         0,09         -         3,56         -           0,29         2,73         -         3,56         -           0,29         2,73         -         3,56         -           0,25         2,47         -         3,56         -           0,33         5,88         -         3,56         -           0,74         8,34         -         3,56         -           ach DIN $\rho$ [g/cm³] $\rho_1$ $\rho_2$ $\rho_2$ $\rho_1$ $\rho_2$ $\rho_2$ $\rho_3$ ach DIN- $\rho$ ssad [Mg/m³] $\rho_1$ $\rho_2$ $\rho_2$ $\rho_3$ ach DIN- $\rho$ ssad [Mg/m³] $\rho$ [Mg/m³] $\rho$ [Mg/m³]           ach DIN- $\rho$ ssad [Mg/m³] $\rho$ [Mg/m³] $\rho$ [Mg/m³]           ach DIN- $\rho$ ssad [Mg/m³] $\rho$ [Mg/m³] | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER         Abteilung Angewandte PD Dr. Patricia G           HKS 2/5 A           DBU AZ.:23277-23         Materialprüfung Klostermann           Verwendung als Bettungsmaterial mit folgenden Tragschi Misser PD Dr. Patricia G           D15 D50 d85 d50 D1g/d85 D50/d50         D.29 2.50 - 3.56 - 0.7           0.07 0.09 - 3.56 - 0.7         0.07 0.09 - 3.56 - 0.7           0.29 2.73 - 3.56 - 0.7         0.60 9.73 - 3.56 - 2.7           0.33 5.88 - 3.56 - 1.7         0.74 8.34 - 3.56 - 2.3           0.74 8.34 - 3.56 - 2.3         2.76 2.66 2.70           ach DIN P [g/cm³] P1 P2 P3 D1 P2 P3 D2 P3 D1 P2 P |  |  |  |  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar



<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

| Probe:                                                                                                                                                                                                                             | WILI                                 | TFÄLISCHE<br>HELMS-UNI<br>ISTER<br>2/5 B         |                                                                                                   | Institut für Geologie und Paläontologie Abteilung Angewandte Geologie PD Dr. Patricia Göbel  |                                |                                                                                                  |                                                                                                                                                                                                          |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Auftraggeber: Projektnummer: Untersuchungszweck: Entnahmeort: Tiefe der Entnahme: Art der Entnahme Tag der Entnahme: durch:                                                                                                        | А                                    | DBU Z.:23277-2 aterialprüfu Stratiebo Starke, P. |                                                                                                   |                                                                                              |                                |                                                                                                  |                                                                                                                                                                                                          |  |  |  |
| Filterstabilität                                                                                                                                                                                                                   | Verwend                              | dung als <b>B</b> e                              | ettungsma                                                                                         | terial mit fo                                                                                | olgenden                       | <b>Fragschi</b>                                                                                  | chtmaterialien                                                                                                                                                                                           |  |  |  |
| Tragschichtmaterial Tragschicht [NL] Dränsand [NL] Feld 4 (Cemex) Feld 5 (Cemex) 0/32 rot/grün (BAG) 0/32 grün oben (BAG) 0/32 rot unten (BAG) Korndichte - Kapillarpyknometer r 18124 Korndichte - Weithalspyknometer r EN 1097-6 | nach DIN                             | ρ <sub>ssd</sub> [N                              |                                                                                                   | $d_{50}$ 3,331  3,331  3,331  3,331  3,331  7  2,65 $\rho_1$ cordichte $\rho_P$ ssergehalt v | •                              | D <sub>50</sub> /d <sub>50</sub> 0,8 0,0 0,8 0,7 2,9 1,8 2,5  ρ <sub>3</sub> 2,61 ρ <sub>3</sub> | Nachweis der Filterstabilität nicht erbracht Aller erbracht Mittelwert 2,64 Mittelwert - 1,61 0 |  |  |  |
| Wasserdurchlässigk<br>DIN 18130 (mit kons<br>hydralischem Ge<br>gemittelte Wert<br>Wasseraufnahmefäh<br>verdichteten Zus                                                                                                           | tantem<br>fälle,<br>te)<br>igkeit im | 0,0<br>0,0<br>0,0                                | ssigkeits-<br>k <sub>f</sub> [m/s] :<br>382<br>382<br>382<br>hax. Wassera<br>$t' = (m_{WAV}/m_d)$ | Infiltration  V [I/(s*h 3183 3183 3183 ufnahmeverm )*100                                     | na)] :<br>0,99<br>0,99<br>0,99 | K <sub>f</sub> ≥                                                                                 | orderung von 5,4.10 -5 m/s erbracht erbracht erbracht erbracht 27,5                                                                                                                                      |  |  |  |
| Wasserhaltevermö<br>verdichteten Zus                                                                                                                                                                                               | _                                    |                                                  |                                                                                                   | erhaltevermög<br><sub>i</sub> )*100                                                          | _                              | zur Trocker                                                                                      |                                                                                                                                                                                                          |  |  |  |
| Kapillare Steigh                                                                                                                                                                                                                   |                                      |                                                  | messer <i>a</i> :<br>eighöhe <i>h</i> :                                                           |                                                                                              | [cm]                           | 5,5                                                                                              |                                                                                                                                                                                                          |  |  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie Abteilung für Angewandte Geologie PD Dr. Patricia Göbel

#### **Pflastermörtel** Probe:

DBU Auftraggeber:

Projektnummer: AZ.:23277-23

Untersuchungszweck: Materialprüfung

Entnahmeort: Gelände der Firma Stratiebo

Tiefe der Entnahme:

Art der Entnahme Haufwerksbeprobung

Tag der Entnahme:

Starke, P.



|      |          |          |           | Schl              | läm    | ıml | korn     |          |   |           |   |   |       |     |       |   |   |           |    | Si    | ebko | m    |   |           |             |         |    |       |          |              |   |  |   |      |
|------|----------|----------|-----------|-------------------|--------|-----|----------|----------|---|-----------|---|---|-------|-----|-------|---|---|-----------|----|-------|------|------|---|-----------|-------------|---------|----|-------|----------|--------------|---|--|---|------|
| Γ    | Feinstes |          |           |                   |        | Sch | luffkorn |          |   |           |   |   |       |     |       |   | s | andko     | om |       |      |      |   |           |             |         |    |       | Kieskorn |              |   |  | 0 | teir |
| 00   | · carone | Fe       | ein-      | $\dashv$          | _      | _   | Mittel-  | Grob     | - | $\perp$   | _ | _ | Fein- |     | Mitte | * |   | _         | _  | Grob- |      | Fein |   | $\perp$   |             | Mittel- | (  | Grob- | _        | Ļ            | _ |  |   |      |
| 90   |          |          |           |                   |        |     |          |          |   |           |   |   |       |     |       |   |   |           |    |       |      |      |   |           |             |         |    |       |          |              |   |  |   |      |
|      |          |          |           | П                 | T      | П   |          |          |   |           | П | T |       |     |       |   |   | 7         | 7  |       |      |      | П |           |             |         |    |       |          |              | 1 |  |   |      |
| 80 _ |          |          |           | П                 | T      | Ш   |          |          |   | T         | Ħ | T |       |     |       |   |   | 1         | Ħ  |       |      |      | П | T         | Ħ           |         |    |       | T        |              | 1 |  |   |      |
| 70   |          |          | $\dagger$ | П                 | t      | Ħ   |          |          |   |           | Ħ | П |       |     |       | / | / |           | Ħ  |       |      |      |   | Ť         |             |         |    |       | T        |              | 1 |  |   |      |
| 60   |          | $\top$   | +         | $\dagger \dagger$ | †      | H   |          |          |   | $\dagger$ | H | T |       |     |       | / |   | $\dagger$ | H  |       |      |      | Н | $\dagger$ | $\parallel$ |         |    |       | T        | $\parallel$  | † |  |   |      |
| 50   |          | $\dashv$ |           | $\forall$         | $^{+}$ | H   |          |          |   | t         | H | Н |       |     | /     | H |   | t         | H  |       |      |      | Н | t         |             |         |    |       | +        | $\parallel$  | + |  |   |      |
| 40   |          | _        | +         | +                 | +      | Н   | ├──      | $\vdash$ | - | -         | Н | + |       | L-, | γ_    | H |   | +         | H  |       |      |      | Н | +         | Н           | -       | +  | Н     | $\dashv$ | $\mathbb{H}$ | 4 |  |   |      |
| 30   |          |          |           | Ш                 |        | Ш   |          |          |   |           | Ш |   |       |     |       |   |   |           | Ц  |       |      |      | Ш |           |             |         |    |       |          |              |   |  |   |      |
| 20   |          |          |           |                   |        |     |          |          |   |           |   |   | /     | /°  |       |   |   |           |    |       |      |      |   |           |             |         |    |       |          |              |   |  |   |      |
| 10   |          |          |           |                   | T      |     |          |          |   |           |   |   |       |     |       |   |   |           |    |       |      |      |   |           |             |         |    |       |          |              | Ī |  |   |      |
| 0    |          |          |           | П                 | T      | П   |          |          |   |           |   |   |       |     |       |   |   |           |    | 1     |      |      |   |           |             | II      | ١. |       |          |              | 1 |  |   |      |

|                                         | nsgeometrsche<br>enngrößen | U / Cc :                                                                                          | []                                              | $3,5/1,0$ = $(M_2/M_1) \times 100$ = - |                          |  |  |  |  |  |
|-----------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|--------------------------|--|--|--|--|--|
|                                         |                            | Oesame lattige                                                                                    | tettskerinzani 77 –                             | $FI = (IVI_2/IVI_1) \times 100 = -$    |                          |  |  |  |  |  |
| N<br>N                                  | Kornklasse                 | Anteile, auf                                                                                      | Anteile, auf die nächste ganze Zahl gerundet [% |                                        |                          |  |  |  |  |  |
| Z                                       | Normasse                   | Cc                                                                                                | einschließl. $C_{tc}$                           | C <sub>r</sub>                         | einschließl. $C_{ m tr}$ |  |  |  |  |  |
|                                         | 31,5 / 45,0                |                                                                                                   |                                                 |                                        |                          |  |  |  |  |  |
| Körı<br>ung                             | 22,4 / 31,5                |                                                                                                   |                                                 |                                        |                          |  |  |  |  |  |
| ner<br>körn                             | 16,0 / 22,4                | n.d.                                                                                              | n.d.                                            | n.d.                                   | n.d.                     |  |  |  |  |  |
| che                                     | 11,2 / 16,0                |                                                                                                   |                                                 |                                        |                          |  |  |  |  |  |
| gebrochener Körnei<br>Gesteinskörnungen | 8,0 / 11,2                 |                                                                                                   |                                                 |                                        |                          |  |  |  |  |  |
|                                         | 5,0 / 8,0                  |                                                                                                   |                                                 |                                        |                          |  |  |  |  |  |
| Anteile<br>groben<br>933-5              | •                          | gebrochene Körner r: gerundete Körner<br>ändig gebrochene Körner tr: vollständig gerundete Körner |                                                 |                                        |                          |  |  |  |  |  |

[m/s]

 $k_{\rm f}$  nach HAZEN:

> tr: vollständig gerundete Körner © Wesche 09

<sup>=</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie
Abteilung für Angewandte Geologie
PD Dr. Patricia Göbel

### Probe: Pflastermörtel

Auftraggeber: DBU

Projektnummer: AZ.:23277-23

Untersuchungszweck: Materialprüfung

Entnahmeort:

Tiefe der Entnahme:

\_

Art der Entnahme

Tag der Entnahme:

durch: Starke, P.



| Filterstabilität                    | Verv            | vendung al            | s <b>Fugenm</b>       | <b>ateria</b> l mit 1          | folgenden       | Bettungs        | materialien                                           |
|-------------------------------------|-----------------|-----------------------|-----------------------|--------------------------------|-----------------|-----------------|-------------------------------------------------------|
| Bettungsmaterial                    | D <sub>15</sub> | D <sub>50</sub>       | d <sub>85</sub>       | d <sub>50</sub>                | $D_{15}/d_{85}$ | $D_{50}/d_{50}$ | Nachweis der<br>Filterstabilität                      |
| Splitt (Stratiebo)                  |                 |                       |                       |                                |                 |                 |                                                       |
| Splitt (Klostermann) Glasasche      |                 |                       |                       |                                |                 |                 |                                                       |
| Glasasche/Sand-Gem.                 |                 |                       |                       |                                |                 |                 |                                                       |
| Pflastermörtel                      |                 |                       |                       |                                |                 |                 |                                                       |
| gewaschener Sand                    |                 |                       |                       |                                |                 |                 |                                                       |
| Korndichte -                        | L DINI          | ρ [g/                 | / aa. 31              | $\rho_1$                       | $\rho_2$        | $\rho_3$        | Mittelwert                                            |
| 18124                               |                 |                       |                       | 2,63                           | 2,58            | 2,64            | 2,62                                                  |
| Korndichte -                        | ach DIN         | 0 [1                  | /lg/m³]               | $\rho_1$                       | $\rho_2$        | $\rho_3$        | Mittelwert                                            |
| Weithalspyknometer n<br>EN 1097-6   | iach Din-       | P <sub>ssd</sub> [l'  | vig/iii j             |                                |                 |                 |                                                       |
| Proctorversuch nach DIN 18127       |                 | 1                     | 00% Procto            | [g/cm³]                        | 1,79            |                 |                                                       |
| Proctorversuch hach L               | JIN 10127       | opt                   | maler Was             | [%]                            | 11,5            |                 |                                                       |
| Wasserdurchlässigk                  | eit nach        | Durchläs<br>beiwert   | •                     | Infiltration $\dot{V}$ [I/(s*h |                 |                 | orderung von<br>5,4 <sub>*</sub> 10 <sup>-5</sup> m/s |
| DIN 18130 (mit kons                 | tantem          |                       | -                     | -                              |                 |                 | ht erbracht                                           |
| hydralischem Gef<br>gemittelte Wert |                 |                       | -                     | -                              |                 | nic             | ht erbracht                                           |
|                                     | •               |                       | -                     | _                              |                 | nic             | ht erbracht                                           |
| Wasseraufnahmefähi                  | gkeit im        | m                     | ax. Wasserau          | ufnahmevermö                   | ögen im Bez     | ug zur Trocl    | kenmasse                                              |
| verdichteten Zust                   | and             | WAV                   | $' = (m_{WAV}/m_{d})$ | )*100                          | [%              | <u></u>         | 18,2                                                  |
| Wasserhaltevermö                    | gen in          |                       | max. Wasse            | rhaltevermöge                  | en im Bezug     | zur Trockei     | nmasse                                                |
| vedichteten Zust                    | WHV             | $' = (m_{WHV}/m_{d})$ | [6]                   | 15,7                           |                 |                 |                                                       |
| Kanillaro Staighi                   | iho.            |                       | Rohrdurch             | [cm]                           | 4               |                 |                                                       |
| Kapillare Steighd                   | )iie            | ı                     | kapillare St          | [cm]                           | 0               |                 |                                                       |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

|                                                                           | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |        | Institu              | ıt für Geologie und                       | d Paläontologie                                              |  |  |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------|----------------------|-------------------------------------------|--------------------------------------------------------------|--|--|--|
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VESTFÄLISCHE                                                                                            |        |                      | teilung Angewand                          | •                                                            |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vilhelms-Univer<br>Nünster                                                                              | RSITÄT |                      | PD Dr. Patricia                           |                                                              |  |  |  |
| Probe:                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sasche                                                                                                  |        |                      |                                           |                                                              |  |  |  |
| Auftraggebe                                                               | er:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DBU                                                                                                     |        | 100                  |                                           |                                                              |  |  |  |
| Projektnum                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AZ.:23277-23                                                                                            |        |                      |                                           |                                                              |  |  |  |
| Untersuchu                                                                | ngszweck:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Materialprüfung                                                                                         |        | Villa Contract       |                                           |                                                              |  |  |  |
| Entnahmeo                                                                 | rt:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fa. Stratiebo                                                                                           |        |                      |                                           |                                                              |  |  |  |
| Tiefe der Eı                                                              | ntnahme:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |        |                      | Section 5.1                               |                                                              |  |  |  |
| Art der Entr                                                              | nahme F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | laufwerksentnahm                                                                                        | ie     |                      |                                           |                                                              |  |  |  |
| Tag der En                                                                | tnahme:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.01.2008                                                                                              |        |                      |                                           |                                                              |  |  |  |
| durch:                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Starke, P.                                                                                              |        |                      | <b>第一次在</b> 第二次                           |                                                              |  |  |  |
| Bodenart n                                                                | nach DIN 4022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |        | gS, fg*, ı           | ms`, mg`                                  |                                                              |  |  |  |
|                                                                           | Schlämmkorn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |        | Si                   | ebkom                                     |                                                              |  |  |  |
| Gestei                                                                    | Schlufform Mittel- Mit | Grob-Feir-  0.06 0.1 0.2  Komdurchnesser d in mm   K <sub>f</sub> nach HAZEN:  U / Cc:  Gesamt Plattick | [      |                      |                                           | Steine  Steine  Steine  100  100  100  100  100  100  100  1 |  |  |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |        |                      |                                           |                                                              |  |  |  |
| <u> </u>                                                                  | Kornklasse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C <sub>c</sub>                                                                                          |        | eßl. C <sub>tc</sub> | C <sub>r</sub>                            | [%] einschließl. $C_{tr}$                                    |  |  |  |
| er in                                                                     | 31,5 / 45,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |        | to                   | ·                                         |                                                              |  |  |  |
| Körn<br>unge                                                              | 22,4 / 31,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |        |                      |                                           |                                                              |  |  |  |
| ner<br>körn                                                               | 16,0 / 22,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n.d.                                                                                                    | n.     | d.                   | n.d.                                      | n.d.                                                         |  |  |  |
| oche                                                                      | 11,2 / 16,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |        |                      |                                           |                                                              |  |  |  |
| gebr                                                                      | 8,0 / 11,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                         |        |                      |                                           |                                                              |  |  |  |
| Anteile gebrochener Körner in<br>groben Gesteinskörnungen DIN EN<br>933-5 | 5,0 / 8,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oohono Värses                                                                                           |        |                      | m gowandst-17                             | irnor                                                        |  |  |  |
| Ant<br>grol<br>933.                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ochene Körner<br>g gebrochene Körner                                                                    |        |                      | r: gerundete Kö<br>tr: vollständig gerund |                                                              |  |  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

| <u> </u>                          |                                                |                                |                                     | Institut für Geologie und Paläontologie |                        |                  |                                       |  |  |  |
|-----------------------------------|------------------------------------------------|--------------------------------|-------------------------------------|-----------------------------------------|------------------------|------------------|---------------------------------------|--|--|--|
|                                   | - WES                                          | TFÄLISCHE                      |                                     |                                         |                        |                  | Geologie                              |  |  |  |
|                                   |                                                | HELMS-UN                       | IVERSITÄT                           | 7 10                                    | · ·                    | Patricia G       | · ·                                   |  |  |  |
| Davids                            |                                                | ISTER                          |                                     |                                         | I D DI.                | i atricia C      | 1000ei                                |  |  |  |
| Probe:                            | Glasa                                          | scne                           |                                     |                                         |                        |                  |                                       |  |  |  |
| Auftraggeber:                     |                                                | DBU                            |                                     |                                         |                        | in the           |                                       |  |  |  |
| Projektnummer:                    | Α                                              | Z.:23277-2                     | 23                                  |                                         | 9                      | 1 -              |                                       |  |  |  |
| Untersuchungszweck:               | Ma                                             | aterialprüfu                   | ing                                 | V 10                                    |                        |                  |                                       |  |  |  |
| Entnahmeort:                      | F                                              | a. Stratieb                    | 0                                   |                                         |                        |                  |                                       |  |  |  |
| Tiefe der Entnahme:               |                                                |                                |                                     |                                         |                        | <b>学</b>         |                                       |  |  |  |
| Art der Entnahme                  | Hauf                                           | werksentna                     | ahme                                |                                         | The state of           |                  | 1                                     |  |  |  |
| Tag der Entnahme:                 |                                                | 14.01.2008                     | 3                                   | 数据 机                                    |                        |                  |                                       |  |  |  |
| durch:                            |                                                | Starke, P.                     |                                     |                                         |                        |                  |                                       |  |  |  |
| Filterstabilität                  | Verwer                                         | ndung als <b>F</b>             | Rettunasm                           | aterial mit                             | folgenden              | Transchi         | chtmaterialien                        |  |  |  |
|                                   |                                                |                                | I                                   |                                         |                        |                  | Nachweis der                          |  |  |  |
| Tragschichtmaterial               | D <sub>15</sub>                                | D <sub>50</sub>                | d <sub>85</sub>                     | d <sub>50</sub>                         | $D_{15}/d_{85}$        | $D_{50}/d_{50}$  | Filterstabilität                      |  |  |  |
| Tragschicht [NL] Dränsand [NL]    | 0,292<br>0,068                                 | 2,501<br>0,090                 | 4,380<br>4,380                      | 1,831<br>1,831                          | 0,1<br>0,0             | 1,4              | erbracht<br>erbracht                  |  |  |  |
| Feld 4 (Cemex)                    | 0,068                                          | 2,727                          | 4,380                               | 1,831                                   | 0,0                    | 0,0<br>1,5       | erbracht                              |  |  |  |
| Feld 5 (Cemex)                    | 0,248                                          | 2,471                          | 4,380                               | 1,831                                   | 0,1                    | 1,3              | erbracht                              |  |  |  |
| 0/32 rot/grün (BAG)               | 0,595                                          | 9,727                          | 4,380                               | 1,831                                   | 0,1                    | 5,3              | erbracht                              |  |  |  |
| 0/32 grün oben (BAG)              | 0,329                                          | 5,885                          | 4,380                               | 1,831                                   | 0,1                    | 3,2              | erbracht                              |  |  |  |
| 0/32 rot unten (BAG)              | 0,741                                          | 8,338                          | 4,380                               | 1,831                                   | 0,2                    | 4,6              | erbracht                              |  |  |  |
| Korndichte -                      |                                                | . [-                           | / 31                                | $\rho_1$                                | $\rho_2$               | $\rho_3$         | Mittelwert                            |  |  |  |
| Kapillarpyknometer r<br>18124     | nach DIN                                       | ρ [g                           | /cm³]                               | 2,57                                    | 2,57                   | 2,55             | 2,56                                  |  |  |  |
| Korndichte -                      |                                                |                                |                                     | $\rho_1$                                | $\rho_2$               | $\rho_3$         | Mittelwert                            |  |  |  |
| Weithalspyknometer r              | nach DIN-                                      | $ ho_{	extsf{ssd}}$ [N         | Mg/m³]                              | P1                                      |                        | P3               | Wittelwert                            |  |  |  |
| EN 1097-6                         |                                                |                                |                                     |                                         | n.d.                   |                  |                                       |  |  |  |
| Proctorversuch nach I             | DIN 19127                                      | 1                              | 00% Proct                           | ordichte $ ho$ P                        | 'r                     | [g/cm³]          | 1,62                                  |  |  |  |
| Proctor versuch hach              | DIN 10127                                      | opt                            | imaler Was                          | ssergehalt ı                            | <b>W</b> <sub>Pr</sub> | [%]              | 6,80                                  |  |  |  |
|                                   |                                                | Durchläs                       | ssigkeits-                          | Infiltration                            | onsrate                | Anfo             | orderung von                          |  |  |  |
| Wasserdurchlässigk                | eit nach                                       | beiwert                        | k <sub>f</sub> [m/s] :              | $\dot{V}$ [l/(s*h                       | na)] :                 | k <sub>f</sub> ≥ | 5,4 <sub>*</sub> 10 <sup>-5</sup> m/s |  |  |  |
| DIN 18130 (mit kons               |                                                | 2,12                           | E-03                                | 1768                                    | 3,39                   |                  | erbracht                              |  |  |  |
| hydralischem Ge<br>gemittelte Wer | •                                              | 2,46                           | E-03                                | 2053                                    | 3,61                   |                  | erbracht                              |  |  |  |
| gennatione were                   | ,                                              | 2,55                           | E-03                                | 2122                                    | 2,07                   |                  | erbracht                              |  |  |  |
| Wasseraufnahmefäh                 | iakoit im                                      | m                              | nax. Wassera                        | ufnahmeverm                             | ögen in Bezı           | ug zur Trock     | kenmasse                              |  |  |  |
| verdichteten Zus                  | _                                              |                                | $V = (m_{WAV}/m_{d})$               |                                         | [%                     |                  | 21,9                                  |  |  |  |
| Magazia di autoria "              |                                                |                                |                                     | erhaltevermög                           |                        | _                |                                       |  |  |  |
| · ·                               | Wasserhaltevermögen im<br>verdichteten Zustand |                                | $/ = (m_{\text{WHV}}/m_{\text{c}})$ |                                         | [%                     |                  | 13,2                                  |  |  |  |
|                                   |                                                |                                | Rohrdurch                           | chmesser d:                             |                        | [cm]             | 4                                     |  |  |  |
| Kapillare Steigh                  | öhe                                            | kapillare Steighöhe <i>h</i> : |                                     |                                         |                        | [cm]             | 10,8                                  |  |  |  |
|                                   |                                                |                                |                                     | oignone 11.                             |                        | [UIII]           | 10,0                                  |  |  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

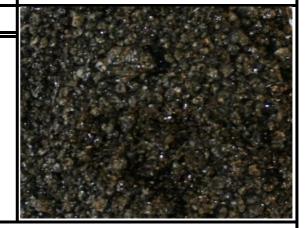
Probe: Glasasche

\_

Auftraggeber: DBU

Projektnummer: AZ.:23277-23
Untersuchungszweck: Materialprüfung
Entnahmeort: Fa. Stratiebo

Tiefe der Entnahme:


0/32 rot unten (BAG)

Art der Entnahme Haufwerksentnahme

0,741

8,338

Tag der Entnahme: 14.01.2008 durch: Starke, P.



4,6

## Einzelnachweise der Filterstabilitäten

| Verwendung als Bettungsmaterial mit folgenden Tragschichtmaterialien |                 |                 |                 |                 |                 |                          |                  |  |  |  |  |  |
|----------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------------|------------------|--|--|--|--|--|
| Tragschichtmaterial                                                  | D <sub>15</sub> | D <sub>50</sub> | d <sub>85</sub> | d <sub>50</sub> | $D_{15}/d_{85}$ | $D_{50}/d_{50}$          | Nachweis der     |  |  |  |  |  |
| Tragoomonanatorial                                                   | <b>D</b> 15     | <b>D</b> 50     | 9 85            | <b>4</b> 50     | D 15/ G 85      | <b>D</b> 50, <b>G</b> 50 | Filterstabilität |  |  |  |  |  |
| Tragschicht [NL]                                                     | 0,292           | 2,501           | 4,380           | 1,831           | 0,1             | 1,4                      | erbracht         |  |  |  |  |  |
| Dränsand [NL]                                                        | 0,068           | 0,090           | 4,380           | 1,831           | 0,0             | 0,0                      | erbracht         |  |  |  |  |  |
| Feld 4 (Cemex)                                                       | 0,290           | 2,727           | 4,380           | 1,831           | 0,1             | 1,5                      | erbracht         |  |  |  |  |  |
| Feld 5 (Cemex)                                                       | 0,248           | 2,471           | 4,380           | 1,831           | 0,1             | 1,3                      | erbracht         |  |  |  |  |  |
| 0/32 rot/grün (BAG)                                                  | 0,595           | 9,727           | 4,380           | 1,831           | 0,1             | 5,3                      | erbracht         |  |  |  |  |  |
| 0/32 grün oben (BAG)                                                 | 0,329           | 5,885           | 4,380           | 1,831           | 0,1             | 3,2                      | erbracht         |  |  |  |  |  |

4,380

#### Verwendung als Bettungsmaterial mit folgenden Fugenmaterialien

1,831

| Fugenmaterial           | D <sub>15</sub> | D <sub>50</sub> | d <sub>85</sub> | d <sub>50</sub> | $D_{15}/d_{85}$ | $D_{50}/d_{50}$ | Nachweis der<br>Filterstabilität |
|-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------------------|
| Split 1/3 (Klostermann) | 0,160           | 0,529           | -               | 1,938           | -               | 0,3             | nicht erbracht                   |
| Extensivsubstrat        | 0,160           | 0,529           | 2,515           | 0,429           | 0,1             | 1,2             | erbracht                         |
| gewaschener Sand        | 0,160           | 0,529           | 0,660           | 0,311           | 0,2             | 1,7             | nicht erbracht                   |

| Verwendung als Fugenmaterial mit folgenden Bettungsmaterialien |                 |                 |                 |                 |                 |                 |                                  |  |
|----------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------------------|--|
| Bettungsmaterial                                               | D <sub>15</sub> | D <sub>50</sub> | d <sub>85</sub> | d <sub>50</sub> | $D_{15}/d_{85}$ | $D_{50}/d_{50}$ | Nachweis der<br>Filterstabilität |  |
| Splitt (Stratiebo)                                             |                 |                 |                 |                 |                 |                 |                                  |  |
| Splitt (Klostermann)                                           |                 |                 |                 |                 |                 |                 |                                  |  |
| Glasasche                                                      |                 |                 |                 |                 |                 |                 |                                  |  |
| Glasasche/Sand-Gem.                                            |                 |                 |                 |                 |                 |                 |                                  |  |
| Pflastermörtel                                                 |                 |                 |                 |                 |                 |                 |                                  |  |
| gewaschener Sand                                               |                 |                 |                 |                 |                 |                 |                                  |  |

erbracht

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie WESTFÄLISCHE Abteilung Angewandte Geologie WILHELMS-UNIVERSITÄT PD Dr. Patricia Göbel MÜNSTER **Glasasche-Sand Gemisch** Probe: Auftraggeber: DBU AZ::23277-23 Projektnummer: Untersuchungszweck: Materialprüfung Entnahmeort: Fa. Stratiebo Tiefe der Entnahme: Art der Entnahme Haufwerksentnahme Tag der Entnahme: 14.01.2008 durch: Starke, P. **Bodenart nach DIN 4022** S, fg Siebkom Schlämmkorn 100 70 60 k<sub>f</sub> nach HAZEN: [m/s] Gesteinsgeometrische U/Cc: 5,8 / 0,8 [] Kenngrößen Gesamt-Plattigkeitskennzahl  $FI = (M_2/M_1) \times 100 =$ n.d. Anteile, auf die nächste ganze Zahl gerundet Ш Kornklasse groben Gesteinskörnungen DIN 1 933-5 einschließl. C<sub>tr</sub>  $C_{c}$ einschließl. Ctc  $C_r$ 31,5 / 45,0 22,4 / 31,5 16,0 / 22,4 n.d. n.d. n.d. n.d. 11,2 / 16,0 8,0 / 11,2 5,0 / 8,0 c: gebrochene Körner r: gerundete Körner tc: vollständig gebrochene Körner tr: vollständig gerundete Körner

n.d. = nicht durchführbar; -= konnte nicht ermittelt werden

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

#### Probe: Glasasche-Sand Gemisch

Auftraggeber: DBU
Projektnummer: AZ.:23277-23

Untersuchungszweck: Materialprüfung
Entnahmeort: Fa. Stratiebo

Tiefe der Entnahme:

\_

Art der Entnahme Haufwerksentnahme

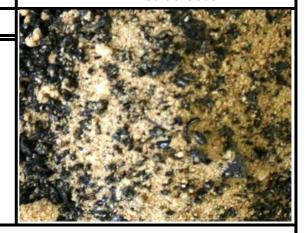
Tag der Entnahme: 14.01.2008 durch: Starke, P.

| Filterstabilität                                          | Verwendung als <b>Tragschichtmateria</b> l mit folgenden Bettungsmaterialien |                                                       |                 |                       |                 |                                                      |                                  |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|-----------------|-----------------------|-----------------|------------------------------------------------------|----------------------------------|--|
| Bettungsmaterial                                          | D <sub>15</sub>                                                              | D <sub>50</sub>                                       | d <sub>85</sub> | d <sub>50</sub>       | $D_{15}/d_{85}$ | $D_{50}/d_{50}$                                      | Nachweis der<br>Filterstabilität |  |
| Tragschicht [NL]                                          | 0,292                                                                        | 2,501                                                 | 2,515           | 0,529                 | 0,1             | 4,7                                                  | erbracht                         |  |
| Dränsand [NL]                                             | 0,068                                                                        | 0,090                                                 | 2,515           | 0,529                 | 0,0             | 0,2                                                  | erbracht                         |  |
| Feld 4 (Cemex)                                            | 0,290                                                                        | 2,727                                                 | 2,515           | 0,529                 | 0,1             | 5,2                                                  | erbracht                         |  |
| Feld 5 (Cemex)                                            | 0,248                                                                        | 2,471                                                 | 2,515           | 0,529                 | 0,1             | 4,7                                                  | erbracht                         |  |
| 0/32 rot/grün (BAG)                                       | 0,595                                                                        | 9,727                                                 | 2,515           | 0,529                 | 0,2             | 18,4                                                 | erbracht                         |  |
| 0/32 grün oben (BAG)                                      | 0,329                                                                        | 5,885                                                 | 2,515           | 0,529                 | 0,1             | 11,1                                                 | erbracht                         |  |
| 0/32 rot unten (BAG)                                      | 0,741                                                                        | 8,338                                                 | 2,515           | 0,529                 | 0,3             | 15,8                                                 | erbracht                         |  |
| Korndichte -                                              | ask DIN                                                                      | . [~                                                  | /a.ma 31        | $\rho_1$              | $\rho_2$        | $\rho_3$                                             | Mittelwert                       |  |
| Kapillarpyknometer r<br>18124                             | iach Din                                                                     | <i>p</i> [g                                           | /cm³]           | 2,58                  | 2,59            | 2,56                                                 | 2,58                             |  |
| Korndichte -<br>Weithalspyknometer nach DIN-<br>EN 1097-6 |                                                                              | ρ <sub>ssd</sub> [Mg/m³]                              |                 | $\rho_1$              | $\rho_2$        | $\rho_3$                                             | Mittelwert                       |  |
|                                                           |                                                                              |                                                       |                 |                       | n.d.            |                                                      |                                  |  |
| Proctorversuch nach DIN 18127                             |                                                                              | 100% Proctordichte $ ho_{ { m Pr}}$                   |                 |                       | r               | [g/cm³]                                              | 1,92                             |  |
| Proctorversuch hach i                                     | JIN 10127                                                                    | optimaler Wassergehalt $w_{Pr}$                       |                 |                       |                 | [%]                                                  | 7,50                             |  |
|                                                           |                                                                              | Durchlässigkeits-                                     |                 | Infiltrationsrate     |                 | Anforderung von $k_{\rm f}$ 5,4.10 <sup>-5</sup> m/s |                                  |  |
| Wasserdurchlässigk                                        |                                                                              | beiwert k <sub>f</sub> [m/s] :                        |                 | <i>v</i> [l/(s*ha)] : |                 |                                                      |                                  |  |
| DIN 18130 (mit kons                                       |                                                                              | 3,40E-05                                              |                 | 141,47                |                 | nicht erbracht                                       |                                  |  |
| hydralischem Ge<br>gemittelte Wert                        | •                                                                            | 3,55E-05                                              |                 | 148,05                |                 | nicht erbracht                                       |                                  |  |
|                                                           | ,                                                                            | 3,64E-05                                              |                 | 151,58                |                 | nicht erbracht                                       |                                  |  |
| Wasseraufnahmefähi                                        | igkeit im                                                                    | max. Wasseraufnahmevermögen in Bezug zur Trockenmasse |                 |                       |                 |                                                      |                                  |  |
| verdichteten Zus                                          | tand                                                                         | $WAV = (m_{WAV}/m_{d})^*100$                          |                 |                       |                 | %] 15,7                                              |                                  |  |
| Wasserhaltevermö                                          | gen im                                                                       | max. Wasserhaltevermögen in Bezug zur Trockenmasse    |                 |                       |                 |                                                      |                                  |  |
| verdichteten Zustand                                      |                                                                              | $WHV = (m_{WHV}/m_{d})^{*}100$                        |                 |                       | [%]             |                                                      | 14,4                             |  |
| Kapillare Steighöhe                                       |                                                                              | Rohrdurchmesser d:                                    |                 |                       | [cm]            | 4                                                    |                                  |  |
|                                                           |                                                                              | kapillare Steighöhe <i>h</i> :                        |                 |                       |                 | [cm]                                                 | 33,5                             |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

#### Probe: Glasasche-Sand Gemisch


Auftraggeber: DBU
Projektnummer: AZ.:23277-23
Untersuchungszweck: Materialprüfung
Entnahmeort: Fa. Stratiebo

Tiefe der Entnahme:

\_

Art der Entnahme Haufwerksentnahme
Tag der Entnahme: 14.01.2008

durch: Starke, P.



## Einzelnachweise der Filterstabilitäten

| Verwendung als Bettungsmaterial mit folgenden Tragschichtmaterialien |                 |                 |                 |                 |                 |                 |                                  |  |
|----------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------------------|--|
| Tragschichtmaterial                                                  | D <sub>15</sub> | D <sub>50</sub> | d <sub>85</sub> | d <sub>50</sub> | $D_{15}/d_{85}$ | $D_{50}/d_{50}$ | Nachweis der<br>Filterstabilität |  |
| Tragschicht [NL]                                                     | 0,292           | 2,501           | 2,515           | 0,529           | 0,1             | 4,7             | erbracht                         |  |
| Dränsand [NL]                                                        | 0,068           | 0,090           | 2,515           | 0,529           | 0,0             | 0,2             | erbracht                         |  |
| Feld 4 (Cemex)                                                       | 0,290           | 2,727           | 2,515           | 0,529           | 0,1             | 5,2             | erbracht                         |  |
| Feld 5 (Cemex)                                                       | 0,248           | 2,471           | 2,515           | 0,529           | 0,1             | 4,7             | erbracht                         |  |
| 0/32 rot/grün (BAG)                                                  | 0,595           | 9,727           | 2,515           | 0,529           | 0,2             | 18,4            | erbracht                         |  |
| 0/32 grün oben (BAG)                                                 | 0,329           | 5,885           | 2,515           | 0,529           | 0,1             | 11,1            | erbracht                         |  |
| 0/32 rot unten (BAG)                                                 | 0,741           | 8,338           | 2,515           | 0,529           | 0,3             | 15,8            | erbracht                         |  |

#### Verwendung als **Bettungsmateria**l mit folgenden Fugenmaterialien

| Fugenmaterial           | D <sub>15</sub> | D <sub>50</sub> | d <sub>85</sub> | d <sub>50</sub> | $D_{15}/d_{85}$ | $D_{50}/d_{50}$ | Nachweis der<br>Filterstabilität |
|-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------------------|
| Split 1/3 (Klostermann) | 0,135           | 0,311           | -               | 1,938           | -               | 0,2             | nicht erbracht                   |
| Extensivsubstrat        | 0,135           | 0,311           | 2,515           | 0,429           | 0,1             | 0,7             | erbracht                         |
| gewaschener Sand        | 0,135           | 0,311           | 0,660           | 0,311           | 0,2             | 1,0             | erbracht                         |

| Verwendung als <b>Fugenmateria</b> l mit folgenden Bettungsmaterialien |                 |                 |                 |                 |                 |                 |                                  |  |
|------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------------------|--|
| Bettungsmaterial                                                       | D <sub>15</sub> | D <sub>50</sub> | d <sub>85</sub> | d <sub>50</sub> | $D_{15}/d_{85}$ | $D_{50}/d_{50}$ | Nachweis der<br>Filterstabilität |  |
| Splitt (Stratiebo)                                                     |                 |                 |                 |                 |                 |                 |                                  |  |
| Splitt (Klostermann)                                                   |                 |                 |                 |                 |                 |                 |                                  |  |
| Glasasche                                                              |                 |                 |                 |                 |                 |                 |                                  |  |
| Glasasche/Sand-Gem.                                                    |                 |                 |                 |                 |                 |                 |                                  |  |
| Pflastermörtel                                                         |                 |                 |                 |                 |                 |                 |                                  |  |
| gewaschener Sand                                                       |                 |                 |                 |                 | 1               |                 |                                  |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie WESTFÄLISCHE Abteilung Angewandte Geologie WILHELMS-UNIVERSITÄT PD Dr. Patricia Göbel MÜNSTER Basaltsplit 1/3 Probe: Auftraggeber: DBU Projektnummer: AZ::23277-23 Untersuchungszweck: Materialprüfung Entnahmeort: Klostermann Tiefe der Entnahme: Art der Entnahme Tag der Entnahme: durch: Starke, P. **Bodenart nach DIN 4022** gS, ms' Schlämmkorn Siebkorn Feinstes M itte l 100 6 der Gesamtm 60 50 20 k<sub>f</sub> nach HAZEN:  $5,7*10^{-3}$ [m/s] Gesteinsgeometrische U/Cc: [] Kenngrößen Gesamt-Plattigkeitskennzahl  $FI = (M_2/M_1) \times 100 =$ n.d. Anteile, auf die nächste ganze Zahl gerundet Ш Kornklasse einschließl. Ctc einschließl. C<sub>tr</sub>  $C_{c}$  $C_r$ Anteile gebrochener Körner in groben Gesteinskörnungen DIN 933-5 31,5 / 45,0 22,4 / 31,5 16,0 / 22,4 n.d. n.d. n.d. n.d. 11,2 / 16,0 8,0 / 11,2 5,0 / 8,0 c: gebrochene Körner r: gerundete Körner tc: vollständig gebrochene Körner tr: vollständig gerundete Körner

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

| _                                  |                   |                                |                                      | Institu                                 | t für Geolo                         | ogie und F               | Paläontologie                                         |  |
|------------------------------------|-------------------|--------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------|--------------------------|-------------------------------------------------------|--|
|                                    | WILI              | TFÄLISCHE<br>IELMS-UNI<br>STER |                                      | Ab                                      |                                     | gewandte<br>Patricia G   | e Geologie<br>Göbel                                   |  |
| Probe:                             | Basalts           | plit 1/3                       |                                      | A                                       | 学到                                  | AL ST                    | X WY                                                  |  |
| Auftraggeber:                      |                   | DBU                            |                                      | 3                                       | 1                                   |                          |                                                       |  |
| Projektnummer:                     | А                 | Z.:23277-2                     | .3                                   |                                         |                                     | 4.4                      |                                                       |  |
| Untersuchungszweck:                | Ma                | aterialprüfu                   | ng                                   | ATT                                     |                                     |                          | MI                                                    |  |
| Entnahmeort:                       | k                 | Closterman                     | n                                    | 77                                      |                                     | d P                      |                                                       |  |
| Tiefe der Entnahme:                |                   |                                |                                      |                                         | (中央                                 | A TO                     | <b>学</b>                                              |  |
| Art der Entnahme                   |                   |                                |                                      | 1                                       | TOTAL TO                            | DO.                      | CHARLES SE                                            |  |
| Tag der Entnahme:                  |                   |                                |                                      |                                         |                                     | × 100                    | THE LET                                               |  |
| durch:                             |                   | Starke, P.                     |                                      |                                         |                                     |                          |                                                       |  |
| Filterstabilität                   | Verv              | vendung al                     | s <b>Fugenm</b>                      | aterial mit                             | folgenden                           | Bettungs                 | materialien                                           |  |
| Bettungsmaterial                   | D <sub>15</sub>   | D <sub>50</sub>                | d <sub>85</sub>                      | d <sub>50</sub>                         | $D_{15}/d_{85}$                     | $D_{50}/d_{50}$          | Nachweis der<br>Filterstabilität                      |  |
| Splitt/Klostermann                 | 1,740             | 3,331                          | -                                    | 1,938                                   | -                                   | 1,7                      | nicht erbrach                                         |  |
| Splitt/Stratiebo<br>Pflastermörtel | 1,978<br>0,688    | 3,563<br>1,831                 | -                                    | 1,938<br>1,938                          | -                                   | 1,8<br>0,9               | nicht erbracht<br>nicht erbracht                      |  |
| Glasasche                          | 0,688             | 0,529                          | -                                    | 1,938                                   |                                     | 0,9                      | nicht erbracht                                        |  |
| Glasasche-Sand                     | 0,135             | 0,311                          | _                                    | 1,938                                   | _                                   | 0,2                      | nicht erbrach                                         |  |
| Gewaschener Sand                   | 0,152             | 0,359                          | -                                    | 1,938                                   | -                                   | 0,2                      | nicht erbrach                                         |  |
| Korndichte -                       |                   | $ ho$ [g/cm $^{ m s}$ ]        |                                      | $\rho_1$                                | $\rho_2$                            | $\rho_3$                 | Mittelwert                                            |  |
| Kapillarpyknometer r<br>18124      |                   |                                |                                      | 2,88                                    | 2,90                                | 2,87                     | 2,88                                                  |  |
| Korndichte -                       |                   |                                |                                      | ρ <sub>1</sub>                          | ρ2                                  | $\rho_3$                 | Mittelwert                                            |  |
| Weithalspyknometer r<br>EN 1097-6  | nach DIN-         | יון $ ho_{ m ssd}$ ניו         | Mg/m³]                               | n.d.                                    |                                     |                          |                                                       |  |
| S                                  | 2:N 40407         | 1                              | 00% Proct                            | ordichte $ ho_{	extsf{Pr}}$             |                                     | [g/cm³]                  | 1,62                                                  |  |
| Proctorversuch nach I              | JIN 1812 <i>i</i> | opti                           | imaler Was                           | ssergehalt w <sub>Pr</sub>              |                                     | [%]                      | 0,0                                                   |  |
| Wasserdurchlässigk                 | eit nach          |                                | ssigkeits-<br>k <sub>f</sub> [m/s] : | Infiltrationsrate $\dot{V}$ [l/(s*ha)]: |                                     | Anfo<br>k <sub>f</sub> ≥ | orderung von<br>5,4 <sub>*</sub> 10 <sup>-5</sup> m/s |  |
| DIN 18130 (mit kons                | tantem            | 0,0                            | )31                                  | 2546                                    | 4,79                                | (                        | erbracht                                              |  |
| hydralischem Ge<br>gemittelte Wer  | · ·               | 0,0                            | )31                                  | 2546                                    | 4,79                                |                          | erbracht                                              |  |
| genintene wen                      | ie)               | 0,0                            | )38                                  | 3183                                    | 0,99                                | erbracht                 |                                                       |  |
| Wasseraufnahmefäh                  | igkeit im         | m                              | nax. Wassera                         | ufnahmeverm                             | ufnahmevermögen in Bezug zur Trocke |                          |                                                       |  |
| verdichteten Zus                   | _                 | WAV                            | $' = (m_{WAV}/m_{d})$                | )*100                                   | [%                                  | 6]                       | <u> </u>                                              |  |

Wasserhaltevermögen im verdichteten Zustand

Kapillare Steighöhe

13,0 © Wesche 09

10,6

4

 $WHV = (m_{\rm WHV}/m_{\rm d})^*100$ 

Rohrdurchmesser d:

kapillare Steighöhe h:

max. Wasserhaltevermögen in Bezug zur Trockenmasse

[%]

[cm]

[cm]

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie WESTFÄLISCHE Abteilung Angewandte Geologie WILHELMS-UNIVERSITÄT PD Dr. Patricia Göbel MÜNSTER Probe: **Extensivsubstrat** Auftraggeber: DBU AZ::23277-23 Projektnummer: Untersuchungszweck: Materialprüfung Entnahmeort: Tiefe der Entnahme: Art der Entnahme Tag der Entnahme: durch: Starke, P. **Bodenart nach DIN 4022** S, fg Siebkorn Kieskorr Feinstes der Körner < din % der Gesamtm Massenanteile k<sub>f</sub> nach HAZEN:  $4,7 * 10^{-5}$ [m/s] Gesteinsgeometrische U/Cc: 11,0 / 0,7 [] Kenngrößen Gesamt-Plattigkeitskennzahl  $FI = (M_2/M_1) \times 100 =$ n.d. Anteile, auf die nächste ganze Zahl gerundet Ш Kornklasse groben Gesteinskörnungen DIN 1933-5 einschließl. Ctc einschließl. C<sub>tr</sub>  $C_{c}$  $C_r$ 31,5 / 45,0 22,4 / 31,5 16,0 / 22,4 n.d. n.d. n.d. n.d. 11,2 / 16,0 8,0 / 11,2 5,0 / 8,0 r: gerundete Körner c: gebrochene Körner tc: vollständig gebrochene Körner tr: vollständig gerundete Körner

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

Materialprüfung

Probe: Extensivsubstrat

Auftraggeber: DBU

Projektnummer: AZ.:23277-23

Untersuchungszweck:

Entnahmeort:

\_\_\_\_\_\_\_

Tiefe der Entnahme: Art der Entnahme Tag der Entnahme:

durch: Starke, P.

| Filterstabilität                     | Verv            | wendung al            | s <b>Fugenm</b>       | aterial mit          | folgenden         | Bettungs                                               | materialien                      |
|--------------------------------------|-----------------|-----------------------|-----------------------|----------------------|-------------------|--------------------------------------------------------|----------------------------------|
| Bettungsmaterial                     | D <sub>15</sub> | D <sub>50</sub>       | d <sub>85</sub>       | d <sub>50</sub>      | $D_{15}/d_{85}$   | $D_{50}/d_{50}$                                        | Nachweis der<br>Filterstabilität |
| Splitt (Klostermann)                 | 1,740           | 3,331                 | 2,515                 | 0,429                | 0,69              | 7,77                                                   | erbracht                         |
| Splitt (Stratiebo)                   | 1,978           | 3,563                 | 2,515                 | 0,429                | 0,79              | 8,31                                                   | erbracht                         |
| Pflastermörtel                       | 0,688           | 1,831                 | 2,515                 | 0,429                | 0,27              | 4,27                                                   | erbracht                         |
| Glasasche                            | 0,160           | 0,529                 | 2,515                 | 0,429                | 0,06              | 1,23                                                   | erbracht                         |
| Glasasche-Sand                       | 0,135           | 0,311                 | 2,515                 | 0,429                | 0,05              | 0,73                                                   | erbracht                         |
| Gewaschener Sand                     | 0,152           | 0,359                 | 2,515                 | 0,429                | 0,06              | 0,84                                                   | erbracht                         |
| Korndichte -<br>Kapillarpyknometer r |                 | ρ [g/                 | /cm <sup>3</sup> 1    | $\rho_1$             | $\rho_2$          | $\rho_3$                                               | Mittelwert                       |
| 18124                                | 18124           |                       | F 19. 011 1           |                      | 2,57              | 2,54                                                   | 2,59                             |
| Korndichte -<br>Weithalspyknometer ı |                 | $ ho_{ m ssd}$ [N     | /la/m³1               | $\rho_1$             | $\rho_2$          | $\rho_3$                                               | Mittelwert                       |
| EN 1097-6                            |                 | P ssd Li              | vig/iii j             |                      | n.d.              |                                                        |                                  |
| Proctoryoreuch nach                  | DIN 19127       | 1                     | 00% Procto            | ordichte $ ho$ P     | Pr                | [g/cm³]                                                | 1,53                             |
| Proctorversuch nach DIN 18127        |                 | opt                   | maler Was             | sergehalt ı          | W <sub>Pr</sub>   | [%]                                                    | 0,0                              |
|                                      |                 |                       | Durchlässigkeits-     |                      | Infiltrationsrate |                                                        | orderung von                     |
| Wasserdurchlässigk                   | eit nach        | beiwert $k_f$ [m/s] : |                       | <i>v</i> [l/(s*ha)]∶ |                   | k <sub>f</sub> ≥ 5,4 <sub>*</sub> 10 <sup>-5</sup> m/s |                                  |
| DIN 18130 (mit kons                  |                 | 4,08E-05              |                       | 339,63               |                   | nicht erbracht                                         |                                  |
| hydralischem Ge<br>gemittelte Wer    | •               | 4,46                  | E-05                  | 556,46               |                   | nicht erbracht                                         |                                  |
| _                                    | -               |                       |                       |                      |                   |                                                        |                                  |
| Wasseraufnahmefäh                    | igkeit im       | m                     | ıax. Wasseraı         | ufnahmeverm          | ögen in Bezı      | ug zur Trock                                           | enmasse                          |
| verdichteten Zus                     | tand            | WAV                   | $' = (m_{WAV}/m_{d})$ | )*100                | [%                | 6]                                                     | 23,2                             |
| Wasserhaltevermö                     | gen im          |                       | max. Wasse            | rhaltevermög         | en in Bezug       | zur Trocker                                            | ımasse                           |
| verdichteten Zus                     | _               | WHV                   | $' = (m_{WHV}/m_{d})$ | )*100                | [%                | 6]                                                     | 20,1                             |
| Karrillana Cr. 1                     |                 |                       | Rohrdurch             | messer d:            |                   | [cm]                                                   | 4                                |
|                                      | one l           |                       |                       |                      |                   |                                                        |                                  |
| Kapillare Steigh                     |                 |                       | kapillare St          | eighöhe <i>h</i> :   |                   | [cm]                                                   | 33                               |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

|                                           |                 |                                 |                                     | Institu                    | t für Geolo     | ogie und F             | Paläontologie                         |
|-------------------------------------------|-----------------|---------------------------------|-------------------------------------|----------------------------|-----------------|------------------------|---------------------------------------|
|                                           | WILI            | TFÄLISCHE<br>HELMS-UNI<br>ISTER |                                     | Ab                         | teilung An      | gewandte<br>Patricia G | •                                     |
| Probe: <b>E</b>                           | xtensiv         | substra                         | it                                  |                            | To the          |                        |                                       |
| Auftraggeber:                             |                 | DBU                             |                                     |                            |                 |                        | 2 1 1 THE                             |
| Projektnummer:                            | Α               | Z.:23277-2                      | 23                                  | 1 2 2                      | P 10.0          |                        | 计划对于                                  |
| Untersuchungszweck:                       | Ma              | aterialprüfu                    | ng                                  |                            |                 | A Service              |                                       |
| Entnahmeort:                              |                 |                                 |                                     | S. Market                  | <b>建</b>        |                        | 和自然是                                  |
| Tiefe der Entnahme:                       |                 |                                 |                                     |                            |                 | E A                    |                                       |
| Art der Entnahme                          |                 |                                 |                                     |                            | 7               | <b>学</b>               |                                       |
| Tag der Entnahme:                         |                 |                                 |                                     |                            | 经证明             |                        |                                       |
| durch:                                    |                 | Starke, P.                      |                                     |                            | <b>3</b>        | 经验施                    |                                       |
| Filterstabilität                          | Verv            |                                 | s <b>Fugenm</b>                     | aterial mit                | folgenden       | Bettungs               | materialien                           |
| Bettungsmaterial                          | D <sub>15</sub> | D <sub>50</sub>                 | d <sub>85</sub>                     | d <sub>50</sub>            | $D_{15}/d_{85}$ | $D_{50}/d_{50}$        | Nachweis der<br>Filterstabilität      |
| Splitt (Klostermann)                      | 1,740           | 3,331                           | 2,515                               | 0,429                      | 0,69            | 7,77                   | erbracht                              |
| Splitt (Stratiebo)                        | 1,978           | 3,563                           | 2,515                               | 0,429                      | 0,79            | 8,31                   | erbracht                              |
| Pflastermörtel<br>Glasasche               | 0,688<br>0,160  | 1,831<br>0,529                  | 2,515<br>2,515                      | 0,429<br>0,429             | 0,27<br>0,06    | 4,27<br>1,23           | erbracht<br>erbracht                  |
| Glasasche-Sand                            | 0,100           | 0,329                           | 2,515                               | 0,429                      | 0,05            | 0,73                   | erbracht                              |
| Gewaschener Sand                          | 0,152           | 0,359                           | 2,515                               | 0,429                      | 0,06            | 0,84                   | erbracht                              |
| Korndichte -                              |                 | ρ [g/cm³]                       |                                     | $\rho_1$                   | $\rho_2$        | $\rho_3$               | Mittelwert                            |
| Kapillarpyknometer i<br>18124             | nach DIN        |                                 |                                     | 2,52                       | 2,57            | 2,54                   | 2,54                                  |
| Korndichte -                              |                 |                                 |                                     | $\rho_1$                   | $\rho_2$        | $\rho_3$               | Mittelwert                            |
| Weithalspyknometer i<br>EN 1097-6         | nach DIN-       | $ ho_{	ext{ssd}}$ [N            | Mg/m³]                              | n.d.                       |                 |                        |                                       |
|                                           |                 | 1                               | 00% Proct                           | ordichte $ ho_{ { m Pr}}$  |                 | [g/cm³]                | 1,45                                  |
| Proctorversuch nach                       | DIN 18127       | opt                             | imaler Was                          | ssergehalt w <sub>Pr</sub> |                 | [%]                    | 0,0                                   |
|                                           |                 |                                 | ssigkeits-                          | Infiltrationsrate          |                 |                        | orderung von                          |
| Wasserdurchlässigk<br>DIN 18130 (mit kons |                 | Delweit                         | k <sub>f</sub> [m/s] :              | V [l/(s*t                  | ıa)] .          | ·                      | 5,4 <sub>*</sub> 10 <sup>-5</sup> m/s |
| hydralischem Ge                           |                 |                                 | -                                   | -                          | •               | nicht erbracht         |                                       |
| gemittelte Wer                            | te)             |                                 |                                     |                            |                 |                        |                                       |
| Wasseraufnahmefäh                         | iakeit im       | m                               | nax. Wassera                        | ufnahmeverm                | ögen in Bezı    | ug zur Trock           | enmasse                               |
| verdichteten Zus                          | _               | WAV                             | $V = (m_{\text{WAV}}/m_{\text{d}})$ | )*100                      | [%              | 6]                     | 23,8                                  |

Wasserhaltevermögen im verdichteten Zustand

Kapillare Steighöhe

35 © Wesche 09

20,9

4

 $WHV = (m_{\rm WHV}/m_{\rm d})^*100$ 

Rohrdurchmesser d:

kapillare Steighöhe h:

max. Wasserhaltevermögen in Bezug zur Trockenmasse

[%]

[cm]

[cm]

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

Institut für Geologie und Paläontologie WESTFÄLISCHE Abteilung Angewandte Geologie WILHELMS-UNIVERSITÄT PD Dr. Patricia Göbel MÜNSTER gewaschener Sand 0-2 Probe: Auftraggeber: DBU AZ::23277-23 Projektnummer: Untersuchungszweck: Materialprüfung Entnahmeort: Fa. Stratiebo Tiefe der Entnahme: Art der Entnahme Tag der Entnahme: durch: Starke, P. **Bodenart nach DIN 4022** mS, fs, gs Siebkom Schlämmkorn 100 k<sub>f</sub> nach HAZEN: 1,5 \* 10<sup>-4</sup> [m/s] Gesteinsgeometrische U/Cc: 3,3 / 0,9 [] Kenngrößen Gesamt-Plattigkeitskennzahl  $FI = (M_2/M_1) \times 100 =$ n.d. Anteile, auf die nächste ganze Zahl gerundet Ш Kornklasse einschließl. Ctc einschließl. C<sub>tr</sub> Anteile gebrochener Körner in groben Gesteinskörnungen DIN 933-5  $C_{c}$  $C_r$ 31,5 / 45,0 22,4 / 31,5 16,0 / 22,4 11,2 / 16,0 n.d. n.d. n.d. n.d. 8,0 / 11,2 5,0 / 8,0 r: gerundete Körner c: gebrochene Körner tc: vollständig gebrochene Körner tr: vollständig gerundete Körner

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

## Probe: gewaschener Sand 0-2

Auftraggeber: DBU

Projektnummer: AZ.:23277-23
Untersuchungszweck: Materialprüfung

Entnahmeort:

Tiefe der Entnahme: Art der Entnahme Tag der Entnahme:

Ţ

durch: Starke, P.

|     |                                         |       | 1  |
|-----|-----------------------------------------|-------|----|
| 対域  |                                         |       | ×. |
|     |                                         | 權     |    |
|     | 14 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - |       |    |
|     |                                         |       |    |
| 7., |                                         | 8° W. |    |
|     |                                         |       |    |

| Filterstabilität                     | Verv            | wendung al            | s <b>Fugenm</b>       | <b>ateria</b> l mit t             | folgenden       | Bettungs                             | materialien                      |
|--------------------------------------|-----------------|-----------------------|-----------------------|-----------------------------------|-----------------|--------------------------------------|----------------------------------|
| Bettungsmaterial                     | D <sub>15</sub> | D <sub>50</sub>       | d <sub>85</sub>       | d <sub>50</sub>                   | $D_{15}/d_{85}$ | $D_{50}/d_{50}$                      | Nachweis der<br>Filterstabilität |
| Splitt (Stratiebo)                   | 1,978           | 3,563                 | 0,660                 | 0,311                             | 3,0             | 11,5                                 | nicht erbracht                   |
| Splitt (Klostermann)                 | 1,740           | 3,331                 | 0,660                 | 0,311                             | 2,6             | 10,7                                 | nicht erbracht                   |
| Glasasche                            | 0,160           | 0,529                 | 0,660                 | 0,311                             | 0,2             | 1,7                                  | erbracht                         |
| Glasasche/Sand-Gem.                  | 0,135           | 0,311                 | 0,660                 | 0,311                             | 0,2             | 1,0                                  | erbracht                         |
| Pflastermörtel                       | 0,688           | 1,831                 | 0,660                 | 0,311                             | 1,0             | 5,9                                  | erbracht                         |
| gewaschener Sand                     | 0,152           | 0,359                 | 0,660                 | 0,311                             | 0,2             | 1,2                                  | erbracht                         |
| Korndichte -<br>Kapillarpyknometer r |                 | ρ [g/                 | /cm³l                 | $\rho_1$                          | $\rho_2$        | $\rho_3$                             | Mittelwert                       |
| 18124                                |                 | , 10 1                |                       | 2,62                              | 2,62            | 2,68                                 | 2,64                             |
| Korndichte -<br>Weithalspyknometer i | nach DIN        | $ ho_{ m ssd}$ [N     | /la/m³1               | $\rho_1$                          | $\rho_2$        | $\rho_3$                             | Mittelwert                       |
| EN 1097-6                            |                 | P ssd Li              | vig/iii j             |                                   | n.d.            |                                      |                                  |
| Proctoryoreuch nach l                | NIN 19127       | 1                     | 00% Procto            | ordichte $ ho$ P                  | r.              | [g/cm³]                              | 1,7                              |
| Proctorversuch nach DIN 18127        |                 | opt                   | maler Was             | ssergehalt ı                      | W <sub>Pr</sub> | [%]                                  | 13,5                             |
|                                      |                 | Durchlässigkeits-     |                       | Infiltrationsrate                 |                 | Anfo                                 | orderung von                     |
| Wasserdurchlässigk                   | eit nach        | beiwert $k_f$ [m/s] : |                       | $\stackrel{\cdot}{V}$ [l/(s*ha)]: |                 | $k_{\rm f} \ge 5.4.10^{-5}  \rm m/s$ |                                  |
| DIN 18130 (mit kons                  |                 | 4,24E-05              |                       | 141,47                            |                 | nicht erbracht                       |                                  |
| hydralischem Ge<br>gemittelte Wer    | •               | 4,49E-05              |                       | 374,48                            |                 | nicht erbracht                       |                                  |
| _                                    | ·               | 4,55                  | E-05                  | 303,15                            |                 | nicht erbracht                       |                                  |
| Wasseraufnahmefäh                    | igkeit im       | m                     | ıax. Wasseraı         | ufnahmeverm                       | ögen in Bezı    | ug zur Trock                         | kenmasse                         |
| verdichteten Zus                     | _               | WAV                   | $' = (m_{WAV}/m_{d})$ | )*100                             | [%              | [6]                                  | 17,8                             |
| Wasserhaltevermö                     | gen im          |                       | max. Wasse            | erhaltevermög                     | en in Bezug     | zur Trocker                          | nmasse                           |
| verdichteten Zus                     | _               | WHV                   | $' = (m_{WHV}/m_{d})$ | ı)*100                            | [%              | [o]                                  | 17,7                             |
| Manillana Otaliah                    |                 |                       | Rohrdurch             | messer d:                         |                 | [cm]                                 | 4                                |
| Kapillare Steigh                     | one             | ı                     | kapillare St          | eighöhe <i>h</i> :                |                 | [cm]                                 | 32,2                             |
| - kannta night armittalt word        |                 |                       |                       |                                   |                 |                                      | @ Wasaha 00                      |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

WESTFÄLISCHE WILHELMS-UNIVERSITÄT

MÜNSTER

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

Probe: gewaschener Sand 0-2

Auftraggeber: DBU

Projektnummer: AZ.:23277-23
Untersuchungszweck: Materialprüfung

Entnahmeort:

Tiefe der Entnahme: Art der Entnahme Tag der Entnahme:

\_

durch: Starke, P.



## Einzelnachweise der Filterstabilitäten

|                      | Verwendung als <b>Bettungsmateria</b> l mit folgenden Tragschichtmaterialien |                 |                 |                 |                 |                 |                                  |  |  |
|----------------------|------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------------------|--|--|
| Tragschichtmaterial  | D <sub>15</sub>                                                              | D <sub>50</sub> | d <sub>85</sub> | d <sub>50</sub> | $D_{15}/d_{85}$ | $D_{50}/d_{50}$ | Nachweis der<br>Filterstabilität |  |  |
| Tragschicht [NL]     | 0,292                                                                        | 2,501           | 0,660           | 0,311           | 0,4             | 8,0             | erbracht                         |  |  |
| Dränsand [NL]        | 0,068                                                                        | 0,090           | 0,660           | 0,311           | 0,1             | 0,3             | erbracht                         |  |  |
| Feld 4 (Cemex)       | 0,290                                                                        | 2,727           | 0,660           | 0,311           | 0,4             | 8,8             | erbracht                         |  |  |
| Feld 5 (Cemex)       | 0,248                                                                        | 2,471           | 0,660           | 0,311           | 0,4             | 7,9             | erbracht                         |  |  |
| 0/32 rot/grün (BAG)  | 0,595                                                                        | 9,727           | 0,660           | 0,311           | 0,9             | 31,3            | nicht erbracht                   |  |  |
| 0/32 grün oben (BAG) | 0,329                                                                        | 5,885           | 0,660           | 0,311           | 0,5             | 18,9            | erbracht                         |  |  |
| 0/32 rot unten (BAG) | 0,741                                                                        | 8,338           | 0,660           | 0,311           | 1,1             | 26,8            | nicht erbracht                   |  |  |

|                         | Verwendung als <b>Bettungsmateria</b> l mit folgenden Fugenmaterialien |          |                 |                 |                                  |                                  |                  |  |  |  |
|-------------------------|------------------------------------------------------------------------|----------|-----------------|-----------------|----------------------------------|----------------------------------|------------------|--|--|--|
| Fugenmaterial           | D <sub>15</sub>                                                        | $D_{50}$ | d <sub>85</sub> | d <sub>50</sub> | $D_{15}/d_{85}$                  | ח וא                             | Nachweis der     |  |  |  |
| rugenmatenai            | D <sub>15</sub>                                                        | $D_{50}$ | U 85            | U 50            | D <sub>15</sub> /U <sub>85</sub> | D <sub>50</sub> /U <sub>50</sub> | Filterstabilität |  |  |  |
| Split 1/3 (Klostermann) | 0,152                                                                  | 0,359    | -               | 1,938           | -                                | 0,2                              | nicht erbracht   |  |  |  |
| Extensivsubstrat        | 0,152                                                                  | 0,359    | 2,515           | 0,429           | 0,1                              | 0,8                              | erbracht         |  |  |  |
| gewaschener Sand        | 0,152                                                                  | 0,359    | 0,660           | 0,311           | 0,2                              | 1,2                              | erbracht         |  |  |  |

|                      | Ven             | wendung al      | s <b>Fugenm</b> | <b>ateria</b> l mit | folgenden       | Bettungs                         | materialien      |
|----------------------|-----------------|-----------------|-----------------|---------------------|-----------------|----------------------------------|------------------|
| Bettungsmaterial     | D <sub>15</sub> | D <sub>50</sub> | ٨               | ٨                   | $D_{15}/d_{85}$ | $D_{50}/d_{50}$                  | Nachweis der     |
| Bettungsmaterial     | D <sub>15</sub> | $D_{50}$        | d <sub>85</sub> | d <sub>50</sub>     |                 | D <sub>50</sub> /U <sub>50</sub> | Filterstabilität |
| Splitt (Stratiebo)   | 1,978           | 3,563           | 0,660           | 0,311               | 3,0             | 11,5                             | nicht erbracht   |
| Splitt (Klostermann) | 1,740           | 3,331           | 0,660           | 0,311               | 2,6             | 10,7                             | nicht erbracht   |
| Glasasche            | 0,160           | 0,529           | 0,660           | 0,311               | 0,2             | 1,7                              | erbracht         |
| Glasasche/Sand-Gem.  | 0,135           | 0,311           | 0,660           | 0,311               | 0,2             | 1,0                              | erbracht         |
| Pflastermörtel       | 0,688           | 1,831           | 0,660           | 0,311               | 1,0             | 5,9                              | erbracht         |
| gewaschener Sand     | 0,152           | 0,359           | 0,660           | 0,311               | 0,2             | 1,2                              | erbracht         |
|                      |                 |                 |                 |                     |                 |                                  |                  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

|                                                                           | <u> </u>                  |                                      |                               | Institu                           | ıt für Geologie und                       | d Paläontologie               |
|---------------------------------------------------------------------------|---------------------------|--------------------------------------|-------------------------------|-----------------------------------|-------------------------------------------|-------------------------------|
|                                                                           |                           | VESTFÄLISCHE                         | v_                            | Ab                                | teilung Angewand                          | tte Geologie                  |
|                                                                           |                           | Vilhelms-Univer<br>Nünster           | SITAT                         |                                   | PD Dr. Patricia                           | Göbel                         |
| Probe:                                                                    | Fü                        | llsand                               |                               |                                   |                                           |                               |
| Auftraggeber                                                              | ··                        | DBU                                  |                               |                                   |                                           | 0.00                          |
| Projektnumm                                                               | ner:                      | AZ.:23277-23                         |                               | きを                                |                                           |                               |
| Untersuchung                                                              | gszweck:                  | Materialprüfung                      |                               |                                   |                                           |                               |
| Entnahmeort                                                               | :: Gela                   | ände der Fa. Strati                  | ebo                           |                                   |                                           |                               |
| Tiefe der Ent                                                             | nahme:                    |                                      |                               |                                   |                                           |                               |
| Art der Entna                                                             | ahme                      |                                      |                               |                                   |                                           |                               |
| Tag der Entn                                                              | ahme:                     |                                      |                               |                                   | Citor Son                                 |                               |
| durch:                                                                    |                           | Starke, P.                           |                               | LE Y                              |                                           |                               |
| Bodenart na                                                               | ch DIN 4022               |                                      |                               | fS, m                             | s, gs`                                    |                               |
|                                                                           | Schlämmkom                |                                      |                               | Sie                               | ebkorn                                    | Ī                             |
| Feinstes Fein-                                                            | Mittel- Grol              | Fein-                                | Mitel                         | Grob-                             | Fein- Mittel-                             | Grob-                         |
|                                                                           |                           |                                      |                               |                                   |                                           |                               |
| 0 ( - '                                                                   |                           | k <sub>f</sub> nach Hazen:           | k <sub>f</sub> nach HAZEN: [m |                                   | 6,3                                       | * 10 <sup>-5</sup>            |
|                                                                           | sgeometrische<br>nngrößen | <i>U / C</i> c:                      | [                             | ]                                 | 2,6                                       | / 0,9                         |
|                                                                           |                           | Gesamt-Plattigk                      | eitskennz                     | zahl <i>FI</i> =                  | $(M_2/M_1) \times 100 =$                  | n.d.                          |
| Anteile gebrochener Körner in<br>groben Gesteinskörnungen DIN EN<br>933-5 | Kornklasse                | Anteile, auf                         |                               | ste ganze<br>eßl. C <sub>tc</sub> | Zahl gerundet<br>C <sub>r</sub>           | [%] einschließl. $C_{\rm tr}$ |
| er ir                                                                     | 31,5 / 45,0               |                                      |                               |                                   |                                           |                               |
| Körn                                                                      | 22,4 / 31,5               |                                      |                               |                                   |                                           |                               |
| ner  <br>körn                                                             | 16,0 / 22,4               | n.d.                                 | n.                            | d.                                | n.d.                                      | n.d.                          |
| sinsl                                                                     | 11,2 / 16,0               |                                      |                               |                                   |                                           |                               |
| ebro                                                                      | 8,0 / 11,2                |                                      |                               |                                   |                                           |                               |
| ile g<br>en G                                                             | 5,0 / 8,0                 |                                      |                               |                                   |                                           |                               |
| Anteile gebrochener Körner in<br>groben Gesteinskörnungen DII<br>933-5    |                           | ochene Körner<br>g gebrochene Körner |                               |                                   | r: gerundete Ko<br>tr: vollständig gerund |                               |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER

Institut für Geologie und Paläontologie
Abteilung Angewandte Geologie
PD Dr. Patricia Göbel

## Probe: Füllsand

\_

Auftraggeber: DBU

Projektnummer: AZ.:23277-23 Untersuchungszweck: Materialprüfung

Entnahmeort: Gelände der Fa. Stratiebo

Tiefe der Entnahme: Art der Entnahme

Tag der Entnahme: durch: Starke, P.



|                                                                       |                               | Otoliko, i :       |                                       |                             |                                         |                 |                                                       |  |
|-----------------------------------------------------------------------|-------------------------------|--------------------|---------------------------------------|-----------------------------|-----------------------------------------|-----------------|-------------------------------------------------------|--|
| Filterstabilität                                                      | Verwer                        | ndung als <b>T</b> | ragschich                             | tmaterial n                 | nit folgend                             | en Bettur       | igsmaterialien                                        |  |
| Bettungsmaterial                                                      | D <sub>15</sub>               | D <sub>50</sub>    | d <sub>85</sub>                       | d <sub>50</sub>             | $D_{15}/d_{85}$                         | $D_{50}/d_{50}$ | Nachweis der<br>Filterstabilität                      |  |
| Splitt (Stratiebo) Splitt (Klostermann) Glasasche Glasasche/Sand-Gem. |                               |                    |                                       |                             |                                         |                 |                                                       |  |
| gewaschener Sand Pflastermörtel                                       |                               |                    |                                       |                             |                                         |                 |                                                       |  |
| Korndichte -<br>Kapillarpyknometer r                                  |                               | o [a               | /cm³]                                 | $\rho_1$                    | $\rho_2$                                | $\rho_3$        | Mittelwert                                            |  |
| 18124                                                                 | Iacii Dii                     | P (9               | CITI J                                | 2,59                        | 2,57                                    | 2,57            | 2,58                                                  |  |
| Korndichte -<br>Weithalspyknometer ı                                  |                               | 0 . [1             | /lg/m³]                               | $\rho_1$                    | $\rho_2$                                | $\rho_3$        | Mittelwert                                            |  |
| EN 1097-6                                                             | iacii biiv-                   | P ssd Li           | vig/iii ]                             |                             | n.d.                                    |                 |                                                       |  |
| Proctoryersuch nach                                                   | Proctorversuch nach DIN 18127 |                    | 00% Proct                             | ordichte $ ho$ <sub>P</sub> | Pr                                      | [g/cm³]         | 1,84                                                  |  |
| Proctorversuch hach bin 18127                                         |                               | opt                | imaler Was                            | sergehalt i                 | W <sub>Pr</sub>                         | [%]             | 10,0                                                  |  |
| Wasserdurchlässigk                                                    | Wasserdurchlässigkeit nach    |                    | Durchlässigkeitsbeiwert $k_f$ [m/s] : |                             | Infiltrationsrate $\dot{V}$ [l/(s*ha)]: |                 | orderung von<br>5,4 <sub>*</sub> 10 <sup>-5</sup> m/s |  |
| DIN 18130 (mit kons<br>hydralischem Ge                                |                               | -                  |                                       | -                           |                                         | nicht erbracht  |                                                       |  |
| gemittelte Wer                                                        |                               | -                  |                                       | -                           |                                         | nicht erbracht  |                                                       |  |
|                                                                       |                               |                    | -                                     | -                           | -                                       | nicht erbracht  |                                                       |  |
| Wasseraufnahmefäh                                                     | _                             | m                  | nax. Wassera                          | ufnahmeverm                 | ögen in Bezı                            | ug zur Trock    | enmasse                                               |  |
| verdichteten Zus                                                      | tand                          | WAV                | $V = (m_{WAV}/m_{d})$                 | )*100                       | [%]                                     |                 | 18,9                                                  |  |
| Wasserhaltevermö                                                      | gen im                        |                    | max. Wasse                            | erhaltevermög               | en in Bezug                             | zur Trocker     | masse                                                 |  |
| verdichteten Zus                                                      | tand                          | WHV                | $V = (m_{WHV}/m_c)$                   | ı)*100                      | [%                                      | [6]             | 17,6                                                  |  |
| Kapillare Steigh                                                      | öhe                           |                    | Rohrdurch                             | messer d:                   |                                         | [cm]            | 4                                                     |  |
| •                                                                     |                               |                    | •                                     | eighöhe <i>h</i> :          |                                         | [cm]            | 43,2                                                  |  |
| - = konnte nicht ermittelt werd                                       |                               |                    |                                       |                             |                                         |                 | © Wesche 09                                           |  |

<sup>- =</sup> konnte nicht ermittelt werden, n.d. = nicht durchführbar

| <u> </u>                                   | ■ WESTFÄLISCHE<br>■ WILHELMS-UNIVERSITÄT<br>■ MÜNSTER | Abteilung für Ang  | ie und Paläontologie<br>gewandte Geologie<br>aticia Göbel |
|--------------------------------------------|-------------------------------------------------------|--------------------|-----------------------------------------------------------|
| Korngrößenb                                | estimmung durch S                                     | iebung nach DIN    | EN 933-2 (1996)                                           |
| Material:                                  | HKS 0/32                                              |                    | Laborant: Kaul                                            |
| Bodenart:                                  | mG, gg, s', fg'                                       |                    | Datum: 10.04.2008                                         |
| Entnahmestelle:                            | Gelände der Firma k                                   | Clostermann        |                                                           |
| Probennehmer:                              | Starke                                                |                    |                                                           |
| Art der Entn.:                             | Haufwerksbeprobun                                     | 9                  | _                                                         |
| Entn. am.:                                 | 26.03.2008                                            |                    |                                                           |
| Masse der trocken                          | en Probe m <sub>e</sub> in g:                         | 13556,9            | 1                                                         |
| Maschenweite                               | Masse der Rückstände                                  | Siebrückstände     | Summe der<br>Siebdurchgänge                               |
| mm                                         | $m_{R}$                                               | $(m_R / \sum m_R)$ | 100 - Siebrückstand                                       |
|                                            | g                                                     | %                  | %                                                         |
| 63,0                                       | 0,0                                                   | 0,0                | 100,0                                                     |
| 45,0                                       | 0,0                                                   | 0,0                | 100,0                                                     |
| 31,5                                       | 0,0                                                   | 0,0                | 100,0                                                     |
| 22,4                                       | 2209,9                                                | 16,3               | 83,7                                                      |
| 16,0                                       | 2295,2                                                | 16,9               | 66,8                                                      |
| 11,2                                       | 3421,1                                                | 25,2               | 41,5                                                      |
| 8,0                                        | 2844,6                                                | 21,0               | 20,5                                                      |
| 5,0                                        | 898,3                                                 | 6,6                | 13,9                                                      |
| 2,0                                        | 252,7                                                 | 1,9                | 12,0                                                      |
| 0,71                                       | 569,1                                                 | 4,2                | 7,8                                                       |
| 0,25                                       | 380,2                                                 | 2,8                | 5,0                                                       |
| 0,09                                       | 326,3                                                 | 2,4                | 2,6                                                       |
| 0,063                                      | 207,6                                                 | 1,5                | 1,1                                                       |
| Schale < 0,063                             | 148,4                                                 | 1,1                | 0,0                                                       |
| Summe (∑ <i>m</i> <sub>R</sub> )           | 13553,4                                               | 100,0              | _                                                         |
| Verlust ( $m_{\rm e}$ - $\sum m_{\rm R}$ ) | 3,5                                                   | _                  | _                                                         |
|                                            | wertung                                               | Beme               | rkungen                                                   |
| U                                          | 11,9                                                  |                    |                                                           |
| C <sub>c</sub>                             | 4,7                                                   |                    |                                                           |
| k <sub>f</sub> -Wert (m/s)                 | 1,8*10 <sup>-2</sup>                                  |                    |                                                           |

| <u> </u>                                   | WESTFÄLISCHE<br>Wilhelms-Universität<br>Münster | Abteilung für Ange | e und Paläontologie<br>ewandte Geologie<br>ricia Göbel | Anlage:<br>zu: |
|--------------------------------------------|-------------------------------------------------|--------------------|--------------------------------------------------------|----------------|
|                                            | Korngrößenl                                     | bestimmung nach    | DIN 18123                                              |                |
| Auftraggeber:                              | DBU                                             | Bemerkungen:       |                                                        |                |
| Projekt Nr.:                               |                                                 | Versuchsbeginn:    |                                                        | 6.2008         |
| Entnahmestelle:                            |                                                 | Versuchsende:      | 10.0                                                   | 6.2008         |
| Probennehmer:                              | Starke                                          |                    |                                                        |                |
| Bodenart:                                  | Tragschicht NL                                  | Laborant:          | Kaul/                                                  | Tielmann       |
| Einwaage des Siebante                      |                                                 |                    |                                                        |                |
| Maschenweite                               | Masse der<br>Rückstände                         | Siebrückstände     | Summe der<br>Siebdurchgänge                            |                |
| mm                                         | $m_{R}$                                         | R / md * 100       | 100 - Siebrückstand                                    |                |
|                                            | g                                               | %                  | %                                                      |                |
| 63,0                                       |                                                 |                    | 100,0                                                  |                |
| 45,0                                       | 228,7                                           | 1,97               | 98,0                                                   |                |
| 31,5                                       | 1024,9                                          | 8,84               | 89,2                                                   |                |
| 22,4                                       | 1177,6                                          | 10,16              | 79,0                                                   |                |
| 16,0                                       | 961                                             | 8,29               | 70,7                                                   |                |
| 11,2                                       | 776,2                                           | 6,69               | 64,1                                                   |                |
| 8,0                                        | 547,3                                           | 4,72               | 59,3                                                   |                |
| 5,0                                        | 734,3                                           | 6,33               | 53,0                                                   |                |
| 2,0                                        | 856,6                                           | 7,39               | 45,6                                                   |                |
| 0,71                                       | 1662,3                                          | 14,33              | 31,3                                                   |                |
| 0,25                                       | 3257,8                                          | 28,09              | 3,2                                                    |                |
| 0,09                                       | 329                                             | 2,84               | 0,3                                                    |                |
| 0,063                                      | 40,4                                            | 0,35               | 0,0                                                    |                |
| Schale < 0,063                             | 0                                               |                    | 0,0                                                    |                |
| Summe ( $\sum m_{\rm R}$ )                 | 11596,1                                         |                    | -                                                      |                |
| Verlust ( $m_{\rm e}$ - $\sum m_{\rm R}$ ) | 693,9                                           | -                  | -                                                      |                |
|                                            | Auswert                                         | ung                |                                                        |                |
| U d60/d10 :                                | 35                                              |                    | %                                                      |                |
| Cc= (d30)²/(d10*d60)                       | 0,3                                             | U :                | %                                                      |                |
| Anteil: < 0,063 mm                         | 6                                               | S:                 | 42%                                                    |                |
| Bodenart:                                  |                                                 | G :                | 51%                                                    |                |
| Bodengruppe:                               |                                                 |                    |                                                        |                |
| Kurzzeichen nach DIN 4022:                 | S, G                                            | kf-Wert:           | 4,7 * 10 <sup>-4</sup> ms                              |                |

| <u> </u>                          |                                                 | Inotitut für Caalasis                                                                                 | a und Doläantelesie         | Anlage:  |  |  |
|-----------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|----------|--|--|
|                                   | WESTFÄLISCHE<br>Wilhelms-Universität<br>Münster | Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel |                             | zu:      |  |  |
|                                   | Korngrößenbestimmung nach DIN 18123             |                                                                                                       |                             |          |  |  |
| Auftraggeber:                     | DBU                                             | Bemerkungen:                                                                                          |                             |          |  |  |
| Projekt Nr.:                      |                                                 | Versuchsbeginn:                                                                                       |                             | 6.2008   |  |  |
| Entnahmestelle:                   |                                                 | Versuchsende:                                                                                         | 09.0                        | 6.2008   |  |  |
|                                   | Starke                                          |                                                                                                       |                             |          |  |  |
|                                   | Dränsand NL                                     | Laborant:                                                                                             | Kaul/                       | Tielmann |  |  |
| Einwaage des Siebante             |                                                 | <u> </u>                                                                                              |                             |          |  |  |
| Maschenweite                      | Masse der<br>Rückstände                         | Siebrückstände                                                                                        | Summe der<br>Siebdurchgänge |          |  |  |
| mm                                | $m_{R}$                                         | R / md * 100                                                                                          | 100 - Siebrückstand         |          |  |  |
|                                   | g                                               | %                                                                                                     | %                           |          |  |  |
| 63,0                              |                                                 |                                                                                                       | 100,0                       |          |  |  |
| 45,0                              |                                                 | 0,00                                                                                                  | 100,0                       |          |  |  |
| 31,5                              |                                                 | 0,00                                                                                                  | 100,0                       |          |  |  |
| 22,4                              |                                                 | 0,00                                                                                                  | 100,0                       |          |  |  |
| 16,0                              |                                                 | 0,00                                                                                                  | 100,0                       |          |  |  |
| 11,2                              |                                                 | 0,00                                                                                                  | 100,0                       |          |  |  |
| 8,0                               |                                                 | 0,00                                                                                                  | 100,0                       |          |  |  |
| 5,0                               |                                                 | 0,00                                                                                                  | 100,0                       |          |  |  |
| 2,0                               | 11,3                                            | 1,33                                                                                                  | 98,7                        |          |  |  |
| 0,71                              | 29,9                                            | 3,53                                                                                                  | 95,1                        |          |  |  |
| 0,25                              | 15,4                                            | 1,82                                                                                                  | 93,3                        |          |  |  |
| 0,09                              | 246,1                                           | 29,05                                                                                                 | 64,3                        |          |  |  |
| 0,063                             | 518,1                                           | 61,15                                                                                                 | 3,1                         |          |  |  |
| Schale < 0,125                    | 26,4                                            |                                                                                                       | 3,1                         |          |  |  |
| Summe ( $\sum m_{\rm R}$ )        | 847,2                                           |                                                                                                       | -                           |          |  |  |
| Verlust ( $m_e$ - $\sum m_R$ )    | 0,1                                             | -                                                                                                     | -                           |          |  |  |
|                                   | Auswert                                         | ung                                                                                                   |                             |          |  |  |
| U d60/d10 :                       | 1,6                                             | Т:                                                                                                    | %                           |          |  |  |
| Cc= (d30) <sup>2</sup> /(d10*d60) | 0,8                                             | U :                                                                                                   | %                           |          |  |  |
| Anteil: < 0,063 mm                | 2%                                              | S:                                                                                                    | 97%                         |          |  |  |
| Bodenart:                         |                                                 | G :                                                                                                   | %                           |          |  |  |
| Bodengruppe:                      |                                                 |                                                                                                       |                             |          |  |  |
| Kurzzeichen nach DIN 4022:        | fS, ms'                                         | kf-Wert:                                                                                              | 5,0 * 10 <sup>-4</sup> m/s  |          |  |  |

| <u> </u>                          | Westfälische<br>Wilhelms-Universität<br>Münster |                                      |                             | Anlage:<br>zu: |  |  |
|-----------------------------------|-------------------------------------------------|--------------------------------------|-----------------------------|----------------|--|--|
|                                   | Korngrößenbestimmung nach DIN 933-3             |                                      |                             |                |  |  |
| Auftraggeber:                     | DBU                                             | Bemerkungen:                         |                             |                |  |  |
| Projekt Nr.:                      |                                                 | Versuchsbeginn:                      |                             | 7.2008         |  |  |
| Entnahmestelle:                   |                                                 | Versuchsende:                        | 02.0                        | 7.2008         |  |  |
| Probennehmer:                     | Starke                                          |                                      |                             |                |  |  |
| Bodenart:                         | Feld 4 unterer Bereich TL-SoB                   | Laborant:                            | V.                          | Kaul           |  |  |
| Einwaage des Siebante             | eils $m_{ m e}$ in g:                           | 12792                                |                             |                |  |  |
| Maschenweite                      | Masse der<br>Rückstände                         | Siebrückstände                       | Summe der<br>Siebdurchgänge |                |  |  |
| mm                                | $m_{R}$                                         | $(m_{\rm R} / \sum m_{\rm R}) * 100$ | 100 - Siebrückstand         |                |  |  |
|                                   | g                                               | %                                    | %                           |                |  |  |
| 63,0                              | -                                               | -                                    | -                           |                |  |  |
| 45,0                              | -                                               | -                                    | -                           |                |  |  |
| 31,5                              | -                                               | -                                    | 100,0                       |                |  |  |
| 22,4                              | 445,6                                           | 3,5                                  | 96,5                        |                |  |  |
| 16,0                              | 1618,4                                          | 12,8                                 | 83,7                        |                |  |  |
| 11,2                              | 1206,1                                          | 9,5                                  | 74,2                        |                |  |  |
| 8,0                               | 809,10                                          | 6,4                                  | 67,8                        |                |  |  |
| 5,0                               | 1370,40                                         | 10,8                                 | 56,9                        |                |  |  |
| 2,0                               | 1382,30                                         | 10,9                                 | 46,0                        |                |  |  |
| 0,71                              | 835,40                                          | 6,6                                  | 39,4                        |                |  |  |
| 0,25                              | 4047,10                                         | 32,0                                 | 7,4                         |                |  |  |
| 0,09                              | 304,10                                          | 2,4                                  | 5,0                         |                |  |  |
| 0,063                             | 11,60                                           | 0,1                                  | 4,9                         |                |  |  |
| Schale < 0,063                    | 623,2                                           | 4,9                                  | 0,0                         |                |  |  |
| Summe ( $\sum m_R$ )              | 12653,3                                         | 100,0                                | -                           |                |  |  |
| Verlust $(m_e - \sum m_R)$        | 138,7                                           | -                                    | -                           |                |  |  |
|                                   | Auswert                                         | ung                                  |                             |                |  |  |
| U d60/d10 :                       | 26,1                                            | T:                                   | 1 %                         |                |  |  |
| Cc= (d30) <sup>2</sup> /(d10*d60) | 0,3                                             | U:                                   | / %                         |                |  |  |
| Anteil: < 0,063 mm                |                                                 | S:                                   | 49,90%                      |                |  |  |
| Bodenart:                         | S,G                                             | G :                                  | 53,10%                      |                |  |  |
| Bodengruppe:                      |                                                 |                                      |                             |                |  |  |
| Kurzzeichen nach DIN 4022:        |                                                 | kf-Wert:                             | 5,3 * 10 <sup>-4</sup> m/s  |                |  |  |

| <u></u>                             | WESTFÄLISCHE<br>WILHELMS-UNIVERSITÄT<br>MÜNSTER |                                      |                             | Anlage:<br>zu: |  |
|-------------------------------------|-------------------------------------------------|--------------------------------------|-----------------------------|----------------|--|
|                                     | MUNJIEK                                         | i D Di. i at                         | TOTA CODE                   |                |  |
| Korngrößenbestimmung nach DIN 933-3 |                                                 |                                      |                             |                |  |
| Auftraggeber:                       | DBU                                             | Bemerkungen:                         |                             |                |  |
| Projekt Nr.:                        |                                                 | Versuchsbeginn:                      |                             | 7.2008         |  |
| Entnahmestelle:                     |                                                 | Versuchsende:                        | 02.0                        | 7.2008         |  |
| Probennehmer:                       | Starke                                          |                                      |                             |                |  |
| Bodenart:                           | Feld 5 oberer Bereich<br>TL-SoB                 | Laborant:                            | V.                          | Kaul           |  |
| Einwaage des Siebante               |                                                 | 16115                                |                             |                |  |
| Maschenweite                        | Masse der<br>Rückstände                         | Siebrückstände                       | Summe der<br>Siebdurchgänge |                |  |
| mm                                  | $m_{R}$                                         | $(m_{\rm R} / \sum m_{\rm R}) * 100$ | 100 - Siebrückstand         |                |  |
|                                     | g                                               | %                                    | %                           |                |  |
| 63,0                                | -                                               | -                                    | -                           |                |  |
| 45,0                                | -                                               | -                                    | -                           |                |  |
| 31,5                                | -                                               | -                                    | 100,0                       |                |  |
| 22,4                                | 174,9                                           | 1,1                                  | 98,9                        |                |  |
| 16,0                                | 1473,4                                          | 9,2                                  | 89,7                        |                |  |
| 11,2                                | 1540,5                                          | 9,7                                  | 80,0                        |                |  |
| 8,0                                 | 1010,5                                          | 6,3                                  | 73,6                        |                |  |
| 5,0                                 | 2395,4                                          | 15,0                                 | 58,6                        |                |  |
| 2,0                                 | 1934,3                                          | 12,1                                 | 46,5                        |                |  |
| 0,71                                | 629,7                                           | 4,0                                  | 42,5                        |                |  |
| 0,25                                | 5057,8                                          | 31,7                                 | 10,8                        |                |  |
| 0,09                                | 844,4                                           | 5,3                                  | 5,5                         |                |  |
| 0,063                               | 18,5                                            | 0,1                                  | 5,4                         |                |  |
| Schale < 0,063                      | 853,3                                           | 5,4                                  | 0,0                         |                |  |
| Summe (∑ <i>m</i> <sub>R</sub> )    | 15932,7                                         | 100,0                                | -                           |                |  |
| Verlust ( $m_e$ - $\sum m_R$ )      | 182,3                                           | -                                    | -                           |                |  |
|                                     | Auswert                                         | ung                                  |                             |                |  |
| U d60/d10 :                         | 28                                              | T :                                  | / %                         |                |  |
| Cc= (d30) <sup>2</sup> /(d10*d60)   | 0,3                                             | U:                                   | / %                         |                |  |
| Anteil: < 0,063 mm                  |                                                 | S: 48,00%                            |                             |                |  |
| Bodenart:                           | S,G                                             | G :                                  | 52,00%                      |                |  |
| Bodengruppe:                        |                                                 |                                      |                             |                |  |
| Kurzzeichen nach DIN<br>4022:       |                                                 | kf-Wert:                             | 3,5 * 10 <sup>-4</sup> m/s  |                |  |

| <u>+</u>                         | ■ WESTFÄLISCHE<br>■ WILHELMS-UNIVERSITÄT<br>■ MÜNSTER | Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel |                             |
|----------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|
| Korngrößenb                      | estimmung durch S                                     | iebung nach DIN                                                                                       | EN 933-2 (1996)             |
| Material:                        | RC 0/45                                               |                                                                                                       | Laborant: Kaul              |
| Bodenart:                        | G, fs', ms', gs'                                      |                                                                                                       | Datum: 12.03.2008           |
| Entnahmestelle:                  | Gelände der Firma S                                   | Stratiebo                                                                                             |                             |
| Probennehmer:                    | Starke                                                |                                                                                                       | _                           |
| Art der Entn.:                   | Haufwerksbeprobun                                     | <u>g</u>                                                                                              | _                           |
| Entn. am.:                       | 14.01.2008                                            |                                                                                                       |                             |
| Masse der trocken                | en Probe $m_{\rm e}$ in g:                            | 11004,5                                                                                               | 1                           |
| Maschenweite                     | Masse der Rückstände                                  | Siebrückstände                                                                                        | Summe der<br>Siebdurchgänge |
| mm                               | m <sub>R</sub>                                        | $(m_R / \sum m_R)$                                                                                    | 100 - Siebrückstand         |
|                                  | g                                                     | %                                                                                                     | %                           |
| 63,0                             | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 45,0                             | 96,9                                                  | 0,9                                                                                                   | 100,0                       |
| 31,5                             | 605,1                                                 | 5,5                                                                                                   | 94,5                        |
| 22,4                             | 696,5                                                 | 6,3                                                                                                   | 88,2                        |
| 16,0                             | 1036,6                                                | 9,4                                                                                                   | 78,8                        |
| 11,2                             | 1160,7                                                | 10,5                                                                                                  | 68,2                        |
| 8,0                              | 1174,1                                                | 10,7                                                                                                  | 57,5                        |
| 5,0                              | 1343,1                                                | 12,2                                                                                                  | 45,3                        |
| 2,0                              | 1462,2                                                | 13,3                                                                                                  | 32,0                        |
| 0,71                             | 1286,6                                                | 11,7                                                                                                  | 20,3                        |
| 0,25                             | 1284,7                                                | 11,7                                                                                                  | 8,7                         |
| 0,09                             | 600,2                                                 | 5,5                                                                                                   | 3,2                         |
| 0,063                            | 93,9                                                  | 0,9                                                                                                   | 2,4                         |
| Schale < 0,063                   | 163,3                                                 | 1,5                                                                                                   | 0,9                         |
| Summe (∑ <i>m</i> <sub>R</sub> ) | 11003,9                                               | 100,0                                                                                                 |                             |
| Verlust $(m_e - \sum m_R)$       | 0,6                                                   |                                                                                                       | _                           |
| Aus                              | wertung                                               | Beme                                                                                                  | rkungen                     |
| U                                | 30,8                                                  |                                                                                                       |                             |
| C <sub>c</sub>                   | 1,2                                                   |                                                                                                       |                             |
| k <sub>f</sub> -Wert (m/s)       | 9,6*10 <sup>-4</sup>                                  |                                                                                                       |                             |

| <u></u>                        | ■ WESTFÄLISCHE<br>■ WILHELMS-UNIVERSITÄT<br>■ MÜNSTER | Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel |                             |
|--------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|
| Korngrößenb                    | estimmung durch S                                     | iebung nach DIN                                                                                       | EN 933-2 (1996)             |
| Material:                      | HKS 0/45                                              |                                                                                                       | Laborant: Kaul              |
| Bodenart:                      | G, fs', gs'                                           |                                                                                                       | Datum: 07.03.2008           |
| Entnahmestelle:                | Gelände der Firma S                                   | Stratiebo                                                                                             |                             |
| Probennehmer:                  | Starke                                                |                                                                                                       |                             |
| Art der Entn.:                 | Haufwerksbeprobun                                     | 9                                                                                                     | _                           |
| Entn. am.:                     | 14.01.2008                                            |                                                                                                       |                             |
| Masse der trocken              | en Probe m <sub>e</sub> in g:                         | 14666,5                                                                                               | Т                           |
| Maschenweite                   | Masse der Rückstände                                  | Siebrückstände                                                                                        | Summe der<br>Siebdurchgänge |
| mm                             | m <sub>R</sub>                                        | $(m_R / \sum m_R)$                                                                                    | 100 - Siebrückstand         |
|                                | g                                                     | %                                                                                                     | %                           |
| 63,0                           | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 45,0                           | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 31,5                           | 2484,2                                                | 16,9                                                                                                  | 83,1                        |
| 22,4                           | 2512,7                                                | 17,1                                                                                                  | 65,9                        |
| 16,0                           | 1919,6                                                | 13,1                                                                                                  | 52,8                        |
| 11,2                           | 1496,3                                                | 10,2                                                                                                  | 42,6                        |
| 8,0                            | 1049,2                                                | 7,2                                                                                                   | 35,5                        |
| 5,0                            | 1096,1                                                | 7,5                                                                                                   | 28,0                        |
| 2,0                            | 1178,9                                                | 8,0                                                                                                   | 20,0                        |
| 0,71                           | 928,7                                                 | 6,3                                                                                                   | 13,6                        |
| 0,25                           | 552,3                                                 | 3,8                                                                                                   | 9,9                         |
| 0,09                           | 328,8                                                 | 2,2                                                                                                   | 7,6                         |
| 0,063                          | 78,4                                                  | 0,5                                                                                                   | 7,1                         |
| Schale < 0,063                 | 1040,9                                                | 7,1                                                                                                   | 0,0                         |
| Summe ( $\sum m_R$ )           | 14666,1                                               | 100,0                                                                                                 | _                           |
| Verlust ( $m_e$ - $\sum m_R$ ) | 0,4                                                   |                                                                                                       |                             |
| Aus                            | wertung                                               |                                                                                                       | rkungen                     |
| U                              | 79,9                                                  | Nasssiebung                                                                                           |                             |
| Cc                             | 6,6                                                   |                                                                                                       |                             |
| k <sub>f</sub> -Wert (m/s)     | 6,7*10 <sup>-4</sup>                                  |                                                                                                       |                             |

| <u></u>                           | Westfälische<br>Wilhelms-Universität<br>Münster | Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel |                             | Anlage:<br>zu: |  |  |
|-----------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|----------------|--|--|
|                                   | Korngrößenbestimmung nach DIN 18123             |                                                                                                       |                             |                |  |  |
| Auftraggeber:                     | DBU                                             | Bemerkungen:                                                                                          |                             |                |  |  |
| Projekt Nr.:                      |                                                 | Versuchsbeginn:                                                                                       |                             | 6.2008         |  |  |
| Entnahmestelle:                   |                                                 | Versuchsende:                                                                                         | 11.0                        | 6.2008         |  |  |
| Probennehmer:                     | Starke                                          |                                                                                                       |                             |                |  |  |
| Bodenart:                         | 0/32 rot/grün                                   | Laborant:                                                                                             | ŀ                           | Kaul           |  |  |
| Einwaage des Siebante             |                                                 |                                                                                                       |                             |                |  |  |
| Maschenweite                      | Masse der<br>Rückstände                         | Siebrückstände                                                                                        | Summe der<br>Siebdurchgänge |                |  |  |
| mm                                | $m_{R}$                                         | R / md * 100                                                                                          | 100 - Siebrückstand         |                |  |  |
|                                   | g                                               | %                                                                                                     | %                           |                |  |  |
| 63,0                              |                                                 |                                                                                                       | 100,0                       |                |  |  |
| 45,0                              |                                                 |                                                                                                       | 100,0                       |                |  |  |
| 31,5                              | 379                                             | 2,89                                                                                                  | 97,1                        |                |  |  |
| 22,4                              | 1181                                            | 9,00                                                                                                  | 88,1                        |                |  |  |
| 16,0                              | 2605,5                                          | 19,86                                                                                                 | 68,2                        |                |  |  |
| 11,2                              | 1885,1                                          | 14,37                                                                                                 | 53,9                        |                |  |  |
| 8,0                               | 908,4                                           | 6,92                                                                                                  | 47,0                        |                |  |  |
| 5,0                               | 1134,2                                          | 8,65                                                                                                  | 38,3                        |                |  |  |
| 2,0                               | 1113                                            | 8,48                                                                                                  | 29,8                        |                |  |  |
| 0,71                              | 1538,8                                          | 11,73                                                                                                 | 18,1                        |                |  |  |
| 0,25                              | 904,5                                           | 6,89                                                                                                  | 11,2                        |                |  |  |
| 0,09                              | 719,9                                           | 5,49                                                                                                  | 5,7                         |                |  |  |
| 0,063                             | 106,1                                           | 0,81                                                                                                  | 4,9                         |                |  |  |
| Schale < 0,063                    | 643,6                                           | 4,91                                                                                                  | 0,0                         |                |  |  |
| Summe (∑ <i>m</i> <sub>R</sub> )  | 13119,1                                         |                                                                                                       | -                           |                |  |  |
| Verlust ( $m_e$ - $\sum m_R$ )    | -321,8                                          | -                                                                                                     | -                           |                |  |  |
|                                   | Auswert                                         | ung                                                                                                   |                             |                |  |  |
| U d60/d10 :                       | 46,2                                            | Т:                                                                                                    | %                           |                |  |  |
| Cc= (d30) <sup>2</sup> /(d10*d60) | 1,6                                             | U:                                                                                                    | %                           |                |  |  |
| Anteil: < 0,063 mm                | 2%                                              | S:                                                                                                    | 36%                         |                |  |  |
| Bodenart:                         |                                                 | G :                                                                                                   | 72%                         |                |  |  |
| Bodengruppe:                      |                                                 |                                                                                                       |                             |                |  |  |
| Kurzzeichen nach DIN<br>4022:     |                                                 | kf-Wert:                                                                                              | 1,0 * 10 <sup>-3</sup> m/s  |                |  |  |

| <u></u>                           | WESTFÄLISCHE<br>Wilhelms-Universität<br>Münster |                 |                             | Anlage:<br>zu: |  |
|-----------------------------------|-------------------------------------------------|-----------------|-----------------------------|----------------|--|
|                                   | Korngrößenbestimmung nach DIN 18123             |                 |                             |                |  |
| Auftraggeber:                     | DBU                                             | Bemerkungen:    |                             |                |  |
| Projekt Nr.:                      |                                                 | Versuchsbeginn: |                             | 6.2008         |  |
| Entnahmestelle:                   |                                                 | Versuchsende:   | 11.0                        | 6.2008         |  |
|                                   | Starke                                          |                 |                             |                |  |
|                                   | 0/32 grün oben                                  | Laborant:       | ŀ                           | Kaul           |  |
| Einwaage des Sie                  |                                                 | 12651,3         |                             |                |  |
| Maschenweite                      | Masse der<br>Rückstände                         | Siebrückstände  | Summe der<br>Siebdurchgänge |                |  |
| mm                                | $m_{R}$                                         | R / md * 100    | 100 - Siebrückstand         |                |  |
|                                   | g                                               | %               | %                           |                |  |
| 63,0                              | -                                               | -               | -                           |                |  |
| 45,0                              | -                                               | -               | 100,00                      |                |  |
| 31,5                              | 144,3                                           | 1,10            | 98,90                       |                |  |
| 22,4                              | 727,7                                           | 5,56            | 93,33                       |                |  |
| 16,0                              | 2095,6                                          | 16,02           | 77,31                       |                |  |
| 11,2                              | 1631,8                                          | 12,48           | 64,83                       |                |  |
| 8,0                               | 567,6                                           | 4,34            | 60,49                       |                |  |
| 5,0                               | 1800,4                                          | 13,77           | 46,72                       |                |  |
| 2,0                               | 1059,8                                          | 8,10            | 38,62                       |                |  |
| 0,71                              | 1714,8                                          | 13,11           | 25,51                       |                |  |
| 0,25                              | 1413                                            | 10,80           | 14,70                       |                |  |
| 0,09                              | 964,5                                           | 7,38            | 7,32                        |                |  |
| 0,063                             | 114,2                                           | 0,87            | 6,45                        |                |  |
| Schale < 0,063                    | 843,7                                           | 6,45            | 0,00                        |                |  |
| Summe (∑ <i>m</i> <sub>R</sub> )  | 13077,4                                         | 100,00          | -                           |                |  |
| Verlust ( $m_e$ - $\sum m_R$ )    | -426,1                                          | -               | -                           |                |  |
|                                   | Auswert                                         | ung             |                             |                |  |
| U d60/d10 :                       | 81,4                                            | Т:              | %                           |                |  |
| Cc= (d30) <sup>2</sup> /(d10*d60) | 1,6                                             | U :             | %                           |                |  |
| Anteil: < 0,063 mm                | 2%                                              | S:              | 35%                         |                |  |
| Bodenart:                         |                                                 | G :             | 74%                         |                |  |
| Bodengruppe:                      |                                                 |                 |                             |                |  |
| Kurzzeichen nach DIN 4022:        |                                                 | kf-Wert:        | 1,4 * 10 <sup>-4</sup> m/s  |                |  |

| <u> </u>                          | WESTFÄLISCHE<br>Wilhelms-Universität<br>Münster |                 |                             | Anlage:<br>zu: |  |  |
|-----------------------------------|-------------------------------------------------|-----------------|-----------------------------|----------------|--|--|
|                                   | Korngrößenbestimmung nach DIN 18123             |                 |                             |                |  |  |
| Auftraggeber:                     | DBU                                             | Bemerkungen:    |                             |                |  |  |
| Projekt Nr.:                      |                                                 | Versuchsbeginn: |                             | 6.2008         |  |  |
| Entnahmestelle:                   |                                                 | Versuchsende:   | 11.0                        | 6.2008         |  |  |
| Probennehmer:                     | Starke                                          |                 |                             |                |  |  |
| Bodenart:                         | 0/32 rot unten                                  | Laborant:       | ŀ                           | Kaul           |  |  |
| Einwaage des Siebante             |                                                 |                 |                             |                |  |  |
| Maschenweite                      | Masse der<br>Rückstände                         | Siebrückstände  | Summe der<br>Siebdurchgänge |                |  |  |
| mm                                | $m_{R}$                                         | R / md * 100    | 100 - Siebrückstand         |                |  |  |
|                                   | g                                               | %               | %                           |                |  |  |
| 63,0                              |                                                 | -               | -                           |                |  |  |
| 45,0                              |                                                 | -               | 100,00                      |                |  |  |
| 31,5                              | 566,6                                           | 4,32            | 95,68                       |                |  |  |
| 22,4                              | 1037,4                                          | 7,90            | 87,78                       |                |  |  |
| 16,0                              | 2495,3                                          | 19,01           | 68,78                       |                |  |  |
| 11,2                              | 1326                                            | 10,10           | 58,68                       |                |  |  |
| 8,0                               | 1073,9                                          | 8,18            | 50,50                       |                |  |  |
| 5,0                               | 1651                                            | 12,58           | 37,92                       |                |  |  |
| 2,0                               | 1134,2                                          | 8,64            | 29,28                       |                |  |  |
| 0,71                              | 1784,3                                          | 13,59           | 15,69                       |                |  |  |
| 0,25                              | 801                                             | 6,10            | 9,59                        |                |  |  |
| 0,09                              | 509,8                                           | 3,88            | 5,71                        |                |  |  |
| 0,063                             | 87,5                                            | 0,67            | 5,04                        |                |  |  |
| Schale < 0,063                    | 662                                             | 5,04            | 0,00                        |                |  |  |
| Summe (∑ <i>m</i> <sub>R</sub> )  | 13129                                           |                 | -                           |                |  |  |
| Verlust ( $m_e$ - $\sum m_R$ )    | -363,7                                          | -               | -                           |                |  |  |
|                                   | Auswert                                         | ung             |                             |                |  |  |
| U d60/d10 :                       | 31,0                                            | T :             | %                           |                |  |  |
| Cc= (d30) <sup>2</sup> /(d10*d60) | 1,5                                             | U :             | %                           |                |  |  |
| Anteil: < 0,063 mm                | 1%                                              | S:              | 27%                         |                |  |  |
| Bodenart:                         |                                                 | G :             | 72%                         |                |  |  |
| Bodengruppe:                      |                                                 |                 |                             |                |  |  |
| Kurzzeichen nach DIN 4022:        |                                                 | kf-Wert:        | 1,8 * 10 <sup>-2</sup> m/s  |                |  |  |

| <u> </u>                         | ■ WESTFÄLISCHE<br>■ WILHELMS-UNIVERSITÄT<br>■ MÜNSTER | Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel |                             |
|----------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|
| Korngrößenb                      | estimmung durch S                                     | iebung nach DIN                                                                                       | EN 933-2 (1996)             |
| Material:                        | HKS 2/5 A                                             |                                                                                                       | Laborant: Kaul              |
| Bodenart:                        | fG, gs'                                               |                                                                                                       | Datum: 04.04.2008           |
| Entnahmestelle:                  | Gelände der Firma k                                   | Clostermann                                                                                           |                             |
| Probennehmer:                    | Starke                                                |                                                                                                       | _                           |
| Art der Entn.:                   | Haufwerksbeprobun                                     | <u>g</u>                                                                                              | _                           |
| Entn. am.:                       | 26.03.2008                                            |                                                                                                       |                             |
| Masse der trocken                | en Probe m <sub>e</sub> in g:                         | 1408,8                                                                                                | 1                           |
| Maschenweite                     | Masse der Rückstände                                  | Siebrückstände                                                                                        | Summe der<br>Siebdurchgänge |
| mm                               | m <sub>R</sub>                                        | $(m_R / \sum m_R)$                                                                                    | 100 - Siebrückstand         |
|                                  | g                                                     | %                                                                                                     | %                           |
| 63,0                             | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 45,0                             | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 31,5                             | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 22,4                             | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 16,0                             | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 11,2                             | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 8,0                              | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 5,0                              | 328,0                                                 | 23,3                                                                                                  | 76,7                        |
| 2,0                              | 1042,8                                                | 74,0                                                                                                  | 2,7                         |
| 0,71                             | 33,2                                                  | 2,4                                                                                                   | 0,3                         |
| 0,25                             | 2,1                                                   | 0,1                                                                                                   | 0,2                         |
| 0,09                             | 1,2                                                   | 0,1                                                                                                   | 0,1                         |
| 0,063                            | 0,6                                                   | 0,04                                                                                                  | 0,03                        |
| Schale < 0,063                   | 0,4                                                   | 0,03                                                                                                  | 0,00                        |
| Summe (∑ <i>m</i> <sub>R</sub> ) | 1408,3                                                | 100,0                                                                                                 | _                           |
| Verlust $(m_e - \sum m_R)$       | 0,5                                                   |                                                                                                       | _                           |
| Aus                              | wertung                                               | Beme                                                                                                  | rkungen                     |
| U                                | 2,4                                                   |                                                                                                       |                             |
| Cc                               | 1,0                                                   |                                                                                                       |                             |
| k <sub>f</sub> -Wert (m/s)       | 3,4*10 <sup>-2</sup>                                  |                                                                                                       |                             |

| <u> </u>                   | ■ WESTFÄLISCHE<br>■ WILHELMS-UNIVERSITÄT<br>■ MÜNSTER | Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel |                             |
|----------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|
| Korngrößenb                | estimmung durch S                                     | iebung nach DIN                                                                                       | EN 933-2 (1996)             |
| Material:                  | HKS 2/5 B                                             |                                                                                                       | Laborant: Kaul              |
| Bodenart:                  | fG, gs                                                |                                                                                                       | Datum: 11.03.2008           |
| Entnahmestelle:            | Gelände der Firma S                                   | Stratiebo                                                                                             |                             |
| Probennehmer:              | Starke                                                |                                                                                                       | _                           |
| Art der Entn.:             | Haufwerksbeprobun                                     | <u>g</u>                                                                                              | _                           |
| Entn. am.:                 | 14.01.2008                                            |                                                                                                       |                             |
| Masse der trocken          | en Probe m <sub>e</sub> in g:                         | 1868,1                                                                                                | 1                           |
| Maschenweite               | Masse der Rückstände                                  | Siebrückstände                                                                                        | Summe der<br>Siebdurchgänge |
| mm                         | m <sub>R</sub>                                        | $(m_R / \sum m_R)$                                                                                    | 100 - Siebrückstand         |
|                            | g                                                     | %                                                                                                     | %                           |
| 63,0                       | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 45,0                       | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 31,5                       | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 22,4                       | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 16,0                       | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 11,2                       | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 8,0                        | 0,0                                                   | 0,0                                                                                                   | 100,0                       |
| 5,0                        | 340,1                                                 | 18,2                                                                                                  | 81,8                        |
| 2,0                        | 1385,5                                                | 74,2                                                                                                  | 7,6                         |
| 0,71                       | 79,2                                                  | 4,2                                                                                                   | 3,4                         |
| 0,25                       | 29,2                                                  | 1,6                                                                                                   | 1,8                         |
| 0,09                       | 29,6                                                  | 1,6                                                                                                   | 0,2                         |
| 0,063                      | 3,7                                                   | 0,2                                                                                                   | 0,0                         |
| Schale < 0,063             | 0,7                                                   | 0,0                                                                                                   | 0,0                         |
| Summe ( $\sum m_R$ )       | 1868,0                                                | 100,0                                                                                                 | _                           |
| Verlust $(m_e - \sum m_R)$ | 0,1                                                   | _                                                                                                     | _                           |
|                            | wertung                                               | Beme                                                                                                  | rkungen                     |
| U                          | 2,7                                                   |                                                                                                       |                             |
| C <sub>c</sub>             | 1,1                                                   |                                                                                                       |                             |
| k <sub>f</sub> -Wert (m/s) | 2,4*10 <sup>-2</sup>                                  |                                                                                                       |                             |

|                                  | WESTFÄLISCHE<br>WILHELMS-UNIVERSITÄT<br>MÜNSTER | мs-Universität Abteilung für Angewandte Geologie |                             |  |
|----------------------------------|-------------------------------------------------|--------------------------------------------------|-----------------------------|--|
| Korngrößenbe                     | stimmung durch S                                | iebung nach DIN                                  | EN 933-2 (1996)             |  |
| Material:                        | Pflastermörtel                                  |                                                  | Laborant: Kaul              |  |
| Bodenart:                        | mS, fs, gs                                      |                                                  | Datum: 12.03.2008           |  |
| Entnahmestelle:                  | Gelände der Firma S                             | Stratiebo                                        |                             |  |
| Probennehmer:                    | Starke                                          |                                                  | 1                           |  |
| Art der Entn.:                   | Haufwerksbeprobun                               | <u>g</u>                                         | _                           |  |
| Entn. am.:                       | 14.01.2008                                      |                                                  |                             |  |
| Masse der trockene               | en Probe m <sub>e</sub> in g:                   | 1731,4                                           | 1                           |  |
| Maschenweite                     | Masse der Rückstände                            | Siebrückstände                                   | Summe der<br>Siebdurchgänge |  |
|                                  | m <sub>R</sub>                                  | $(m_R / \sum m_R)$                               | 100 - Siebrückstand         |  |
| mm                               | g                                               | %                                                | %                           |  |
| 63,0                             | 0,0                                             | 0,0                                              | 100,0                       |  |
| 45,0                             | 0,0                                             | 0,0                                              | 100,0                       |  |
| 31,5                             | 0,0                                             | 0,0                                              | 100,0                       |  |
| 22,4                             | 0,0                                             | 0,0                                              | 100,0                       |  |
| 16,0                             | 0,0                                             | 0,0                                              | 100,0                       |  |
| 11,2                             | 0,0                                             | 0,0                                              | 100,0                       |  |
| 8,0                              | 0,0                                             | 0,0                                              | 100,0                       |  |
| 5,0                              | 0,0                                             | 0,0                                              | 100,0                       |  |
| 2,0                              | 9,7                                             | 0,6                                              | 99,4                        |  |
| 0,71                             | 141,6                                           | 8,2                                              | 91,3                        |  |
| 0,25                             | 1133,5                                          | 65,5                                             | 25,8                        |  |
| 0,09                             | 419,3                                           | 24,2                                             | 1,6                         |  |
| 0,063                            | 17,5                                            | 1,0                                              | 0,5                         |  |
| Schale < 0,063                   | 9,5                                             | 0,5                                              | 0,0                         |  |
| Summe (∑ <i>m</i> <sub>R</sub> ) | 1731,1                                          | 100,0                                            | _                           |  |
| Verlust $(m_e - \sum m_R)$       | 0,3                                             |                                                  |                             |  |
| Ausw                             | vertung                                         | Beme                                             | rkungen                     |  |
| U                                | 3,5                                             |                                                  |                             |  |
| Сс                               | 1,0                                             |                                                  |                             |  |
| k <sub>⊏</sub> Wert (m/s)        | 1,8*10 <sup>-4</sup>                            |                                                  |                             |  |

| <u></u> -                        | ■ WESTFÄLISCHE<br>■ WILHELMS-UNIVERSITÄT<br>■ MÜNSTER | Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel |                             |  |
|----------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|--|
| Korngrößenb                      | estimmung durch S                                     | iebung nach DIN                                                                                       | EN 933-2 (1996)             |  |
| Material:                        | Glasasche                                             |                                                                                                       | Laborant: Kaul              |  |
| Bodenart:                        | gS, fg, ms', mg'                                      |                                                                                                       | Datum: 07.03.2008           |  |
| Entnahmestelle:                  | Gelände der Firma S                                   | Stratiebo                                                                                             |                             |  |
| Probennehmer:                    | Starke                                                |                                                                                                       | _                           |  |
| Art der Entn.:                   | Haufwerksbeprobun                                     | <u>g</u>                                                                                              | _                           |  |
| Entn. am.:                       | 14.01.2008                                            |                                                                                                       |                             |  |
| Masse der trocken                | en Probe m <sub>e</sub> in g:                         | 3246,4                                                                                                | 1                           |  |
| Maschenweite                     | Masse der Rückstände                                  | Siebrückstände                                                                                        | Summe der<br>Siebdurchgänge |  |
| mm                               | m <sub>R</sub>                                        | $(m_R / \sum m_R)$                                                                                    | 100 - Siebrückstand         |  |
|                                  | g                                                     | %                                                                                                     | %                           |  |
| 63,0                             | 0,0                                                   | 0,0                                                                                                   | 100,0                       |  |
| 45,0                             | 0,0                                                   | 0,0                                                                                                   | 100,0                       |  |
| 31,5                             | 0,0                                                   | 0,0                                                                                                   | 100,0                       |  |
| 22,4                             | 17,4                                                  | 0,5                                                                                                   | 99,5                        |  |
| 16,0                             | 18,4                                                  | 0,6                                                                                                   | 98,9                        |  |
| 11,2                             | 22,8                                                  | 0,7                                                                                                   | 98,2                        |  |
| 8,0                              | 57,7                                                  | 1,8                                                                                                   | 96,4                        |  |
| 5,0                              | 118,6                                                 | 3,7                                                                                                   | 92,8                        |  |
| 2,0                              | 1260,2                                                | 38,8                                                                                                  | 53,9                        |  |
| 0,71                             | 1443,4                                                | 44,5                                                                                                  | 9,5                         |  |
| 0,25                             | 230,9                                                 | 7,1                                                                                                   | 2,4                         |  |
| 0,09                             | 57,2                                                  | 1,8                                                                                                   | 0,6                         |  |
| 0,063                            | 7,9                                                   | 0,2                                                                                                   | 0,4                         |  |
| Schale < 0,063                   | 11,5                                                  | 0,4                                                                                                   | 0,0                         |  |
| Summe (∑ <i>m</i> <sub>R</sub> ) | 3246,0                                                | 100,0                                                                                                 |                             |  |
| Verlust ( $m_e$ - $\sum m_R$ )   | 0,4                                                   |                                                                                                       | _                           |  |
| Aus                              | wertung                                               | Beme                                                                                                  | rkungen                     |  |
| U                                | 4,3                                                   |                                                                                                       |                             |  |
| $C_c$                            | 1,0                                                   |                                                                                                       |                             |  |
| k <sub>f</sub> -Wert (m/s)       | 3,3*10 <sup>-4</sup>                                  |                                                                                                       |                             |  |

| WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER |                               | Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel |                             |  |
|-------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|--|
| Korngrößenbe                              | stimmung durch S              | iebung nach DIN                                                                                       | EN 933-2 (1996)             |  |
| Material:                                 | Glasasche-Sand Ge             | misch                                                                                                 | Laborant: Kaul              |  |
| Bodenart:                                 | S, fg                         |                                                                                                       | Datum: 13.03.2008           |  |
| Entnahmestelle:                           | Gelände der Firma S           | Stratiebo                                                                                             |                             |  |
| Probennehmer:                             | Starke                        |                                                                                                       | 1                           |  |
| Art der Entn.:                            | Haufwerksbeprobun             | <u>g</u>                                                                                              | _                           |  |
| Entn. am.:                                | 14.01.2008                    |                                                                                                       |                             |  |
| Masse der trockene                        | en Probe m <sub>e</sub> in g: | 2845,6                                                                                                | 1                           |  |
| Maschenweite                              | Masse der Rückstände          | Siebrückstände                                                                                        | Summe der<br>Siebdurchgänge |  |
| mm                                        | m <sub>R</sub>                | $(m_R / \sum m_R)$                                                                                    | 100 - Siebrückstand         |  |
|                                           | g                             | %                                                                                                     | %                           |  |
| 63,0                                      | 0,0                           | 0,0                                                                                                   | 100,0                       |  |
| 45,0                                      | 0,0                           | 0,0                                                                                                   | 100,0                       |  |
| 31,5                                      | 0,0                           |                                                                                                       | 100,0                       |  |
| 22,4                                      | 0,0                           | 0,0 0,0                                                                                               |                             |  |
| 16,0                                      | 0,0                           | 0,0                                                                                                   | 100,0                       |  |
| 11,2                                      | 12,9                          | 0,5                                                                                                   | 99,5                        |  |
| 8,0                                       | 14,9                          | 0,5                                                                                                   | 99,0                        |  |
| 5,0                                       | 46,1                          | 1,6                                                                                                   | 97,4                        |  |
| 2,0                                       | 466,4                         | 16,4                                                                                                  | 81,0                        |  |
| 0,71                                      | 566,1                         | 19,9                                                                                                  | 61,1                        |  |
| 0,25                                      | 1020,7                        | 35,9                                                                                                  | 25,2                        |  |
| 0,09                                      | 694,1                         | 24,4                                                                                                  | 0,8                         |  |
| 0,063                                     | 11,1                          | 0,4                                                                                                   | 0,4                         |  |
| Schale < 0,063                            | 12,6                          | 0,4                                                                                                   | 0,0                         |  |
| Summe (∑ <i>m</i> <sub>R</sub> )          | 2844,9                        | 100,0                                                                                                 | _                           |  |
| Verlust ( $m_e$ - $\sum m_R$ )            | 0,7                           | _                                                                                                     | _                           |  |
| Ausw                                      | vertung                       | Beme                                                                                                  | rkungen                     |  |
| U                                         | 5,8                           |                                                                                                       |                             |  |
| Cc                                        | 0,8                           |                                                                                                       |                             |  |
| k <sub>r</sub> Wert (m/s)                 | 2,0*10 <sup>-4</sup>          |                                                                                                       |                             |  |

| <u> </u>                          | WESTFÄLISCHE<br>WILHELMS-UNIVERSITÄT<br>MÜNSTER | Abteilung für Ange | e und Paläontologie<br>ewandte Geologie<br>ricia Göbel | Anlage:<br>zu: |
|-----------------------------------|-------------------------------------------------|--------------------|--------------------------------------------------------|----------------|
|                                   | Korngrößenl                                     | bestimmung nach    | DIN 18123                                              |                |
| Auftraggeber:                     |                                                 | Bemerkungen:       |                                                        |                |
| Projekt Nr.:                      | Basaltsplit 1/3                                 | Versuchsbeginn:    | 09.0                                                   | 5.2008         |
| Entnahmestelle:                   |                                                 | Versuchsende:      |                                                        |                |
| Probennehmer:                     |                                                 |                    |                                                        |                |
| Bodenart:<br>Einwaage des Siebant | eile <i>m</i> in a: 631 /                       | Laborant:          | r                                                      | Kaul 💮 💮       |
|                                   | Masse der                                       | 0.1                | Summe der                                              |                |
| Maschenweite                      | Rückstände                                      | Siebrückstände     | Siebdurchgänge                                         |                |
| mm                                | $m_{R}$                                         | R / md * 100       | 100 - Siebrückstand                                    |                |
|                                   | g                                               | %                  | %                                                      |                |
| 63,0                              |                                                 |                    | 100,0                                                  |                |
| 45,0                              |                                                 | 0,00               | 100,0                                                  |                |
| 31,5                              |                                                 | 0,00               | 100,0                                                  |                |
| 22,4                              |                                                 | 0,00               | 100,0                                                  |                |
| 16,0                              |                                                 | 0,00               | 100,0                                                  |                |
| 11,2                              |                                                 | 0,00               | 100,0                                                  |                |
| 8,0                               |                                                 | 0,00               | 100,0                                                  |                |
| 5,0                               |                                                 | 0,00               | 100,0                                                  |                |
| 2,0                               | 305,6                                           | 48,45              | 51,6                                                   |                |
| 0,71                              | 310,1                                           | 49,16              | 2,4                                                    |                |
| 0,25                              | 11,9                                            | 1,89               | 0,5                                                    |                |
| 0,09                              | 1,4                                             | 0,22               | 0,3                                                    |                |
| 0,063                             | 0,8                                             | 0,13               | 0,2                                                    |                |
| Schale < 0,125                    | 1                                               |                    | 0,2                                                    |                |
| Summe ( $\sum m_R$ )              | 630,8                                           |                    | -                                                      |                |
| Verlust $(m_e - \sum m_R)$        | 0,6                                             | -                  | -                                                      |                |
|                                   | Auswert                                         | ung                |                                                        |                |
| U d60/d10 :                       |                                                 | T:                 | %                                                      |                |
| Cc= (d30) <sup>2</sup> /(d10*d60) | +                                               | U :                | %                                                      |                |
| Anteil: < 0,063 mm                | <del> </del>                                    | S:                 | 51%                                                    |                |
| Bodenart:                         |                                                 | G :                | %                                                      |                |
| Bodengruppe:                      | gS, ms'                                         |                    |                                                        |                |
| Kurzzeichen nach DIN<br>4022:     |                                                 | kf-Wert:           | 5,7 * 10 <sup>-2</sup> m/s                             |                |

| <u></u>                           | WESTFÄLISCHE<br>Wilhelms-Universität<br>Münster | Institut für Geologie<br>Abteilung für Ange<br>PD Dr. Pat |                             | Anlage:<br>zu: |
|-----------------------------------|-------------------------------------------------|-----------------------------------------------------------|-----------------------------|----------------|
|                                   | Korngrößenl                                     | bestimmung nach                                           | DIN 18123                   |                |
| Auftraggeber:                     | DBU                                             | Bemerkungen:                                              |                             |                |
| Projekt Nr.:                      |                                                 | Versuchsbeginn:                                           |                             | 6.2008         |
| Entnahmestelle:                   |                                                 | Versuchsende:                                             | 11.0                        | 6.2008         |
|                                   | Starke                                          |                                                           |                             |                |
|                                   | Extensivsubstrat                                | Laborant:                                                 | ŀ                           | Kaul           |
| Einwaage des Siebante             |                                                 | 1154                                                      |                             |                |
| Maschenweite                      | Masse der<br>Rückstände                         | Siebrückstände                                            | Summe der<br>Siebdurchgänge |                |
| mm                                | $m_{R}$                                         | R / md * 100                                              | 100 - Siebrückstand         |                |
|                                   | g                                               | %                                                         | %                           |                |
| 63,0                              | -                                               | -                                                         | -                           |                |
| 45,0                              | -                                               | -                                                         | -                           |                |
| 31,5                              | -                                               | -                                                         | -                           |                |
| 22,4                              | -                                               | -                                                         | -                           |                |
| 16,0                              | -                                               | -                                                         | -                           |                |
| 11,2                              | -                                               | -                                                         | 100,00                      |                |
| 8,0                               | 5                                               | 0,43                                                      | 99,57                       |                |
| 5,0                               | 22,9                                            | 1,98                                                      | 97,58                       |                |
| 2,0                               | 189,9                                           | 16,45                                                     | 81,13                       |                |
| 0,71                              | 236,2                                           | 20,46                                                     | 60,67                       |                |
| 0,25                              | 251                                             | 21,74                                                     | 38,93                       |                |
| 0,09                              | 306,4                                           | 26,54                                                     | 12,39                       |                |
| 0,063                             | 28,7                                            | 2,49                                                      | 9,90                        |                |
| Schale < 0,063                    | 114,31                                          | 9,90                                                      | 0,00                        |                |
| Summe ( $\sum m_R$ )              | 1154,41                                         | 100,00                                                    | -                           |                |
| Verlust ( $m_e$ - $\sum m_R$ )    | -0,41                                           | -                                                         | -                           |                |
|                                   | Auswert                                         | ung                                                       |                             |                |
| U d60/d10 :                       | 10,9                                            |                                                           | %                           |                |
| Cc= (d30) <sup>2</sup> /(d10*d60) | 0,7                                             | U :                                                       | %                           |                |
| Anteil: < 0,063 mm                | 10%                                             | S:                                                        | 71%                         |                |
| Bodenart:                         |                                                 | G :                                                       | 19%                         |                |
| Bodengruppe:                      |                                                 |                                                           |                             |                |
| Kurzzeichen nach DIN<br>4022:     |                                                 | kf-Wert:                                                  | 4,7 * 10 <sup>-5</sup> m/s  |                |

| <del>_</del>               | WESTFÄLISCHE                    | Institut für Geolog                                       | ie und Paläontologie        |  |
|----------------------------|---------------------------------|-----------------------------------------------------------|-----------------------------|--|
|                            | WILHELMS-UNIVERSITÄT<br>MÜNSTER | Abteilung für Angewandte Geologi<br>PD Dr. Patricia Göbel |                             |  |
| Korngrößenbe               | estimmung durch S               | iebung nach DIN                                           | EN 933-2 (1996)             |  |
| Material:                  | Gewaschener Sand                | 0/2                                                       | Laborant: Kaul              |  |
| Bodenart:                  | mS, fs, gs                      | Datum: 07.03.2008                                         |                             |  |
| Entnahmestelle:            | Gelände der Firma S             | Stratiebo                                                 |                             |  |
| Probennehmer:              | Starke                          |                                                           | _                           |  |
| Art der Entn.:             | Haufwerksbeprobun               | 9                                                         | 4                           |  |
| Entn. am.:                 | 14.01.2008                      |                                                           |                             |  |
| Masse der trockene         | en Probe m <sub>e</sub> in g:   | 1622,6                                                    | 1                           |  |
| Maschenweite               | Masse der Rückstände            | Siebrückstände                                            | Summe der<br>Siebdurchgänge |  |
| mm                         | m <sub>R</sub>                  | $(m_R / \sum m_R)$                                        | 100 - Siebrückstand         |  |
|                            | g                               | %                                                         | %                           |  |
| 63,0                       | 0,0                             | 0,0                                                       | 100,0                       |  |
| 45,0                       | 0,0                             | 0,0                                                       | 100,0                       |  |
| 31,5                       | 0,0                             | 0,0                                                       | 100,0                       |  |
| 22,4                       | 0,0                             | 0,0                                                       | 100,0                       |  |
| 16,0                       | 0,0                             | 0,0                                                       | 100,0                       |  |
| 11,2                       | 0,0                             | 0,0                                                       | 100,0                       |  |
| 8,0                        | 0,0                             | 0,0                                                       | 100,0                       |  |
| 5,0                        | 0,8                             | 0,0                                                       | 100,0                       |  |
| 2,0                        | 7,4                             | 0,5                                                       | 99,5                        |  |
| 0,71                       | 28,3                            | 1,7                                                       | 97,8                        |  |
| 0,25                       | 1024,7                          | 63,2                                                      | 34,6                        |  |
| 0,09                       | 549,1                           | 33,8                                                      | 0,8                         |  |
| 0,063                      | 6,8                             | 0,4                                                       | 0,3                         |  |
| Schale < 0,063             | 5,4                             | 0,3                                                       | 0,0                         |  |
| Summe ( $\sum m_R$ )       | 1622,5                          | 100,0                                                     | _                           |  |
| Verlust $(m_e - \sum m_R)$ | 0,1                             | _                                                         | _                           |  |
| Ausv                       | vertung                         | Beme                                                      | rkungen                     |  |
| U                          | 3,3                             |                                                           |                             |  |
| Cc                         | 0,9                             |                                                           |                             |  |
| k <sub>r</sub> Wert (m/s)  | 1,5*10 <sup>-4</sup>            |                                                           |                             |  |

| WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER |                               | Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Paticia Göbel |                             |
|-------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------|
| Korngrößenbe                              | stimmung durch S              | iebung nach DIN                                                                                      | EN 933-2 (1996)             |
| Material:                                 | Füllsand                      |                                                                                                      | Laborant: Kaul              |
| Bodenart:                                 | fS, ms, gs'                   |                                                                                                      | Datum: 07.03.2008           |
| Entnahmestelle:                           | Gelände der Firma S           | Stratiebo                                                                                            |                             |
| Probennehmer:                             | Starke                        |                                                                                                      |                             |
| Art der Entn.:                            | Haufwerksbeprobun             | <u>g</u>                                                                                             | _                           |
| Entn. am.:                                | 14.01.2008                    |                                                                                                      |                             |
| Masse der trockene                        | en Probe m <sub>e</sub> in g: | 1231,7                                                                                               | <u> </u>                    |
| Maschenweite                              | Masse der Rückstände          | Siebrückstände                                                                                       | Summe der<br>Siebdurchgänge |
| mm                                        | m <sub>R</sub>                | $(m_R / \sum m_R)$                                                                                   | 100 - Siebrückstand         |
|                                           | g                             | %                                                                                                    | %                           |
| 63,0                                      | 0,0                           | 0,0                                                                                                  | 100,0                       |
| 45,0                                      | 0,0                           | 0,0                                                                                                  | 100,0                       |
| 31,5                                      | 0,0                           | 0,0                                                                                                  | 100,0                       |
| 22,4                                      | 0,0                           | 0,0                                                                                                  | 100,0                       |
| 16,0                                      | 0,0                           | 0,0                                                                                                  | 100,0                       |
| 11,2                                      | 0,0                           | 0,0                                                                                                  | 100,0                       |
| 8,0                                       | 0,0                           | 0,0                                                                                                  | 100,0                       |
| 5,0                                       | 0,5                           | 0,0                                                                                                  | 100,0                       |
| 2,0                                       | 0,9                           | 0,1                                                                                                  | 99,9                        |
| 0,71                                      | 10,9                          | 0,9                                                                                                  | 99,0                        |
| 0,25                                      | 239,0                         | 19,4                                                                                                 | 79,6                        |
| 0,09                                      | 781,3                         | 63,5                                                                                                 | 16,1                        |
| 0,063                                     | 139,6                         | 11,3                                                                                                 | 4,8                         |
| Schale < 0,063                            | 58,9                          | 4,8                                                                                                  | 0,0                         |
| Summe (∑ <i>m</i> <sub>R</sub> )          | 1231,1                        | 100,0                                                                                                | _                           |
| Verlust $(m_e - \sum m_R)$                | 0,6                           |                                                                                                      | _                           |
| Ausv                                      | vertung                       | Beme                                                                                                 | rkungen                     |
| U                                         | 2,6                           |                                                                                                      |                             |
| C <sub>c</sub>                            | 0,9                           |                                                                                                      |                             |
| k <sub>f</sub> -Wert (m/s)                | 6,3*10 <sup>-5</sup>          |                                                                                                      |                             |

| <del>-</del>                              | ■ WESTFÄLISCHE<br>■ WILHELMS-UNIVERSITÄT<br>■ MÜNSTER                            | Institut für Geologie<br>Abteilung für Angew<br>PD Dr. Patricia Göb | andte Geologie                                              |                                       |
|-------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|
| Bestimmu                                  | ng der Kornform -                                                                | Plattigkeitskennz                                                   | ahl nach DIN EN 933                                         | -3 (1997-02)                          |
| Material:                                 | HKS 0/32                                                                         |                                                                     | Laborant: Kaul                                              |                                       |
| Bodenart:                                 | mG, gg, s', fg'                                                                  |                                                                     | Datum: 16.04.2008                                           |                                       |
| Probennehmer:                             | Starke                                                                           |                                                                     |                                                             |                                       |
| Entnahmestelle:                           | Gelände der Firma k                                                              | Klostermann                                                         |                                                             |                                       |
| Art der Entn.:                            | Haufwerksbeprobun                                                                | g                                                                   |                                                             |                                       |
| Entn. am.                                 | 26.03.2008                                                                       |                                                                     |                                                             |                                       |
| Masse der                                 |                                                                                  |                                                                     | stands auf dem 80-mm-<br>Sieb [g]:<br>gangs durch das 4-mm- | 0                                     |
| Meßprobe $M_0$ [g]:                       | 15525,2                                                                          | Wasse des Baren                                                     | Sieb [g]:                                                   | 171,4                                 |
|                                           |                                                                                  | Summe der v                                                         | verworfenen Massen [g]:                                     | 0                                     |
|                                           |                                                                                  |                                                                     |                                                             | <u> </u>                              |
| Siebung mit A                             | Analysensieben                                                                   | ,                                                                   | Siebung mit Stabsiebe                                       | n                                     |
| Kornklasse d <sub>i</sub> /D <sub>i</sub> | Masse ( <i>R</i> <sub>i</sub> ) der<br>Kornklasse d <sub>i</sub> /D <sub>i</sub> | Schlitzweite des<br>Stabsiebes                                      | Siebdurchgang $m_i$                                         | Plattigkeitskenn-<br>zahl <i>Fl</i> i |
| mm                                        | g                                                                                | mm                                                                  | g                                                           | $FI_i = (m_i/R_i) \times 100$         |
| 63/80                                     |                                                                                  | 40                                                                  |                                                             |                                       |
| 50/63                                     |                                                                                  | 31,5                                                                |                                                             |                                       |
| 40/50                                     |                                                                                  | 25                                                                  |                                                             |                                       |
| 31,5/40                                   |                                                                                  | 20                                                                  |                                                             |                                       |
| 25/31,5                                   | 2208,3                                                                           | 16                                                                  | 501,2                                                       | 23                                    |
| 20/25                                     | 2794,5                                                                           | 12,5                                                                | 878,7                                                       | 31                                    |
| 16/20                                     | 803,1                                                                            | 10                                                                  | 311,6                                                       | 39                                    |
| 12,5/16                                   | 3975,0                                                                           | 8                                                                   | 807,8                                                       | 20                                    |
| 10/12,5                                   | 3720,4                                                                           | 6,3                                                                 | 1192,1                                                      | 32                                    |
| 8/10                                      | 964,7                                                                            | 5                                                                   | 259,6                                                       | 27                                    |
| 6,3/8                                     | 898,6                                                                            | 4                                                                   | 160,6                                                       | 18                                    |
| 5/6,3                                     | 160,6                                                                            | 3,15                                                                | 10,8                                                        | 7                                     |
| 4/5                                       |                                                                                  | 2,5                                                                 |                                                             |                                       |
|                                           | $M_1 = \Sigma R_i$                                                               |                                                                     | $M_2 = \Sigma m_i$                                          |                                       |
|                                           | 15525,2                                                                          |                                                                     | 4122,4                                                      |                                       |
|                                           | Gesar                                                                            | nt-Plattigkeitskennza                                               | thl $FI = (M_2/M_1) \times 100 =$                           | 27                                    |
| 100 >                                     | M <sub>0</sub> - [:                                                              | $\Sigma R_i + S$ (verworfene $M_0$                                  | Massen)]                                                    | - <1%                                 |

| <u> </u>                                          | V WESTFÄLISCHE<br>WILHELMS-UNIVERSITÄT<br>MÜNSTER                        | Institut für Geologie<br>Abteilung für Angew<br>PD Dr. Patricia Göb | andte Geologie                                                         |                                       |
|---------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------|
| Bestimmur                                         | ng der Kornform -                                                        | Plattigkeitskennz                                                   | ahl nach DIN EN 933                                                    | -3 (1997-02)                          |
| Material:                                         | Tragschicht NL                                                           |                                                                     | Laborant:                                                              | Wesche                                |
| Bodenart:                                         |                                                                          |                                                                     | Datum:                                                                 | 12.09.2008                            |
| Probennehmer:                                     | Starke                                                                   |                                                                     | Bemerkungen:                                                           | •                                     |
| Entnahmestelle:                                   |                                                                          |                                                                     | Material wurde zuvor n                                                 |                                       |
| Art der Entn.:                                    | Haufwerksbeprobun                                                        | g                                                                   | Kornklassen neu gesie                                                  | bt (trocken)                          |
| Entn. am.                                         |                                                                          |                                                                     |                                                                        |                                       |
| Masse der<br>Meßprobe $M_0$ [g]:                  |                                                                          |                                                                     | stands auf dem 80-mm-<br>Sieb [g]<br>gangs durch das 4-mm-<br>Sieb [g] |                                       |
|                                                   |                                                                          | Summe der v                                                         | verworfenen Massen [g]                                                 |                                       |
| Siebung mit Analysensieben Siebung mit Stabsieben |                                                                          |                                                                     |                                                                        | en                                    |
| Kornklasse d <sub>i</sub> /D <sub>i</sub>         | Masse (R <sub>i</sub> ) der<br>Kornklasse d <sub>i</sub> /D <sub>i</sub> | Schlitzweite des<br>Stabsiebes                                      | Siebdurchgang $m_i$                                                    | Plattigkeitskenn-<br>zahl <i>FI</i> i |
| mm                                                | g                                                                        | mm                                                                  | g                                                                      | $FI_i = (m_i/R_i) \times 100$         |
| 63/80                                             | -                                                                        | 40                                                                  |                                                                        |                                       |
| 50/63                                             | -                                                                        | 31,5                                                                |                                                                        |                                       |
| 40/50                                             | -                                                                        | 25                                                                  |                                                                        |                                       |
| 31,5/40                                           | 802,8                                                                    | 20                                                                  | 77,0                                                                   | 10                                    |
| 25/31,5                                           | 1185,9                                                                   | 16                                                                  | 310,0                                                                  | 26                                    |
| 20/25                                             | 1283,3                                                                   | 12,5                                                                | 367,3                                                                  | 29                                    |
| 16/20                                             | 324,0                                                                    | 10                                                                  | 121,3                                                                  | 37                                    |
| 12,5/16                                           | 819,4                                                                    | 8                                                                   | 219,2                                                                  | 27                                    |
| 10/12,5                                           | 675,5                                                                    | 6,3                                                                 | 273,3                                                                  | 40                                    |
| 8/10                                              | 187,2                                                                    | 5                                                                   | 75,5                                                                   | 40                                    |
| 6,3/8                                             | 702,0                                                                    | 4                                                                   | 340,1                                                                  | 48                                    |
| 5/6,3                                             | 340,1                                                                    | 3,15                                                                | 73,4                                                                   | . 22                                  |
| 4/5                                               | -                                                                        | 2,5                                                                 |                                                                        |                                       |
|                                                   | $M_1 = \Sigma R_1$                                                       |                                                                     | $M_2 = \Sigma m_i$                                                     |                                       |
|                                                   | 6320,2                                                                   |                                                                     | 1857,1                                                                 |                                       |
|                                                   | Gesar                                                                    | nt-Plattigkeitskennza                                               | thi $FI = (M_2/M_1) \times 100 =$                                      | 29                                    |
| 100 x                                             | M <sub>0</sub> - [:                                                      | $\Sigma R_i + S$ (verworfene $M_0$                                  | Massen)]                                                               | - < 1 %                               |

| <u></u>                                           | ■ WESTFÄLISCHE<br>■ WILHELMS-UNIVERSITÄT<br>■ MÜNSTER                    | Institut für Geologie<br>Abteilung für Angew<br>PD Dr. Patricia Göb | andte Geologie                                                                                 |                                                  |
|---------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Bestimmu                                          | ng der Kornform -                                                        | Plattigkeitskennz                                                   | ahl nach DIN EN 933                                                                            | 3-3 (1997-02)                                    |
| Material:                                         | Feld 4 unterer Berei                                                     | ch TL - SoB                                                         | Laborant:                                                                                      | Wesche                                           |
| Bodenart:                                         |                                                                          |                                                                     | Datum:                                                                                         | 11.09.2008                                       |
| Probennehmer:                                     | Starke                                                                   |                                                                     | Bemerkungen:                                                                                   |                                                  |
| Entnahmestelle:                                   |                                                                          |                                                                     |                                                                                                |                                                  |
| Art der Entn.:                                    | Haufwerksbeprobun                                                        | g                                                                   |                                                                                                |                                                  |
| Entn. am.                                         |                                                                          |                                                                     |                                                                                                |                                                  |
| Masse der<br>Meßprobe $M_0$ [g]:                  |                                                                          | Masse des Durch                                                     | stands auf dem 80-mm<br>Sieb [g]<br>gangs durch das 4-mm<br>Sieb [g]<br>/erworfenen Massen [g] | :                                                |
|                                                   |                                                                          | Odmine der v                                                        | rei wortenen ividasen [g]                                                                      | •                                                |
| Siebung mit Analysensieben Siebung mit Stabsieben |                                                                          |                                                                     |                                                                                                | en                                               |
| Kornklasse d <sub>i</sub> /D <sub>i</sub>         | Masse (R <sub>i</sub> ) der<br>Kornklasse d <sub>i</sub> /D <sub>i</sub> | Schlitzweite des<br>Stabsiebes                                      | Siebdurchgang m <sub>i</sub>                                                                   | Plattigkeitskenn-<br>zahl <i>Fl</i> <sub>i</sub> |
| mm                                                | g                                                                        | mm                                                                  | g                                                                                              | $FI_{i} = (m_{i}/R_{i}) \times 100$              |
| 63/80                                             | -                                                                        | 40                                                                  | -                                                                                              |                                                  |
| 50/63                                             | -                                                                        | 31,5                                                                | -                                                                                              |                                                  |
| 40/50                                             | -                                                                        | 25                                                                  | -                                                                                              |                                                  |
| 31,5/40                                           | -                                                                        | 20                                                                  | -                                                                                              |                                                  |
| 25/31,5                                           | 636,3                                                                    | 16                                                                  | 262,8                                                                                          | 41                                               |
| 20/25                                             | 3194,3                                                                   | 12,5                                                                | 789,0                                                                                          | 25                                               |
| 16/20                                             | 789,0                                                                    | 10                                                                  | 181,5                                                                                          | 23                                               |
| 12,5/16                                           | 2928,9                                                                   | 8                                                                   | 916,6                                                                                          | 31                                               |
| 10/12,5                                           | 2885,8                                                                   | 6,3                                                                 | 1049,8                                                                                         | 36                                               |
| 8/10                                              | 762,4                                                                    | 5                                                                   | 225,8                                                                                          | 30                                               |
| 6,3/8                                             | 4310,5                                                                   | 4                                                                   | 1527,9                                                                                         | 35                                               |
| 5/6,3                                             | 1527,9                                                                   | 3,15                                                                | 179,7                                                                                          | 12                                               |
| 4/5                                               | -                                                                        | 2,5                                                                 | -                                                                                              |                                                  |
|                                                   | $M_1 = \Sigma R_i$                                                       |                                                                     | $M_2 = \Sigma m_i$                                                                             |                                                  |
|                                                   | 17035,1                                                                  |                                                                     | 5133,1                                                                                         |                                                  |
|                                                   | _                                                                        | nt-Plattigkeitskennza                                               | $whl FI = (M_2/M_1) \times 100 =$                                                              | = 30                                             |
| 100 >                                             | M <sub>0</sub> - [                                                       | $\Sigma R_i + S$ (verworfene                                        | Massen)]                                                                                       | - < 1 %                                          |
|                                                   |                                                                          | $M_0$                                                               |                                                                                                |                                                  |

| <u> </u>                                          | WESTFÄLISCHE<br>WILHELMS-UNIVERSITÄT<br>MÜNSTER                  | Institut für Geologie<br>Abteilung für Angew<br>PD Dr. Patricia Göb | andte Geologie                                                                                 |                                                  |
|---------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Bestimmur                                         | ng der Kornform -                                                | Plattigkeitskennz                                                   | ahl nach DIN EN 933                                                                            | 3-3 (1997-02)                                    |
| Material:                                         | Feld 5 oberer Bereic                                             | h TL-SoB                                                            | Laborant:                                                                                      | Kaul / Wesche                                    |
| Bodenart:                                         |                                                                  |                                                                     | Datum:                                                                                         | 11.09.2008                                       |
| Probennehmer:                                     | Starke                                                           |                                                                     | Bemerkungen:                                                                                   |                                                  |
| Entnahmestelle:                                   |                                                                  |                                                                     |                                                                                                |                                                  |
| Art der Entn.:                                    | Haufwerksbeprobun                                                | g                                                                   |                                                                                                |                                                  |
| Entn. am.                                         |                                                                  |                                                                     |                                                                                                |                                                  |
| Masse der Meßprobe $M_0$ [g]:                     |                                                                  | Masse des Durch                                                     | stands auf dem 80-mm<br>Sieb [g]<br>gangs durch das 4-mm<br>Sieb [g]<br>rerworfenen Massen [g] | :                                                |
| Siebung mit Analysensieben Siebung mit Stabsieben |                                                                  |                                                                     |                                                                                                |                                                  |
| Kornklasse d <sub>i</sub> /D <sub>i</sub>         | Masse ( $R_i$ ) der<br>Kornklasse d <sub>i</sub> /D <sub>i</sub> | Schlitzweite des<br>Stabsiebes                                      | Siebdurchgang $m_i$                                                                            | Plattigkeitskenn-<br>zahl <i>Fl</i> <sub>i</sub> |
| mm                                                | g                                                                | mm                                                                  | g                                                                                              | $FI_{i} = (m_{i}/R_{i}) \times 100$              |
| 63/80                                             | -                                                                | 40                                                                  | -                                                                                              |                                                  |
| 50/63                                             | -                                                                | 31,5                                                                | -                                                                                              |                                                  |
| 40/50                                             | -                                                                | 25                                                                  | -                                                                                              |                                                  |
| 31,5/40                                           | -                                                                | 20                                                                  | -                                                                                              |                                                  |
| 25/31,5                                           | 445,8                                                            | 16                                                                  | 125,0                                                                                          | 28                                               |
| 20/25                                             | 1744,2                                                           | 12,5                                                                | 337,2                                                                                          | 19                                               |
| 16/20                                             | 323,5                                                            | 10                                                                  | 90,2                                                                                           | 28                                               |
| 12,5/16                                           | 1206,6                                                           | 8                                                                   | 367,7                                                                                          | 30                                               |
| 10/12,5                                           | 1177,0                                                           | 6,3                                                                 | 406,0                                                                                          | 34                                               |
| 8/10                                              | 328,1                                                            | 5                                                                   | 112,8                                                                                          | 34                                               |
| 6,3/8                                             | 1370,8                                                           | 4                                                                   | 512,2                                                                                          | 37                                               |
| 5/6,3                                             | 512,2                                                            | 3,15                                                                | 57,2                                                                                           | 11                                               |
| 4/5                                               | -                                                                | 2,5                                                                 | -                                                                                              |                                                  |
|                                                   | $M_1 = \Sigma R_i$                                               |                                                                     | $M_2 = \Sigma m_i$                                                                             |                                                  |
|                                                   | 7108,2                                                           |                                                                     | 2008,3                                                                                         |                                                  |
|                                                   | Gesar                                                            | nt-Plattigkeitskennza                                               | hl $FI = (M_2/M_1) \times 100 =$                                                               | = 28                                             |
| 100 x                                             | M <sub>0</sub> - [2                                              | $\Sigma R_i + S$ (verworfene $M_0$                                  | Massen)]                                                                                       | - < 1 %                                          |

| <u></u> <u></u>                                  | ■ WESTFÄLISCHE<br>■ WILHELMS-UNIVERSITÄT<br>■ MÜNSTER                    | Institut für Geologie<br>Abteilung für Angew<br>PD Dr. Patricia Göb | andte Geologie                                                                                      |                                       |
|--------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------|
| Bestimmu                                         | ng der Kornform -                                                        | Plattigkeitskennz                                                   | ahl nach DIN EN 933                                                                                 | -3 (1997-02)                          |
| Material:                                        | RC 0/45                                                                  |                                                                     | Laborant: Kaul                                                                                      |                                       |
| Bodenart:                                        | G, fs', ms', gs'                                                         |                                                                     | Datum: 11.04.2008                                                                                   |                                       |
| Probennehmer:                                    | Starke                                                                   |                                                                     |                                                                                                     |                                       |
| Entnahmestelle:                                  | Gelände der Firma S                                                      | Stratiebo                                                           |                                                                                                     |                                       |
| Art der Entn.:                                   | Haufwerksbeprobun                                                        | g                                                                   |                                                                                                     |                                       |
| Entn. am.                                        | 14.01.2008                                                               |                                                                     |                                                                                                     |                                       |
| Masse der<br>Meßprobe <i>M</i> <sub>0</sub> [g]: | 7490,1                                                                   | Masse des Durch                                                     | stands auf dem 80-mm-<br>Sieb [g]:<br>gangs durch das 4-mm-<br>Sieb [g]:<br>verworfenen Massen [g]: | 348,3                                 |
| Siebung mit /                                    | Siebung mit Analysensieben Siebung mit Stabsieben                        |                                                                     |                                                                                                     | n                                     |
| Kornklasse d <sub>i</sub> /D <sub>i</sub>        | Masse (R <sub>i</sub> ) der<br>Kornklasse d <sub>i</sub> /D <sub>i</sub> | Schlitzweite des<br>Stabsiebes                                      | Siebdurchgang $m_{\rm i}$                                                                           | Plattigkeitskenn-<br>zahl <i>Fl</i> i |
| mm                                               | g                                                                        | mm                                                                  | g                                                                                                   | $FI_i = (m_i/R_i) \times 100$         |
| 63/80                                            |                                                                          | 40                                                                  |                                                                                                     |                                       |
| 50/63                                            |                                                                          | 31,5                                                                |                                                                                                     |                                       |
| 40/50                                            |                                                                          | 25                                                                  |                                                                                                     |                                       |
| 31,5/40                                          | 748,8                                                                    | 20                                                                  | 199,9                                                                                               |                                       |
| 25/31,5                                          | 697,9                                                                    | 16                                                                  | 78,8                                                                                                |                                       |
| 20/25                                            | 1115,7                                                                   | 12,5                                                                | 386,2                                                                                               | 35                                    |
| 16/20                                            | 342,6                                                                    | 10                                                                  | 127,3                                                                                               | 37                                    |
| 12,5/16                                          | 1159,3                                                                   | 8                                                                   | 221,8                                                                                               | 19                                    |
| 10/12,5                                          | 1395,9                                                                   | 6,3                                                                 | 467,7                                                                                               | 34                                    |
| 8/10                                             | 380,2                                                                    | 5                                                                   | 136,6                                                                                               | 36                                    |
| 6,3/8                                            | 1342,8                                                                   | 4                                                                   | 306,9                                                                                               | 23                                    |
| 5/6,3                                            | 306,9                                                                    | 3,15                                                                | 41,4                                                                                                | 13                                    |
| 4/5                                              |                                                                          | 2,5                                                                 |                                                                                                     |                                       |
|                                                  | $M_1 = \Sigma R_i$                                                       |                                                                     | $M_2 = \Sigma m_i$                                                                                  |                                       |
|                                                  | 7490,1                                                                   |                                                                     | 1966,6                                                                                              |                                       |
|                                                  | Gesar                                                                    | nt-Plattigkeitskennza                                               | hl $FI = (M_2/M_1) \times 100 =$                                                                    | 26                                    |
| 100 >                                            | M <sub>0</sub> - [                                                       | $\Sigma R_i + S$ (verworfene $M_0$                                  | Massen)]                                                                                            | - < 1 %                               |

| <u> </u>                                  | <ul><li>Westfälische</li><li>Wilhelms-Universität</li><li>Münster</li></ul> | Institut für Geologie<br>Abteilung für Angew<br>PD Dr. Patricia Göb | andte Geologie                                              |                                                  |
|-------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|
| Bestimmu                                  | ng der Kornform -                                                           | Plattigkeitskennz                                                   | ahl nach DIN EN 933                                         | -3 (1997-02)                                     |
| Material:                                 | HKS 0/45                                                                    |                                                                     | Laborant: Kaul                                              |                                                  |
| Bodenart:                                 | G, fs', gs'                                                                 |                                                                     | Datum: 11.04.2008                                           |                                                  |
| Probennehmer:                             | Starke                                                                      |                                                                     |                                                             |                                                  |
| Entnahmestelle:                           | Gelände der Firma S                                                         | Stratiebo                                                           |                                                             |                                                  |
| Art der Entn.:                            | Haufwerksbeprobun                                                           | g                                                                   |                                                             |                                                  |
| Entn. am.                                 | 14.01.2008                                                                  |                                                                     |                                                             |                                                  |
| Masse der<br>Meßprobe $M_0$ [g]:          | 14646,7                                                                     |                                                                     | stands auf dem 80-mm-<br>Sieb [g]:<br>gangs durch das 4-mm- | 0<br>1015,8                                      |
| ivieisprobe ivi <sub>0</sub> [g].         |                                                                             | Summe der v                                                         | Sieb [g]:<br>/erworfenen Massen [g]:                        | 0                                                |
| Siebung mit /                             | Analysensieben                                                              | n Siebung mit Stabsieben                                            |                                                             |                                                  |
| Kornklasse d <sub>i</sub> /D <sub>i</sub> | Masse ( $R_i$ ) der<br>Kornklasse d <sub>i</sub> /D <sub>i</sub>            | Schlitzweite des<br>Stabsiebes                                      | Siebdurchgang $m_i$                                         | Plattigkeitskenn-<br>zahl <i>Fl</i> <sub>i</sub> |
| mm                                        | g                                                                           | mm                                                                  | g                                                           | $FI_i = (m_i/R_i) \times 100$                    |
| 63/80                                     |                                                                             | 40                                                                  |                                                             |                                                  |
| 50/63                                     |                                                                             | 31,5                                                                |                                                             |                                                  |
| 40/50                                     |                                                                             | 25                                                                  |                                                             |                                                  |
| 31,5/40                                   | 2483,3                                                                      | 20                                                                  | 438,4                                                       | 18                                               |
| 25/31,5                                   | 2511,5                                                                      | 16                                                                  | 883,2                                                       | 35                                               |
| 20/25                                     | 2643,7                                                                      | 12,5                                                                | 1621,9                                                      | 61                                               |
| 16/20                                     | 1159,7                                                                      | 10                                                                  | 644,5                                                       | 56                                               |
| 12,5/16                                   | 1497,0                                                                      | 8                                                                   | 805,7                                                       | 54                                               |
| 10/12,5                                   | 1855,0                                                                      | 6,3                                                                 | 1122,3                                                      | 61                                               |
| 8/10                                      | 676,5                                                                       | 5                                                                   | 445,3                                                       | 66                                               |
| 6,3/8                                     | 1097,1                                                                      | 4                                                                   | 722,9                                                       | 66                                               |
| 5/6,3                                     | 722,9                                                                       | 3,15                                                                | 292,9                                                       | 41                                               |
| 4/5                                       |                                                                             | 2,5                                                                 |                                                             |                                                  |
|                                           | $M_1 = \Sigma R_i$                                                          |                                                                     | $M_2 = \Sigma m_i$                                          |                                                  |
|                                           | 14646,7                                                                     |                                                                     | 6977,1                                                      |                                                  |
|                                           | Gesar                                                                       | nt-Plattigkeitskennza                                               | thi $FI = (M_2/M_1) \times 100 =$                           | 48                                               |
| 100 >                                     | M <sub>0</sub> - [:                                                         | $\Sigma R_i + S$ (verworfene $M_0$                                  | Massen)]                                                    | - <1%                                            |

| <u></u> -                                 | ■ WESTFÄLISCHE<br>■ WILHELMS-UNIVERSITÄT<br>■ MÜNSTER            | Institut für Geologie<br>Abteilung für Angew<br>PD Dr. Patricia Göb | andte Geologie                                                                                      |                                       |
|-------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------|
| Bestimmu                                  | ng der Kornform -                                                | Plattigkeitskennz                                                   | ahl nach DIN EN 933                                                                                 | -3 (1997-02)                          |
| Material:                                 | 0/32 rot/grün                                                    |                                                                     | Laborant:                                                                                           | Wesche                                |
| Bodenart:                                 | Grauwacke                                                        |                                                                     | Datum:                                                                                              | 12.09.2008                            |
| Probennehmer:                             | Starke                                                           |                                                                     | Bemerkungen:                                                                                        | •                                     |
| Entnahmestelle:                           | Basalt AG                                                        |                                                                     |                                                                                                     |                                       |
| Art der Entn.:                            | Haufwerksbeprobun                                                | g                                                                   |                                                                                                     |                                       |
| Entn. am.                                 |                                                                  |                                                                     |                                                                                                     |                                       |
| Masse der<br>Meßprobe $M_0$ [g]:          |                                                                  | Masse des Durch                                                     | stands auf dem 80-mm-<br>Sieb [g]:<br>gangs durch das 4-mm-<br>Sieb [g]:<br>rerworfenen Massen [g]: |                                       |
| Siebung mit /                             | Analysensieben                                                   | ,                                                                   | Siebung mit Stabsiebe                                                                               | n                                     |
| Kornklasse d <sub>i</sub> /D <sub>i</sub> | Masse ( $R_i$ ) der<br>Kornklasse d <sub>i</sub> /D <sub>i</sub> | Schlitzweite des<br>Stabsiebes                                      | Siebdurchgang $m_i$                                                                                 | Plattigkeitskenn-<br>zahl <i>Fl</i> i |
| mm                                        | g                                                                | mm                                                                  | g                                                                                                   | $FI_i = (m_i/R_i) \times 100$         |
| 63/80                                     | -                                                                | 40                                                                  |                                                                                                     |                                       |
| 50/63                                     | -                                                                | 31,5                                                                |                                                                                                     |                                       |
| 40/50                                     | -                                                                | 25                                                                  |                                                                                                     |                                       |
| 31,5/40                                   | 379,5                                                            | 20                                                                  | 115,8                                                                                               | 31                                    |
| 25/31,5                                   | 1184,7                                                           | 16                                                                  | 259,5                                                                                               | 22                                    |
| 20/25                                     | 2867,8                                                           | 12,5                                                                | 915,1                                                                                               | 32                                    |
| 16/20                                     | 825,6                                                            | 10                                                                  | 205,0                                                                                               | 25                                    |
| 12,5/16                                   | 1879,3                                                           | 8                                                                   | 221,5                                                                                               | 12                                    |
| 10/12,5                                   | 1132,5                                                           | 6,3                                                                 | 294,1                                                                                               | 26                                    |
| 8/10                                      | 251,8                                                            | 5                                                                   | 85,7                                                                                                | 34                                    |
| 6,3/8                                     | 1137,3                                                           | 4                                                                   | 437,0                                                                                               | 38                                    |
| 5/6,3                                     | 437,0                                                            | 3,15                                                                | 71,4                                                                                                | 16                                    |
| 4/5                                       | -                                                                | 2,5                                                                 |                                                                                                     |                                       |
|                                           | $M_1 = \Sigma R_i$                                               |                                                                     | $M_2 = \Sigma m_i$                                                                                  |                                       |
|                                           | 10095,5                                                          |                                                                     | 2605,1                                                                                              |                                       |
|                                           |                                                                  | nt-Plattigkeitskennza                                               | hl $FI = (M_2/M_1) \times 100 =$                                                                    | 26                                    |
| 100 >                                     | M <sub>0</sub> - [3                                              | $\Sigma R_i + S$ (verworfene $M_0$                                  | Massen)]                                                                                            | - < 1 %                               |

| <u></u> -                                                 | ■ WESTFÄLISCHE<br>■ WILHELMS-UNIVERSITÄT<br>■ MÜNSTER                            | Institut für Geologie<br>Abteilung für Angew<br>PD Dr. Patricia Göb                                                                        | andte Geologie      |                                       |
|-----------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------|
| Bestimmu                                                  | ng der Kornform -                                                                | Plattigkeitskennz                                                                                                                          | ahl nach DIN EN 933 | 3-3 (1997-02)                         |
| Material:                                                 | 0/32 grün oben                                                                   |                                                                                                                                            | Laborant:           | Wesche                                |
| Bodenart:                                                 | Grauwacke                                                                        |                                                                                                                                            | Datum:              | 11.09.2008                            |
| Probennehmer:                                             | Starke                                                                           |                                                                                                                                            | Bemerkungen:        |                                       |
| Entnahmestelle:                                           | Basalt AG                                                                        |                                                                                                                                            |                     |                                       |
| Art der Entn.:                                            | Haufwerksbeprobung                                                               |                                                                                                                                            |                     |                                       |
| Entn. am.                                                 |                                                                                  |                                                                                                                                            |                     |                                       |
| Masse der Meßprobe $M_0$ [g]:                             |                                                                                  | Masse des Rückstands auf dem 80-mm-<br>Sieb [g]:<br>Masse des Durchgangs durch das 4-mm-<br>Sieb [g]:<br>Summe der verworfenen Massen [g]: |                     | :                                     |
|                                                           |                                                                                  |                                                                                                                                            |                     |                                       |
| Siebung mit Analysensieben                                |                                                                                  | Siebung mit Stabsieben                                                                                                                     |                     |                                       |
| Kornklasse d <sub>i</sub> /D <sub>i</sub>                 | Masse ( <i>R</i> <sub>i</sub> ) der<br>Kornklasse d <sub>i</sub> /D <sub>i</sub> | Schlitzweite des<br>Stabsiebes                                                                                                             | Siebdurchgang $m_i$ | Plattigkeitskenn-<br>zahl <i>FI</i> i |
| mm                                                        | g                                                                                | mm                                                                                                                                         | g                   | $FI_i = (m_i/R_i) \times 100$         |
| 63/80                                                     | -                                                                                | 40                                                                                                                                         | -                   |                                       |
| 50/63                                                     | -                                                                                | 31,5                                                                                                                                       | -                   |                                       |
| 40/50                                                     | -                                                                                | 25                                                                                                                                         | -                   |                                       |
| 31,5/40                                                   | 144,5                                                                            | 20                                                                                                                                         | 70,8                | 49                                    |
| 25/31,5                                                   | 730,1                                                                            | 16                                                                                                                                         | 235,6               | 32                                    |
| 20/25                                                     | 2338,4                                                                           | 12,5                                                                                                                                       | 717,0               | 31                                    |
| 16/20                                                     | 669,8                                                                            | 10                                                                                                                                         | 185,9               | 28                                    |
| 12,5/16                                                   | 1637,2                                                                           | 8                                                                                                                                          | 221,3               | 14                                    |
| 10/12,5                                                   | 790,8                                                                            | 6,3                                                                                                                                        | 246,8               | 31                                    |
| 8/10                                                      | 188,4                                                                            | 5                                                                                                                                          | 60,1                | 32                                    |
| 6,3/8                                                     | 1804,7                                                                           | 4                                                                                                                                          | 677,2               | 38                                    |
| 5/6,3                                                     | 677,2                                                                            | 3,15                                                                                                                                       | 119,4               | 18                                    |
| 4/5                                                       | -                                                                                | 2,5                                                                                                                                        | -                   |                                       |
|                                                           | $M_1 = \Sigma R_i$                                                               |                                                                                                                                            | $M_2 = \Sigma m_i$  |                                       |
|                                                           | 8981,1                                                                           |                                                                                                                                            | 2534,1              |                                       |
| Gesamt-Plattigkeitskennzahl $FI = (M_2/M_1) \times 100 =$ |                                                                                  |                                                                                                                                            |                     | = 28                                  |
| 100 >                                                     | M <sub>0</sub> - [2                                                              | $\Sigma R_i + S$ (verworfene $M_0$                                                                                                         | Massen)]            | - <1%                                 |

|                                           | ■ WESTFÄLISCHE<br>■ WILHELMS-UNIVERSITÄT<br>■ MÜNSTER            | Institut für Geologie<br>Abteilung für Angew<br>PD Dr. Patricia Göb | andte Geologie                                                                                      |                                       |
|-------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------|
| Bestimmur                                 | ng der Kornform -                                                | Plattigkeitskennz                                                   | ahl nach DIN EN 933                                                                                 | -3 (1997-02)                          |
| Material:                                 | 0/32 rot oben                                                    |                                                                     | Laborant:                                                                                           | Wesche                                |
| Bodenart:                                 |                                                                  |                                                                     | Datum:                                                                                              | 15.09.2008                            |
| Probennehmer:                             | Starke                                                           |                                                                     | Bemerkungen:                                                                                        |                                       |
| Entnahmestelle:                           | Basalt AG                                                        |                                                                     |                                                                                                     |                                       |
| Art der Entn.:                            | Haufwerksbeprobun                                                | g                                                                   |                                                                                                     |                                       |
| Entn. am.                                 |                                                                  |                                                                     |                                                                                                     |                                       |
| Masse der<br>Meßprobe $M_0$ [g]:          |                                                                  | Masse des Durch                                                     | stands auf dem 80-mm-<br>Sieb [g]:<br>gangs durch das 4-mm-<br>Sieb [g]:<br>verworfenen Massen [g]: |                                       |
|                                           |                                                                  | Guilline der v                                                      | renwerterieri wasseri [gj.                                                                          |                                       |
| Siebung mit A                             | Analysensieben                                                   | ;                                                                   | Siebung mit Stabsiebe                                                                               | n                                     |
| Kornklasse d <sub>i</sub> /D <sub>i</sub> | Masse ( $R_i$ ) der<br>Kornklasse d <sub>i</sub> /D <sub>i</sub> | Schlitzweite des<br>Stabsiebes                                      | Siebdurchgang $m_i$                                                                                 | Plattigkeitskenn-<br>zahl <i>FI</i> i |
| mm                                        | g                                                                | mm                                                                  | g                                                                                                   | $FI_i = (m_i/R_i) \times 100$         |
| 63/80                                     | -                                                                | 40                                                                  |                                                                                                     |                                       |
| 50/63                                     | -                                                                | 31,5                                                                |                                                                                                     |                                       |
| 40/50                                     | -                                                                | 25                                                                  |                                                                                                     |                                       |
| 31,5/40                                   | 335,0                                                            | 20                                                                  | 103,6                                                                                               | 31                                    |
| 25/31,5                                   | 346,9                                                            | 16                                                                  | 115,4                                                                                               | 33                                    |
| 20/25                                     | 1137,0                                                           | 12,5                                                                | 318,1                                                                                               | 28                                    |
| 16/20                                     | 294,3                                                            | 10                                                                  | 90,2                                                                                                | 31                                    |
| 12,5/16                                   | 614,0                                                            | 8                                                                   | 65,4                                                                                                | 11                                    |
| 10/12,5                                   | 494,5                                                            | 6,3                                                                 | 141,9                                                                                               | 29                                    |
| 8/10                                      | 123,4                                                            | 5                                                                   | 46,3                                                                                                | 38                                    |
| 6,3/8                                     | 684,8                                                            | 4                                                                   | 215,0                                                                                               | 31                                    |
| 5/6,3                                     | 215,0                                                            | 3,15                                                                | 31,5                                                                                                | 15                                    |
| 4/5                                       | -                                                                | 2,5                                                                 |                                                                                                     |                                       |
|                                           | $M_1 = \Sigma R_i$                                               |                                                                     | $M_2 = \Sigma m_i$                                                                                  |                                       |
|                                           | 4244,9                                                           |                                                                     | 1127,4                                                                                              |                                       |
|                                           | Gesan                                                            | nt-Plattigkeitskennza                                               | thi $FI = (M_2/M_1) \times 100 =$                                                                   | 27                                    |
| 100 x                                     | M <sub>0</sub> - [2                                              | $\Sigma R_i + S$ (verworfene $M_0$                                  | Massen)]                                                                                            | - < 1 %                               |

|                 | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER | für Geologie und Paläontologie<br>ung für Angewandte Geologie<br>PD Dr. Patricia Göbel |                        |                  |
|-----------------|-------------------------------------------|----------------------------------------------------------------------------------------|------------------------|------------------|
| Bestimmu        | ıng der Kornform - I                      | Kornformkennzah                                                                        | l nach DIN EN 933      | 3-4 (1999-12)    |
| Material:       | HKS 0/32                                  |                                                                                        | Laborant: Kaul         |                  |
| Bodenart:       | mG, gg, s', fg'                           |                                                                                        | Datum: 18.04.2008      |                  |
| Entnahmestelle: | Gelände der Firma l                       | Klostermann                                                                            |                        |                  |
| Probennehmer:   | Starke                                    |                                                                                        |                        |                  |
| Art der Entn.:  | Haufwerksbeprobun                         | g                                                                                      |                        |                  |
| Entn. am:       | 26.03.2008                                |                                                                                        |                        |                  |
|                 | Anzahl der unter-                         | Masse der                                                                              | Masse der nicht-       | Kornformkennzahl |
| Kornklasse      | suchten Körner                            | Messprobe $M_1$                                                                        | kubischen Körner $M_2$ | SI               |
| mm              |                                           | g                                                                                      | g                      | Х                |
| 31,5/45,0       | -                                         | 0,0                                                                                    | 0,0                    | 0                |
| 22,4/31,5       | -                                         | 1204,4                                                                                 | 154,7                  | 13               |
| 16,0/22,4       | -                                         | 1212,5                                                                                 | 145,9                  | 12               |
| 11,2/16,0       | -                                         | 1809,5                                                                                 | 305,0                  | 17               |
| 8,0/11,2        | -                                         | 1406,4                                                                                 | 294,6                  | 21               |
| 5,0/8,0         | -                                         | 486,1                                                                                  | 134,3                  | 28               |
|                 |                                           |                                                                                        |                        |                  |
| 5,0/45,0        | -                                         | 6118,9                                                                                 | 1034,5                 | 17               |
|                 |                                           |                                                                                        |                        |                  |
|                 |                                           |                                                                                        |                        |                  |
|                 |                                           |                                                                                        |                        |                  |
|                 |                                           |                                                                                        |                        |                  |
|                 |                                           |                                                                                        |                        |                  |
|                 |                                           |                                                                                        |                        |                  |
| Bemerkungen:    |                                           |                                                                                        |                        |                  |

| <u> </u>               | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER | Abteilu                   | ür Geologie und Palä<br>ng für Angewandte G<br>PD Dr. Patricia Göbe | Geologie               |
|------------------------|-------------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------|
| Bestimmu               | ng der Kornform - l                       | Kornformkennzah           | I nach DIN EN 933                                                   | 3-4 (1999-12)          |
| Material:              | Tragschicht NL                            | Tragschicht NL            |                                                                     |                        |
| Bodenart:              | S,G                                       |                           | Datum: 01.12.2008                                                   |                        |
| Entnahmestelle:        |                                           |                           |                                                                     |                        |
| Probennehmer:          | Starke                                    |                           |                                                                     |                        |
| Art der Entn.:         | Haufwerksbeprobun                         | g                         |                                                                     |                        |
| Entn. am:              |                                           |                           |                                                                     |                        |
| Kornklasse             | Anzahl der unter-<br>suchten Körner       | Masse der Messprobe $M_1$ | Masse der nicht-<br>kubischen Körner $M_2$                          | Kornformkennzahl<br>SI |
| mm<br>45,0/63,0        |                                           | g                         | g                                                                   | %                      |
|                        | -                                         | 228,7                     | 0,0                                                                 | 0                      |
| 31,5/45,0              | -                                         | 1025,8                    | 47,6                                                                | 5<br>8                 |
| 22,4/31,5              | -                                         | 1178,0                    | 88,9                                                                | 19                     |
| 16,0/22,4<br>11,2/16,0 | <u>-</u>                                  | 1045,2<br>857,5           | 200,0<br>209,3                                                      | 24                     |
| 8,0/11,2               | <u>-</u>                                  | 603,6                     | 181,3                                                               | 30                     |
| 5,0/8,0                | -                                         | 734,5                     | 176,1                                                               | 24                     |
| 5,0/63,0               | -                                         | 5673,3                    | 903,2                                                               | 16                     |
|                        |                                           |                           |                                                                     |                        |
| Bemerkungen:           |                                           |                           |                                                                     |                        |

|                 |                                     |                              | ür Geologie und Palä<br>ng für Angewandte G<br>PD Dr. Patricia Göbe | Geologie               |
|-----------------|-------------------------------------|------------------------------|---------------------------------------------------------------------|------------------------|
| Bestimmu        | ng der Kornform - l                 | Kornformkennzah              | I nach DIN EN 933                                                   | 3-4 (1999-12)          |
| Material:       | Feld 4 unterer Berei                | ch TL - SoB                  | Laborant: Kaul                                                      |                        |
| Bodenart:       | S,G                                 |                              | Datum: 17.12.2008                                                   |                        |
| Entnahmestelle: |                                     |                              |                                                                     |                        |
| Probennehmer:   | Starke                              |                              |                                                                     |                        |
| Art der Entn.:  | Haufwerksbeprobun                   | g                            |                                                                     |                        |
| Entn. am:       |                                     |                              |                                                                     |                        |
| Kornklasse      | Anzahl der unter-<br>suchten Körner | Masse der<br>Messprobe $M_1$ | Masse der nicht-<br>kubischen Körner<br>$M_2$                       | Kornformkennzahl<br>SI |
| mm<br>45,0/63,0 | _                                   | g                            | <u>g</u><br>-                                                       | %                      |
| 31,5/45,0       |                                     | _                            |                                                                     |                        |
| 22,4/31,5       | <del> </del> -                      | 167,1                        | 19,6                                                                | 12                     |
| 16,0/22,4       | _                                   | 1346,3                       | 24,1                                                                | 2                      |
| 11,2/16,0       | -                                   | 1405,0                       | 243,0                                                               | 17                     |
| 8,0/11,2        | -                                   | 922,2                        | 185,4                                                               | 20                     |
| 5,0/8,0         | -                                   | 2177,4                       | 505,8                                                               | 23                     |
| 5,0/31,5        | -                                   | 6018,0                       | 977,9                                                               | 16                     |
|                 |                                     |                              |                                                                     |                        |
| Bemerkungen:    | •                                   |                              |                                                                     | <u> </u>               |

|                 | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER | Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel |                                               |                        |  |  |
|-----------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------|--|--|
| Bestimmu        | ıng der Kornform - I                      | Kornformkennzah                                                                                       | I nach DIN EN 933                             | 3-4 (1999-12)          |  |  |
| Material:       | RC 0/45                                   |                                                                                                       | Laborant: Kaul                                |                        |  |  |
| Bodenart:       | G, fs', ms', gs'                          |                                                                                                       | Datum: 14.03.2008                             |                        |  |  |
| Entnahmestelle: | Gelände der Firma S                       | Stratiebo                                                                                             | ]                                             |                        |  |  |
| Probennehmer:   | Starke                                    |                                                                                                       | 1                                             |                        |  |  |
| Art der Entn.:  | Haufwerksbeprobun                         | g                                                                                                     | 1                                             |                        |  |  |
| Entn. am:       | 14.01.2008                                |                                                                                                       | 1                                             |                        |  |  |
|                 |                                           |                                                                                                       | T                                             |                        |  |  |
| Kornklasse      | Anzahl der unter-<br>suchten Körner       | Masse der Messprobe $M_1$                                                                             | Masse der nicht-<br>kubischen Körner<br>$M_2$ | Kornformkennzahl<br>SI |  |  |
| mm              |                                           | g                                                                                                     | g                                             | %                      |  |  |
| 31,5/45         | -                                         | 652,2                                                                                                 | 294,6                                         | 45                     |  |  |
| 22,4/31,5       | -                                         | 696,7                                                                                                 | 68,5                                          | 10                     |  |  |
| 16,0/22,4       | -                                         | 1035,1                                                                                                | 189,9                                         | 18                     |  |  |
| 11,2/16,0       | -                                         | 1145,2                                                                                                | 156,8                                         | 14                     |  |  |
| 8,0/11,2        | -                                         | 997,5                                                                                                 | 163,0                                         | 16                     |  |  |
| 5,0/8,0         | <del>-</del>                              | 1336,0                                                                                                | 157,1                                         | 12                     |  |  |
|                 |                                           |                                                                                                       |                                               |                        |  |  |
| - 2/15 0        | +                                         |                                                                                                       | 1000.0                                        | 10                     |  |  |
| 5,0/45,0        | <del>-</del>                              | 5862,7                                                                                                | 1029,9                                        | 18                     |  |  |
|                 | +                                         |                                                                                                       |                                               |                        |  |  |
|                 | +                                         |                                                                                                       |                                               |                        |  |  |
|                 | +                                         |                                                                                                       |                                               |                        |  |  |
|                 | +                                         |                                                                                                       |                                               |                        |  |  |
|                 | +                                         |                                                                                                       |                                               |                        |  |  |
|                 | +                                         |                                                                                                       |                                               |                        |  |  |
|                 | +                                         |                                                                                                       |                                               |                        |  |  |
|                 | +                                         |                                                                                                       |                                               |                        |  |  |
|                 | +                                         |                                                                                                       |                                               |                        |  |  |
|                 | +                                         |                                                                                                       |                                               |                        |  |  |
|                 | +                                         |                                                                                                       |                                               |                        |  |  |
|                 | +                                         |                                                                                                       |                                               |                        |  |  |
| Bemerkungen:    | -                                         |                                                                                                       | <u>l</u>                                      |                        |  |  |

| <u></u> =-             | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER |                                          | für Geologie und Palä<br>lung für Angewandte G<br>PD Dr. Patricia Göbe | Seologie               |
|------------------------|-------------------------------------------|------------------------------------------|------------------------------------------------------------------------|------------------------|
| Bestimmu               | ng der Kornform - I                       | Kornformkennza                           | hl nach DIN EN 933                                                     | 3-4 (1999-12)          |
| Material:              | HKS 0/45                                  | HKS 0/45                                 |                                                                        |                        |
| Bodenart:              | G, fs', gs'                               |                                          | Datum: 10.03.2008                                                      |                        |
| Entnahmestelle:        | Gelände der Firma S                       | Stratiebo                                |                                                                        |                        |
| Probennehmer:          | Starke                                    |                                          | 7                                                                      |                        |
| Art der Entn.:         | Haufwerksbeprobun                         | g                                        | 7                                                                      |                        |
| Entn. am:              | 14.01.2008                                |                                          |                                                                        |                        |
| Kornklasse             | Anzahl der unter-<br>suchten Körner       | Masse der<br>Messprobe<br>M <sub>1</sub> | Masse der nicht-<br>kubischen Körner<br>M <sub>2</sub>                 | Kornformkennzahl<br>SI |
| mm                     |                                           | g<br>1424.4                              | g<br>573.6                                                             | %<br>40                |
| 31,5/45,0<br>22,4/31,5 | -                                         | 1434,4<br>1572,0                         | 573,6<br>381,8                                                         | 24                     |
|                        | -                                         | 1319,7                                   | 583,6                                                                  | 44                     |
| 16,0/22,4<br>11,2/16,0 |                                           | 850,1                                    | 446,5                                                                  | 53                     |
| 8,0/11,2               | -                                         | 625,4                                    | 335,0                                                                  | 54                     |
| 5,0/8,0                |                                           | 595,0                                    | 331,9                                                                  | 56                     |
| 3,070,0                |                                           | 330,0                                    | 301,0                                                                  | 30                     |
| 5,0/45,0               | -                                         | 6396,6                                   | 2652,4                                                                 | 41                     |
|                        |                                           |                                          |                                                                        |                        |
|                        |                                           |                                          |                                                                        |                        |
| Bemerkungen:           |                                           |                                          |                                                                        |                        |

| <u> </u>        | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER | Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel |                   |                        |
|-----------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------|------------------------|
| Bestimmu        | ng der Kornform - I                       | Kornformkennzah                                                                                       | I nach DIN EN 933 | 3-4 (1999-12)          |
| Material:       | 0/32 rot/grün                             |                                                                                                       | Laborant: Kaul    |                        |
| Bodenart:       | mG,gg,fs',ms',gs',fg'                     |                                                                                                       | Datum:            |                        |
| Entnahmestelle: |                                           |                                                                                                       |                   |                        |
| Probennehmer:   | Starke                                    |                                                                                                       |                   |                        |
| Art der Entn.:  | Haufwerksbeprobun                         | g                                                                                                     |                   |                        |
| Entn. am:       |                                           |                                                                                                       |                   |                        |
| Kornklasse      | Anzahl der unter-<br>suchten Körner       | Masse der<br>Messprobe $M_1$                                                                          | IVI <sub>2</sub>  | Kornformkennzahl<br>SI |
| mm              |                                           | g                                                                                                     | g                 | %                      |
| 31,5/45,0       | -                                         | 297,4                                                                                                 | 115,9             | 39                     |
| 22,4/31,5       | -                                         | 887,5                                                                                                 | 138,0             | 16                     |
| 16,0/22,4       | -                                         | 1909,4                                                                                                | 257,9             | 14                     |
| 11,2/16,0       | -                                         | 1398,2                                                                                                | 143,0             | 10<br>19               |
| 8,0/11,2        | -                                         | 675,1<br>839,6                                                                                        | 130,5<br>169,2    | 20                     |
| 5,0/8,0         | -                                         | 839,0                                                                                                 | 109,2             | 20                     |
| 5.0/45.0        |                                           | 6007,2                                                                                                | 954,5             | 16                     |
| 5,0/45,0        | -                                         | 6007,2                                                                                                | 934,3             | 10                     |
|                 |                                           |                                                                                                       |                   |                        |
|                 |                                           |                                                                                                       |                   |                        |
|                 |                                           |                                                                                                       |                   |                        |
| Bemerkungen:    |                                           |                                                                                                       |                   |                        |

| <u></u> -       | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER | Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel |                                            |                        |
|-----------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|
| Bestimmu        | ng der Kornform -                         | Kornformkennzah                                                                                       | l nach DIN EN 933                          | 3-4 (1999-12)          |
| Material:       | 0/32 grün oben                            | 0/32 grün oben                                                                                        |                                            |                        |
| Bodenart:       | G,fs',ms',gs'                             |                                                                                                       | Datum: 15.12.2008                          |                        |
| Entnahmestelle: |                                           |                                                                                                       |                                            |                        |
| Probennehmer:   | Starke                                    |                                                                                                       |                                            |                        |
| Art der Entn.:  | Haufwerksbeprobun                         | g                                                                                                     |                                            |                        |
| Entn. am:       |                                           |                                                                                                       |                                            |                        |
| Kornklasse      | Anzahl der unter-<br>suchten Körner       | Masse der Messprobe $M_1$                                                                             | Masse der nicht-<br>kubischen Körner $M_2$ | Kornformkennzahl<br>SI |
| mm              |                                           | g                                                                                                     | g                                          | %                      |
| 31,5/45,0       | -                                         | 144,5                                                                                                 | 70,9                                       | 49                     |
| 22,4/31,5       | -                                         | 639,6                                                                                                 | 79,1                                       | 12                     |
| 16,0/22,4       | -                                         | 1800,4                                                                                                | 225,2                                      | 13                     |
| 11,2/16,0       | -                                         | 1405,4                                                                                                | 184,7                                      | 13                     |
| 8,0/11,2        | -                                         | 493,5                                                                                                 | 83,4                                       | 17                     |
| 5,0/8,0         | -                                         | 1547,4                                                                                                | 421,0                                      | 27                     |
| 5,0/45,0        | -                                         | 6030,8                                                                                                | 1064,3                                     | 18                     |
|                 |                                           |                                                                                                       |                                            |                        |
|                 |                                           |                                                                                                       |                                            |                        |
| Bemerkungen:    |                                           |                                                                                                       |                                            |                        |

| <u>+</u>        | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER | Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel |                                            |                        |
|-----------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|
| Bestimmu        | ng der Kornform - l                       | Kornformkennzah                                                                                       | I nach DIN EN 933                          | 3-4 (1999-12)          |
| Material:       | 0/32 rot unten                            | 0/32 rot unten                                                                                        |                                            |                        |
| Bodenart:       | G,fs',ms',gs'                             |                                                                                                       | Datum: 24.11.2008                          |                        |
| Entnahmestelle: |                                           |                                                                                                       |                                            |                        |
| Probennehmer:   | Starke                                    |                                                                                                       |                                            |                        |
| Art der Entn.:  | Haufwerksbeprobun                         | g                                                                                                     |                                            |                        |
| Entn. am:       |                                           |                                                                                                       |                                            |                        |
| Kornklasse      | Anzahl der unter-<br>suchten Körner       | Masse der Messprobe $M_1$                                                                             | Masse der nicht-<br>kubischen Körner $M_2$ | Kornformkennzahl<br>SI |
| mm              |                                           | g                                                                                                     | g                                          | %                      |
| 31,5/45,0       | -                                         | 471,1                                                                                                 | 87,2                                       | 19                     |
| 22,4/31,5       | -                                         | 779,0                                                                                                 | 83,9                                       | 11                     |
| 16,0/22,4       | -                                         | 1797,7                                                                                                | 202,5                                      | 11                     |
| 11,2/16,0       | -                                         | 978,5                                                                                                 | 127,5                                      | 13                     |
| 8,0/11,2        | -                                         | 796,5                                                                                                 | 133,7                                      | 17                     |
| 5,0/8,0         | -                                         | 1218,6                                                                                                | 213,7                                      | 18                     |
| 5,0/45,0        | -                                         | 6041,4                                                                                                | 848,5                                      | 14                     |
|                 |                                           |                                                                                                       |                                            |                        |
|                 |                                           |                                                                                                       |                                            |                        |
| Bemerkungen:    | 1                                         |                                                                                                       |                                            |                        |

| WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER |                       |                                   | Abteilung                         | Geologie und Pa<br>für Angewandte<br>Dr. Patricia Gö | Geologie                          |
|-------------------------------------------|-----------------------|-----------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------|
| Bestimmung                                | des Anteils an        | gebrochenen<br>gem. DIN E         | _                                 | oben Gestein                                         | skörnungen                        |
| Material:                                 | HKS 0/32              |                                   | Laborant:                         | Kaul                                                 |                                   |
| Bodenart:                                 | mG, gg, s', fg'       |                                   | Datum:                            | 18.04.2008                                           |                                   |
| Entnahmestelle:                           | Geländer der Firn     | na Stratiebo                      |                                   |                                                      |                                   |
| Probennehmer:                             | Starke                |                                   | 1                                 |                                                      |                                   |
| Art der Entn.:                            | Haufwerksbeprob       | oung                              | 1                                 |                                                      |                                   |
| Kornklasse<br>g                           | Masse M <sub>1</sub>  | Masse I                           | M <sub>(c, r, tc, tr)</sub>       | Zahl ge                                              | nächste ganze<br>erundet<br>%     |
|                                           |                       | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                       | C <sub>r</sub>                    |
| 31,5/45,0                                 | 0,0                   | 0,0                               | 0,0                               | 0                                                    | 0                                 |
| 01,0/10,0                                 | 0,0                   | Einschließlich                    | Einschließlich                    | Einschließlich                                       | Einschließlich                    |
|                                           |                       | 0,0                               | 0,0                               | C <sub>tc</sub>                                      | C <sub>tr</sub>                   |
|                                           |                       | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                       | C <sub>r</sub>                    |
|                                           |                       | 0,0                               | 0,0                               | 0                                                    | 0                                 |
| 22,4/31,5                                 | 1204,3                | Einschließlich                    | Einschließlich                    | Einschließlich                                       | Einschließlich                    |
|                                           |                       | $M_{tc}$                          | $M_{tr}$                          | $C_{tc}$                                             | $C_{tr}$                          |
|                                           |                       | 1204,3                            | 0,0                               | 100                                                  | 0                                 |
|                                           | 1212,6                | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                       | C <sub>r</sub>                    |
| 16,0/22,4                                 |                       | 0,0                               | 0,0                               | 0                                                    | 0                                 |
| 10,0/22,4                                 |                       | Einschließlich                    | Einschließlich                    | Einschließlich                                       | Einschließlich                    |
|                                           |                       | M <sub>tc</sub><br>1212,6         | 0,0                               | C <sub>tc</sub>                                      | C <sub>tr</sub>                   |
|                                           |                       | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                       | C <sub>r</sub>                    |
|                                           |                       | 0,0                               | 0,0                               | 0                                                    | 0                                 |
| 11,2/16,0                                 | 1809,8                | Einschließlich                    | Einschließlich                    | Einschließlich                                       | Einschließlich                    |
|                                           |                       | $M_{tc}$                          | $M_{tr}$                          | $C_{tc}$                                             | $C_tr$                            |
|                                           |                       | 1809,8                            | 0,0                               | 100                                                  | 0                                 |
|                                           |                       | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                       | C <sub>r</sub>                    |
| 8,0/11,2                                  | 507,3                 | 0,0                               | 0,0                               | 0                                                    | 0                                 |
| 0,0/11,2                                  | 307,3                 | Einschließlich                    | Einschließlich                    | Einschließlich                                       | Einschließlich                    |
|                                           |                       | M <sub>tc</sub>                   | M <sub>tr</sub>                   | C <sub>tc</sub>                                      | C <sub>tr</sub>                   |
|                                           |                       | 507,3                             | 0,0                               | 100                                                  | 0                                 |
|                                           |                       | 0,0                               | M <sub>r</sub>                    | C <sub>c</sub>                                       | C <sub>r</sub>                    |
| 5,0/8,0                                   | 1406,4                | 0,0                               | 0,0<br>Einschließlich             | 0<br>Finanhia@liah                                   | 0<br>Finanhlia@liah               |
| ]                                         | ,                     | Einschließlich<br>M <sub>tc</sub> | Einschließlich<br>M <sub>tr</sub> | Einschließlich $C_{tc}$                              | Einschließlich<br>C <sub>tr</sub> |
|                                           |                       | 1406,4                            | 0,0                               | 100                                                  | O <sub>tr</sub>                   |
| Bemerkungen:                              | tc: vollständig gebr  |                                   | c: gebrochene K                   |                                                      | ,                                 |
| · · · · · · · · · · · · · · · · · · ·     | tr: vollständig gerur |                                   | r: gerundete Körr                 |                                                      | •                                 |

| WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER |                      |                                   | Abteilung                         | Geologie und Pa<br>für Angewandte<br>DDr. Patricia Gö | Geologie                          |
|-------------------------------------------|----------------------|-----------------------------------|-----------------------------------|-------------------------------------------------------|-----------------------------------|
| Bestimmung                                | des Anteils an       | gebrochenen<br>gem. DIN E         |                                   | oben Gestein                                          | skörnungen                        |
| Material:                                 | Tragschicht NL       |                                   | Laborant:                         | Kaul                                                  |                                   |
| Bodenart:                                 | S,G                  |                                   | Datum:                            | 28.10.2008                                            |                                   |
| Entnahmestelle:                           |                      |                                   |                                   |                                                       |                                   |
| Probennehmer:                             | Starke               |                                   | 1                                 |                                                       |                                   |
| Art der Entn.:                            |                      |                                   |                                   |                                                       |                                   |
| Kornklasse<br>g                           | Masse $M_1$          | Masse A                           | M <sub>(c, r, tc, tr)</sub>       | Zahl ge                                               | nächste ganze<br>erundet<br>%     |
|                                           |                      | M <sub>c</sub>                    | M <sub>r</sub>                    | $C_c$                                                 | C <sub>r</sub>                    |
|                                           |                      | 0,0                               | 0,0                               | 0                                                     | 0                                 |
| 45,0/63,0                                 | 228,7                | Einschließlich                    | Einschließlich                    | Einschließlich                                        | Einschließlich                    |
|                                           |                      | $M_tc$                            | $M_{tr}$                          | $C_{tc}$                                              | $C_{tr}$                          |
|                                           |                      | 228,7                             | 0,0                               | 100                                                   | 0                                 |
|                                           |                      | $M_c$                             | $M_r$                             | $C_c$                                                 | $C_{r}$                           |
| 21 5/45 0                                 | 1006 F               | 72,1                              | 0,0                               | 7                                                     | 0                                 |
| 31,5/45,0                                 | 1026,5               | Einschließlich                    | Einschließlich                    | Einschließlich                                        | Einschließlich                    |
|                                           |                      | M <sub>tc</sub>                   | M <sub>tr</sub>                   | C <sub>tc</sub>                                       | C <sub>tr</sub>                   |
|                                           |                      | 1026,5                            | 0,0                               | 100                                                   | 0                                 |
|                                           |                      | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                        | C <sub>r</sub>                    |
| 22,4/31,5                                 | 1179,7               | 149,5                             | 0,0                               | 13                                                    | 0                                 |
| , ,                                       | ,                    | Einschließlich<br>M <sub>tc</sub> | Einschließlich<br>M <sub>tr</sub> | Einschließlich<br>C <sub>tc</sub>                     | Einschließlich<br>C <sub>tr</sub> |
|                                           |                      | 1179,7                            | 0,0                               | 100                                                   | 0                                 |
|                                           |                      | M <sub>c</sub>                    | $M_r$                             | $C_c$                                                 | $C_r$                             |
|                                           |                      | 114,2                             | 33,3                              | 11                                                    | 3                                 |
| 16,0/22,4                                 | 1045,9               | Einschließlich                    | Einschließlich                    | Einschließlich                                        | Einschließlich                    |
|                                           |                      | $M_tc$                            | $M_{tr}$                          | $C_tc$                                                | $C_{tr}$                          |
|                                           |                      | 1012,6                            | 33,3                              | 97                                                    | 3                                 |
|                                           |                      | $M_c$                             | $M_r$                             | $C_c$                                                 | $C_{r}$                           |
| 11,2/16,0                                 | 1269,6               | 94,3                              | 36,2                              | 7                                                     | 3                                 |
| 11,2/10,0                                 | 1209,0               | Einschließlich                    | Einschließlich                    | Einschließlich                                        | Einschließlich                    |
|                                           |                      | M <sub>tc</sub> 1233,4            | M <sub>tr</sub> 36,2              | C <sub>tc</sub><br>97                                 | C <sub>tr</sub>                   |
|                                           |                      |                                   |                                   |                                                       |                                   |
|                                           |                      | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                        | C <sub>r</sub>                    |
| 8,0/11,2                                  | 1006,7               | 89,6<br>Einschließlich            | 24,5<br>Einschließlich            | 9<br>Einschließlich                                   | 2<br>Einschließlich               |
|                                           |                      | M <sub>tc</sub>                   | M <sub>tr</sub>                   | C <sub>tc</sub>                                       | C <sub>tr</sub>                   |
|                                           |                      | 982,2                             | 24,5                              | 98                                                    | 2                                 |
|                                           |                      | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                        | C <sub>r</sub>                    |
| F 0/0 0                                   | 705.5                | 65,1                              | 16,1                              | 9                                                     | 2                                 |
| 5,0/8,0                                   | 735,5                | Einschließlich                    | Einschließlich                    | Einschließlich                                        | Einschließlich                    |
|                                           |                      | M <sub>tc</sub>                   | M <sub>tr</sub>                   | C <sub>tc</sub>                                       | C <sub>tr</sub>                   |
| Dama antonia er ere                       | Annual Control       | 719,9                             | 16,5                              | 98                                                    | 2                                 |
| Bemerkungen:                              | tc: vollständig geb  |                                   | c: gebrochene K                   |                                                       |                                   |
|                                           | tr: vollständig geru | ndete Körner                      | r: gerundete Kör                  | ner                                                   |                                   |

| <u> </u>        | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER |                           |                             | Geologie und Pa<br>für Angewandte<br>Dr. Patricia Gö | Geologie                      |
|-----------------|-------------------------------------------|---------------------------|-----------------------------|------------------------------------------------------|-------------------------------|
| Bestimmung      | des Anteils an                            | gebrochenen<br>gem. DIN E | _                           | oben Gestein                                         | skörnungen                    |
| Material:       | Feld 4 unterer Be                         | reich TL - SoB            | Laborant:                   | Kaul                                                 |                               |
| Bodenart:       | S,G                                       |                           | Datum:                      | 07.10.2008                                           |                               |
| Entnahmestelle: |                                           |                           |                             |                                                      |                               |
| Probennehmer:   | Starke                                    |                           | 1                           |                                                      |                               |
| Art der Entn.:  |                                           |                           | 1                           |                                                      |                               |
| Kornklasse<br>g | Masse $M_1$                               | Masse i                   | M <sub>(c, r, tc, tr)</sub> | Zahl ge                                              | nächste ganze<br>erundet<br>6 |
|                 |                                           | M <sub>c</sub>            | M <sub>r</sub>              | C <sub>c</sub>                                       | $C_{r}$                       |
| 24 5/45 0       | 0.0                                       | 0,0                       | 0,0                         | 0                                                    | 0                             |
| 31,5/45,0       | 0,0                                       | Einschließlich            | Einschließlich              | Einschließlich                                       | Einschließlich                |
|                 |                                           | M <sub>tc</sub>           | M <sub>tr</sub>             | C <sub>tc</sub>                                      | C <sub>tr</sub>               |
|                 |                                           | 0,0                       | 0,0                         | 0                                                    | 0                             |
|                 |                                           | M <sub>c</sub>            | M <sub>r</sub>              | C <sub>c</sub>                                       | C <sub>r</sub>                |
| 22,4/31,5       | 164,6                                     | 0,0                       | 0,0                         | 0                                                    | 0                             |
| , , .           | , .                                       | Einschließlich            | Einschließlich              | Einschließlich                                       | Einschließlich                |
|                 |                                           | M <sub>tc</sub><br>164,6  | 0.0                         | C <sub>tc</sub>                                      | C <sub>tr</sub>               |
|                 | 1358,2                                    | M <sub>c</sub>            | M <sub>r</sub>              | C <sub>c</sub>                                       | C <sub>r</sub>                |
|                 |                                           | 242,4                     | 0,0                         | 18                                                   | 0                             |
| 16,0/22,4       |                                           | Einschließlich            | Einschließlich              | Einschließlich                                       | Einschließlich                |
|                 |                                           | $M_{tc}$                  | $M_{tr}$                    | $C_tc$                                               | $C_{tr}$                      |
|                 |                                           | 1358,2                    | 0,0                         | 100                                                  | 0                             |
|                 |                                           | M <sub>c</sub>            | $M_{r}$                     | C <sub>c</sub>                                       | $C_{r}$                       |
| 11,2/16,0       | 1414,9                                    | 116,4                     | 0,0                         | 8                                                    | 0                             |
| 11,2/10,0       | 1414,5                                    | Einschließlich            | Einschließlich              | Einschließlich                                       | Einschließlich                |
|                 |                                           | M <sub>tc</sub><br>1414,9 | 0,0                         | C <sub>tc</sub>                                      | C <sub>tr</sub>               |
|                 |                                           | M <sub>c</sub>            | M <sub>r</sub>              | C <sub>c</sub>                                       | C <sub>r</sub>                |
|                 |                                           | 68,4                      | 0,0                         | 7                                                    | 0                             |
| 8,0/11,2        | 915,6                                     | Einschließlich            | Einschließlich              | Einschließlich                                       | Einschließlich                |
|                 |                                           | $M_tc$                    | $M_{tr}$                    | $C_tc$                                               | $C_{tr}$                      |
|                 |                                           | 915,6                     | 0,0                         | 100                                                  | 0                             |
|                 |                                           | M <sub>c</sub>            | M <sub>r</sub>              | C <sub>c</sub>                                       | C <sub>r</sub>                |
| 5,0/8,0         | 2176,8                                    | 83,1                      | 1,1                         | 4                                                    | 0                             |
| 5,0/6,0         | 2170,0                                    | Einschließlich            | Einschließlich              | Einschließlich                                       | Einschließlich                |
|                 |                                           | M <sub>tc</sub>           | M <sub>tr</sub>             | C <sub>tc</sub>                                      | C <sub>tr</sub>               |
| Remerkungen:    | tc: vollständig gebr                      | 2175,5                    | 1,3<br>c: gebrochene K      | 100                                                  | 0                             |
| Bemerkungen:    | tr: vollständig gerur                     |                           | r: gerundete Körr           |                                                      |                               |
|                 | u. volistanuly yerur                      | idele Kolliel             | II. gerundete Kon           | ICI                                                  |                               |

|                 | WESTFÄLISCHE WILHELMS-UNIVI MÜNSTER | ERSITÄT                           | Abteilung                          | Geologie und Pa<br>für Angewandte<br>Dr. Patricia Gö | Geologie                          |
|-----------------|-------------------------------------|-----------------------------------|------------------------------------|------------------------------------------------------|-----------------------------------|
| Bestimmung      | des Anteils an                      | gebrochenen<br>gem. DIN E         | _                                  | oben Gestein                                         | skörnungen                        |
| Material:       | Feld 5 oberer Ber                   | reich TL - SoB                    | Laborant:                          | Kaul                                                 |                                   |
| Bodenart:       | S,G                                 |                                   | Datum:                             | 13.10.2008                                           |                                   |
| Entnahmestelle: |                                     |                                   |                                    | •                                                    |                                   |
| Probennehmer:   | Starke                              |                                   | 1                                  |                                                      |                                   |
| Art der Entn.:  |                                     |                                   |                                    |                                                      |                                   |
| Kornklasse<br>g | Masse $M_1$                         |                                   | <i>M</i> <sub>(c, r, tc, tr)</sub> | Zahl ge                                              | nächste ganze<br>erundet<br>%     |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                     | C <sub>c</sub>                                       | $C_{r}$                           |
| 31,5/45,0       | 0,0                                 | 0,0                               | 0,0                                | 0                                                    | 0                                 |
| 01,0/10,0       | 0,0                                 | Einschließlich<br>M <sub>tc</sub> | Einschließlich<br>M <sub>tr</sub>  | Einschließlich $C_{tc}$                              | Einschließlich<br>C <sub>tr</sub> |
|                 |                                     | 0,0                               | 0,0                                | 0                                                    | 0                                 |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                     | C <sub>c</sub>                                       | C <sub>r</sub>                    |
|                 |                                     | 15,4                              | 0,0                                | 3                                                    | 0                                 |
| 22,4/31,5       | 445,1                               | Einschließlich                    | Einschließlich                     | Einschließlich                                       | Einschließlich                    |
|                 |                                     | M <sub>tc</sub>                   | M <sub>tr</sub>                    | C <sub>tc</sub>                                      | C <sub>tr</sub>                   |
|                 |                                     | 445,1                             | 0,0                                | 100                                                  | 0                                 |
|                 |                                     | $M_c$                             | $M_r$                              | C <sub>c</sub>                                       | $C_{r}$                           |
| 16,0/22,4       | 1618,1                              | 76,0                              | 0,0                                | 5                                                    | 0                                 |
| 10,0/22,4       | 1010,1                              | Einschließlich                    | Einschließlich                     | Einschließlich                                       | Einschließlich                    |
|                 |                                     | M <sub>tc</sub> 1618,1            | 0,0                                | C <sub>tc</sub>                                      | C <sub>tr</sub>                   |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                     | C <sub>c</sub>                                       | C <sub>r</sub>                    |
|                 |                                     | 102,8                             | 7,0                                | 7                                                    | 1                                 |
| 11,2/16,0       | 1378,9                              | Einschließlich                    | Einschließlich                     | Einschließlich                                       | Einschließlich                    |
|                 |                                     | $M_tc$                            | $M_{tr}$                           | $C_{tc}$                                             | $C_{tr}$                          |
|                 |                                     | 1371,9                            | 7,0                                | 99                                                   | 1                                 |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                     | C <sub>c</sub>                                       | C <sub>r</sub>                    |
| 8,0/11,2        | 894,1                               | 72,8                              | 4,7                                | 8                                                    | 1                                 |
| 0,0/11,2        | 001,1                               | Einschließlich<br>M <sub>tc</sub> | Einschließlich<br>M <sub>tr</sub>  | Einschließlich $C_{tc}$                              | Einschließlich<br>C <sub>tr</sub> |
|                 |                                     | 889,4                             | 4,7                                | 99                                                   | 1                                 |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                     | C <sub>c</sub>                                       | C <sub>r</sub>                    |
| E 0/0.0         | 1207.5                              | 66,0                              | 1,2                                | 5                                                    | 0                                 |
| 5,0/8,0         | 1367,5                              | Einschließlich                    | Einschließlich                     | Einschließlich                                       | Einschließlich                    |
|                 |                                     | M <sub>tc</sub>                   | M <sub>tr</sub>                    | C <sub>tc</sub>                                      | C <sub>tr</sub>                   |
| Pomorkungon:    | to: volletändia ach                 | 1366,3                            | 1,2                                | 100                                                  | 0                                 |
| Bemerkungen:    | tc: vollständig gebr                |                                   | c: gebrochene Kör                  |                                                      | •                                 |
|                 | tr: vollständig gerui               | nuele Komer                       | r: gerundete Körı                  | ICI                                                  |                                   |

| Bodenart:   G, fs', ms', gs'   Datum:   14.03.2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER |                      |                | Abteilung      | Geologie und Pa<br>für Angewandte<br>Dr. Patricia Gö | Geologie       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|----------------|----------------|------------------------------------------------------|----------------|
| Bodenart:   G, fs', ms', gs'   Datum:   14.03.2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bestimmung                                | des Anteils an       | _              | _              | oben Gestein                                         | skörnungen     |
| Datum:   14.03.2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Material:                                 | RC 0/45              |                | Laborant:      | Kaul                                                 |                |
| Entnahmestelle:   Geländer der Firma Stratiebo   Starke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bodenart:                                 | G, fs', ms', gs'     |                |                | 14.03.2008                                           |                |
| Probennehmer:   Starke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                      | na Stratiebo   |                |                                                      |                |
| Art der Enth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                      |                |                |                                                      |                |
| Masse M   g   g   g   g   g   g   g   g   g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           | Haufwerksbeprob      | ouna           | 1              |                                                      |                |
| 31,5/45,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kornklasse                                | Masse M <sub>1</sub> | Masse I        |                | Zahl ge                                              | erundet        |
| Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                      | M <sub>c</sub> | M <sub>r</sub> | C <sub>c</sub>                                       | C <sub>r</sub> |
| 22,4/31,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31 5/45 0                                 | 651.6                | ,              |                | ~                                                    | -              |
| 1034,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31,5/43,0                                 | 031,0                |                |                |                                                      |                |
| M <sub>c</sub>   M <sub>r</sub>   C <sub>c</sub>   C <sub>r</sub>     0,0   0,0   0   0     Einschließlich   M <sub>lr</sub>   C <sub>lc</sub>   C <sub>tr</sub>     697,3   0,0   100   0     697,3   0,0   100   0     697,3   0,0   100   0     M <sub>c</sub>   M <sub>r</sub>   C <sub>c</sub>   C <sub>r</sub>     697,3   0,0   100   0     M <sub>c</sub>   M <sub>r</sub>   C <sub>c</sub>   C <sub>r</sub>     53,9   54,7   5   5     Einschließlich   M <sub>lr</sub>   M <sub>lr</sub>   C <sub>lc</sub>   C <sub>tr</sub>     980,2   54,7   95   5     Einschließlich   M <sub>lr</sub>   M <sub>r</sub>   C <sub>c</sub>   C <sub>r</sub>     35,3   5,5   3   0     Einschließlich   M <sub>lr</sub>   C <sub>lc</sub>   C <sub>tr</sub>     1126,2   5,5   100   0     M <sub>c</sub>   M <sub>r</sub>   C <sub>c</sub>   C <sub>r</sub>     1126,2   5,5   100   0     M <sub>c</sub>   M <sub>r</sub>   C <sub>c</sub>   C <sub>r</sub>     1145,9   22,4   98   2     M <sub>c</sub>   M <sub>r</sub>   C <sub>c</sub>   C <sub>r</sub>     1145,9   22,4   98   2     S,0/8,0   1336,5   1336,7   9,8   99   1     Bemerkungen:   tc: vollständig gebrochene Körner   c: gebrochene Körner |                                           |                      |                |                |                                                      |                |
| 11,2/16,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                      |                | ·              |                                                      | -              |
| 11,2/16,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                      | 0.0            | 0.0            | 0                                                    | 0              |
| 1034,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22,4/31,5                                 | 697,3                |                | · ·            | -                                                    | _              |
| 16,0/22,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                      |                |                |                                                      |                |
| 16,0/22,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                      | 697,3          | 0,0            | 100                                                  | 0              |
| 16,0/22,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                      | M <sub>c</sub> | M <sub>r</sub> | C <sub>c</sub>                                       | C <sub>r</sub> |
| 11,2/16,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16 0/22 4                                 | 1034.0               |                |                | ~                                                    | _              |
| 11,2/16,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,0/22,4                                 | 1034,9               |                |                |                                                      |                |
| 11,2/16,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                      |                | 1              |                                                      |                |
| 11,2/16,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                      |                | ·              |                                                      |                |
| 1131,7   Einschließlich   Einschließlich   Mtr   Ctc   Ctr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                      |                |                |                                                      |                |
| M <sub>tc</sub>   M <sub>tr</sub>   C <sub>tc</sub>   C <sub>tr</sub>     1126,2   5,5   100   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11,2/16,0                                 | 1131,7               | •              | · ·            |                                                      | _              |
| 1126,2   5,5   100   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                      |                |                |                                                      |                |
| 1168,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                      |                |                |                                                      |                |
| 1168,3   Einschließlich   Einschließlich   Ctc   Ctr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                      | M <sub>c</sub> | $M_{r}$        | $C_c$                                                | $C_{r}$        |
| Semerkungen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0/44.0                                  | 4460.0               | 15,2           | 16,9           | 1                                                    | 1              |
| 5,0/8,0         1336,5         M <sub>c</sub> M <sub>r</sub> C <sub>c</sub> C <sub>r</sub> 1326,7         9,8         99         1           Bemerkungen:         tc: vollständig gebrochene Körner         c: gebrochene Körner         22,4         98         2           M <sub>c</sub> M <sub>r</sub> C <sub>c</sub> C <sub>r</sub> C <sub>r</sub> Einschließlich M <sub>tc</sub> Einschließlich C <sub>tc</sub> Einschließlich C <sub>tr</sub> Einschließlich C <sub>tr</sub> 1326,7         9,8         99         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8,0/11,∠                                  | 1108,3               |                |                |                                                      |                |
| 1336,5   M <sub>c</sub> M <sub>r</sub> C <sub>c</sub> C <sub>r</sub>   17,3 7,0 1 1 1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                      |                |                |                                                      |                |
| 5,0/8,0       1336,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | <u> </u>             | 1145,9         | 22,4           | 98                                                   | 2              |
| Einschließlich Einschließlich Einschließlich Einschließlich Ctr Ctr 1326,7 9,8 99 1  Bemerkungen: tc: vollständig gebrochene Körner c: gebrochene Körner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                      |                |                |                                                      |                |
| Bemerkungen: Linschließlich M <sub>tc</sub> M <sub>tr</sub> C <sub>tc</sub> C <sub>tr</sub> 1326,7 9,8 99 1  Einschließlich M <sub>tr</sub> C <sub>tc</sub> C <sub>tr</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.0/8.0                                   | 1336.5               |                |                | =                                                    |                |
| Bemerkungen: tc: vollständig gebrochene Körner c: gebrochene Körner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | 1 2 3 3,5            |                |                |                                                      |                |
| Bemerkungen: tc: vollständig gebrochene Körner c: gebrochene Körner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                      |                |                |                                                      |                |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remerkungen:                              | tc: vollständig gebr |                |                |                                                      | ı              |
| tr: vollständig gerundete Körner r: gerundete Körner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | zomorkangen.                              |                      |                | -              |                                                      | •              |

| <u> </u>        | WESTFÄLISCHE<br>WILHELMS-UNIVE<br>MÜNSTER | RSITÄT                            | Abteilung                         | Geologie und Pa<br>für Angewandte<br>Dr. Patricia Gö | Geologie                          |
|-----------------|-------------------------------------------|-----------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------|
| Bestimmung      | des Anteils an                            | gebrochenen<br>gem. DIN E         | _                                 | oben Gestein                                         | skörnungen                        |
| Material:       | HKS 0/45                                  |                                   | Laborant:                         | Kaul                                                 |                                   |
| Bodenart:       | G, fs', gs'                               |                                   | Datum:                            | 10.03.2008                                           |                                   |
| Entnahmestelle: | Geländer der Firr                         | na Stratiebo                      |                                   |                                                      |                                   |
| Probennehmer:   | Starke                                    |                                   | 1                                 |                                                      |                                   |
| Art der Entn.:  | Haufwerksbeprob                           | oung                              | 1                                 |                                                      |                                   |
| Kornklasse<br>g | Masse M <sub>1</sub>                      |                                   | M <sub>(c, r, tc, tr)</sub>       | Zahl ge                                              | nächste ganze<br>erundet<br>%     |
|                 |                                           | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                       | C <sub>r</sub>                    |
| 31,5/45,0       | 1400,0                                    | 0,0                               | 0,0                               | 0                                                    | 0                                 |
| 31,3/43,0       | 1400,0                                    | Einschließlich $M_{tc}$           | Einschließlich<br>M <sub>tr</sub> | Einschließlich<br>C <sub>tc</sub>                    | Einschließlich $C_{\mathrm{tr}}$  |
|                 |                                           | 1400,0                            | 0,0                               | 100                                                  | 0                                 |
|                 |                                           | M <sub>c</sub>                    | $M_{r}$                           | C <sub>c</sub>                                       | C <sub>r</sub>                    |
| 22,4/31,5       | 1431,5                                    | 24,3                              | 0,0                               | 2                                                    | 0                                 |
| 22,4/31,3       | 1431,3                                    | Einschließlich                    | Einschließlich                    | Einschließlich                                       | Einschließlich                    |
|                 |                                           | M <sub>tc</sub>                   | M <sub>tr</sub>                   | C <sub>tc</sub>                                      | C <sub>tr</sub>                   |
|                 |                                           | 1431,5<br>M <sub>c</sub>          | 0,0                               | 100<br>C₅                                            | 0<br>C <sub>r</sub>               |
|                 |                                           |                                   | M <sub>r</sub>                    |                                                      | C <sub>r</sub>                    |
| 16,0/22,4       | 1075,3                                    | 28,2                              | 0,0                               | 3                                                    | 0                                 |
| , ,             | ,                                         | Einschließlich<br>M <sub>tc</sub> | Einschließlich<br>M <sub>tr</sub> | Einschließlich $C_{tc}$                              | Einschließlich<br>C <sub>tr</sub> |
|                 |                                           | 1075,3                            | 0,0                               | 100                                                  | 0                                 |
|                 |                                           | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                       | C <sub>r</sub>                    |
| 44.0/40.0       | 050.0                                     | 11,3                              | 0,0                               | 1                                                    | 0                                 |
| 11,2/16,0       | 859,2                                     | Einschließlich<br>M <sub>tc</sub> | Einschließlich<br>M <sub>tr</sub> | Einschließlich<br>C <sub>tc</sub>                    | Einschließlich $C_{tr}$           |
|                 |                                           | 854,7                             | 4,5                               | 99                                                   | 1                                 |
|                 |                                           | M <sub>c</sub>                    | M <sub>r</sub>                    | $C_{c}$                                              | C <sub>r</sub>                    |
| 8,0/11,2        | 612,9                                     | 3,5                               | 0,0                               | 1                                                    | 0                                 |
| 0,0/11,2        | 012,9                                     | Einschließlich                    | Einschließlich                    | Einschließlich                                       | Einschließlich                    |
|                 |                                           | M <sub>tc</sub><br>612,9          | M <sub>tr</sub>                   | C <sub>tc</sub>                                      | C <sub>tr</sub>                   |
|                 |                                           | M <sub>c</sub>                    | 0,0<br>M <sub>r</sub>             | 100<br>C <sub>c</sub>                                | C <sub>r</sub>                    |
|                 |                                           | 0,9                               | 0,0                               | 0                                                    | 0                                 |
| 5,0/8,0         | 400,0                                     | Einschließlich                    | Einschließlich                    | Einschließlich                                       | Einschließlich                    |
|                 |                                           | M <sub>tc</sub>                   | M <sub>tr</sub>                   | C <sub>tc</sub>                                      | C <sub>tr</sub>                   |
|                 |                                           | 399,6                             | 0,4                               | 100                                                  | 0                                 |
| Bemerkungen:    | tc: vollständig gebr                      |                                   | c: gebrochene K                   | örner                                                |                                   |
|                 | tr: vollständig gerur                     | ndete Körner                      | r: gerundete Körr                 | ner                                                  |                                   |

|                 | WESTFÄLISCHE WILHELMS-UNIVI MÜNSTER | ERSITÄT                           | Abteilung                         | Geologie und Pa<br>für Angewandte<br>Dr. Patricia Gö | Geologie                          |
|-----------------|-------------------------------------|-----------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------|
| Bestimmung      | des Anteils an                      | gebrochenen<br>gem. DIN E         | _                                 | oben Gestein                                         | skörnungen                        |
| Material:       | 0/32 rot/grün                       |                                   | Laborant:                         | Kaul                                                 |                                   |
| Bodenart:       | mG,gg,fs',ms',gs'                   | ,fg'                              | Datum:                            | 09.07.2008                                           |                                   |
| Entnahmestelle: |                                     |                                   |                                   | •                                                    |                                   |
| Probennehmer:   | Starke                              |                                   | 1                                 |                                                      |                                   |
| Art der Entn.:  |                                     |                                   | 1                                 |                                                      |                                   |
| Kornklasse<br>g | Masse $M_1$                         |                                   | M <sub>(c, r, tc, tr)</sub>       | Zahl ge                                              | nächste ganze<br>erundet<br>6     |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                       | C <sub>r</sub>                    |
| 31,5/45,0       | 305,1                               | 0,0                               | 0,0                               | 0                                                    | 0                                 |
| 31,5/43,0       | 303,1                               | Einschließlich<br>M <sub>tc</sub> | Einschließlich<br>M <sub>tr</sub> | Einschließlich $C_{tc}$                              | Einschließlich<br>C <sub>tr</sub> |
|                 |                                     | 305,1                             | 0,0                               | 100                                                  | 0                                 |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                       | C <sub>r</sub>                    |
| 22,4/31,5       | 877,9                               | 107,9                             | 0,0                               | 12                                                   | 0                                 |
| 22,4/31,3       | 677,9                               | Einschließlich                    | Einschließlich                    | Einschließlich                                       | Einschließlich                    |
|                 |                                     | M <sub>tc</sub>                   | M <sub>tr</sub>                   | C <sub>tc</sub>                                      | C <sub>tr</sub>                   |
|                 |                                     | 877,9                             | 0,0                               | 100                                                  | 0                                 |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                       | C <sub>r</sub>                    |
| 16,0/22,4       | 1936,0                              | 212,9                             | 0,0                               | 11                                                   | 0                                 |
| ,, .            |                                     | Einschließlich<br>M <sub>tc</sub> | Einschließlich<br>M <sub>tr</sub> | Einschließlich $C_{tc}$                              | Einschließlich<br>C <sub>tr</sub> |
|                 |                                     | 1936.0                            | 0,0                               | 100                                                  | O tr                              |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                       | C <sub>r</sub>                    |
| 44.0440.0       | 4000 -                              | 65,5                              | 0,0                               | 5                                                    | 0                                 |
| 11,2/16,0       | 1399,7                              | Einschließlich<br>M <sub>tc</sub> | Einschließlich<br>M <sub>tr</sub> | Einschließlich<br>C <sub>tc</sub>                    | Einschließlich<br>C <sub>tr</sub> |
|                 |                                     | 1399,7                            | 0,0                               | 100                                                  | 0                                 |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                    | $C_{c}$                                              | C <sub>r</sub>                    |
| 8,0/11,2        | 674,0                               | 45,6                              | 0,0                               | 7                                                    | 0                                 |
| 0,0/11,2        | 074,0                               | Einschließlich                    | Einschließlich                    | Einschließlich                                       | Einschließlich                    |
|                 |                                     | M <sub>tc</sub> 674,0             | 0,0                               | C <sub>tc</sub>                                      | C <sub>tr</sub>                   |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                       | C <sub>r</sub>                    |
|                 |                                     | 46,3                              | 0,0                               | 6                                                    | 0                                 |
| 5,0/8,0         | 840,8                               | Einschließlich                    | Einschließlich                    | Einschließlich                                       | Einschließlich                    |
|                 |                                     | $M_{tc}$                          | $M_{tr}$                          | $C_{tc}$                                             | $C_tr$                            |
|                 |                                     | 794,5                             | 0,0                               | 94                                                   | 0                                 |
| Bemerkungen:    | tc: vollständig gebr                |                                   | c: gebrochene K                   |                                                      |                                   |
|                 | tr: vollständig gerui               | ndete Körner                      | r: gerundete Körı                 | ner                                                  |                                   |

| <u></u> =-      | Westfälische<br>Wilhelms-Unive<br>Münster | RSITÄT                    | Abteilung                         | Geologie und Pa<br>für Angewandte<br>) Dr. Patricia Gö | Geologie                      |
|-----------------|-------------------------------------------|---------------------------|-----------------------------------|--------------------------------------------------------|-------------------------------|
| Bestimmung      | des Anteils an                            | gebrochenen<br>gem. DIN E | _                                 | oben Gestein                                           | skörnungen                    |
| Material:       | 0/32 grün oben                            |                           | Laborant:                         | Kaul                                                   |                               |
| Bodenart:       | G,fs',ms',gs'                             |                           | Datum:                            | 19.06.2008                                             |                               |
| Entnahmestelle: |                                           |                           |                                   | •                                                      |                               |
| Probennehmer:   | Starke                                    |                           |                                   |                                                        |                               |
| Art der Entn.:  |                                           |                           | 1                                 |                                                        |                               |
| Kornklasse<br>g | Masse $M_1$                               | Masse i                   | M <sub>(c, r, tc, tr)</sub>       | Zahl ge                                                | nächste ganze<br>erundet<br>6 |
|                 |                                           | M <sub>c</sub>            | M <sub>r</sub>                    | C <sub>c</sub>                                         | $C_{r}$                       |
| 24 5/45 0       | 144 5                                     | 0,0                       | 0,0                               | 0                                                      | 0                             |
| 31,5/45,0       | 144,5                                     | Einschließlich            | Einschließlich                    | Einschließlich                                         | Einschließlich                |
|                 |                                           | M <sub>tc</sub>           | M <sub>tr</sub>                   | C <sub>tc</sub>                                        | C <sub>tr</sub>               |
|                 |                                           | 144,5                     | 0,0                               | 100                                                    | 0                             |
|                 |                                           | M <sub>c</sub>            | M <sub>r</sub>                    | C <sub>c</sub>                                         | C <sub>r</sub>                |
| 22,4/31,5       | 648,1                                     | 0,0                       | 0,0                               | 0                                                      | 0                             |
| 22,,0           | 0.0,.                                     | Einschließlich            | Einschließlich                    | Einschließlich                                         | Einschließlich                |
|                 |                                           | M <sub>tc</sub> 648,1     | 0,0                               | C <sub>tc</sub>                                        | C <sub>tr</sub>               |
|                 |                                           | M <sub>c</sub>            | M <sub>r</sub>                    | C <sub>c</sub>                                         | C <sub>r</sub>                |
|                 |                                           |                           |                                   | 6                                                      | 0                             |
| 16,0/22,4       | 1804,5                                    | 101,1<br>Einschließlich   | 0,0<br>Einschließlich             | Einschließlich                                         | Einschließlich                |
|                 |                                           | M <sub>tc</sub>           | M <sub>tr</sub>                   | C <sub>tc</sub>                                        | C <sub>tr</sub>               |
|                 |                                           | 1804,5                    | 0,0                               | 100                                                    | 0                             |
|                 |                                           | M <sub>c</sub>            | $M_r$                             | $C_c$                                                  | C <sub>r</sub>                |
| 44.0/40.0       | 4400.5                                    | 139,6                     | 3,2                               | 10                                                     | 0                             |
| 11,2/16,0       | 1402,5                                    | Einschließlich            | Einschließlich                    | Einschließlich                                         | Einschließlich                |
|                 |                                           | M <sub>tc</sub>           | M <sub>tr</sub>                   | C <sub>tc</sub>                                        | C <sub>tr</sub>               |
|                 |                                           | 1399,3                    | 3,2                               | 100                                                    | 0                             |
|                 |                                           | M <sub>c</sub>            | M <sub>r</sub>                    | C <sub>c</sub>                                         | C <sub>r</sub>                |
| 8,0/11,2        | 493,1                                     | 53,7                      | 0,0                               | 11                                                     | 0                             |
| ,,,,,           | 100, 1                                    | Einschließlich            | Einschließlich<br>M <sub>tr</sub> | Einschließlich                                         | Einschließlich                |
|                 |                                           | M <sub>tc</sub><br>493,1  | 0,0                               | C <sub>tc</sub>                                        | C <sub>tr</sub>               |
|                 |                                           | M <sub>c</sub>            | M <sub>r</sub>                    | C <sub>c</sub>                                         | C <sub>r</sub>                |
|                 |                                           | 140,3                     | 0,0                               | 9                                                      | 0                             |
| 5,0/8,0         | 1552,9                                    | Einschließlich            | Einschließlich                    | Einschließlich                                         | Einschließlich                |
|                 |                                           | M <sub>tc</sub>           | $M_{tr}$                          | $C_{tc}$                                               | $C_{tr}$                      |
|                 |                                           | 1552,9                    | 0,0                               | 100                                                    | 0                             |
| Bemerkungen:    | tc: vollständig gebro                     |                           | c: gebrochene K                   |                                                        |                               |
|                 | tr: vollständig gerur                     | ndete Körner              | r: gerundete Körr                 | ner                                                    |                               |

|                 | WESTFÄLISCHE WILHELMS-UNIVE MÜNSTER | ERSITÄT                           | Abteilung                         | Geologie und Pa<br>für Angewandte<br>DDr. Patricia Gö | Geologie                          |
|-----------------|-------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------------------------|-----------------------------------|
| Bestimmung      | des Anteils an                      | gebrochenen<br>gem. DIN E         | _                                 | oben Gestein                                          | skörnungen                        |
| Material:       | 0/32 rot unten                      |                                   | Laborant:                         | Kaul                                                  |                                   |
| Bodenart:       | G,fs',ms',gs'                       |                                   | Datum:                            | 05.11.2008                                            |                                   |
| Entnahmestelle: |                                     |                                   |                                   | •                                                     |                                   |
| Probennehmer:   | Starke                              |                                   | 1                                 |                                                       |                                   |
| Art der Entn.:  |                                     |                                   | 1                                 |                                                       |                                   |
| Kornklasse<br>g | Masse $M_1$                         |                                   | M <sub>(c, r, tc, tr)</sub>       | Zahl ge                                               | nächste ganze<br>erundet<br>%     |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                        | C <sub>r</sub>                    |
| 31,5/45,0       | 419,5                               | 0,0                               | 0,0                               | 0                                                     | 0                                 |
| 31,5/43,0       | 419,5                               | Einschließlich<br>M <sub>tc</sub> | Einschließlich<br>M <sub>tr</sub> | Einschließlich<br>C <sub>tc</sub>                     | Einschließlich $C_{\mathrm{tr}}$  |
|                 |                                     | 419,5                             | 0,0                               | 100                                                   | 0                                 |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                        | C <sub>r</sub>                    |
| 22,4/31,5       | 772,3                               | 69,2                              | 0,0                               | 9                                                     | 0                                 |
| 22,4/31,3       | 112,5                               | Einschließlich                    | Einschließlich                    | Einschließlich                                        | Einschließlich                    |
|                 |                                     | M <sub>tc</sub>                   | M <sub>tr</sub>                   | C <sub>tc</sub>                                       | C <sub>tr</sub>                   |
|                 |                                     | 772,3                             | 0,0                               | 100                                                   | 0                                 |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                        | C <sub>r</sub>                    |
| 16,0/22,4       | 1845,6                              | 87,3                              | 0,0                               | 5                                                     | 0                                 |
| , ,             | Í                                   | Einschließlich<br>M <sub>tc</sub> | Einschließlich<br>M <sub>tr</sub> | Einschließlich $C_{tc}$                               | Einschließlich<br>C <sub>tr</sub> |
|                 |                                     | 1845,6                            | 0,0                               | 100                                                   | 0                                 |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                        | C <sub>r</sub>                    |
| 44.0440.0       | 000.0                               | 86,2                              | 0,0                               | 9                                                     | 0                                 |
| 11,2/16,0       | 983,9                               | Einschließlich<br>M <sub>tc</sub> | Einschließlich<br>M <sub>tr</sub> | Einschließlich<br>C <sub>tc</sub>                     | Einschließlich<br>C <sub>tr</sub> |
|                 |                                     | 983,9                             | 0,0                               | 100                                                   | 0                                 |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                        | C <sub>r</sub>                    |
| 8,0/11,2        | 797,5                               | 41,2                              | 1,8                               | 5                                                     | 0                                 |
| 0,0/11,2        | 191,5                               | Einschließlich                    | Einschließlich                    | Einschließlich                                        | Einschließlich                    |
|                 |                                     | M <sub>tc</sub> 795,7             | M <sub>tr</sub> 1,8               | C <sub>tc</sub>                                       | C <sub>tr</sub>                   |
|                 |                                     | M <sub>c</sub>                    | M <sub>r</sub>                    | C <sub>c</sub>                                        | C <sub>r</sub>                    |
|                 |                                     | 116,6                             | 2,9                               | 10                                                    | 0                                 |
| 5,0/8,0         | 1216,1                              | Einschließlich                    | Einschließlich                    | Einschließlich                                        | Einschließlich                    |
|                 |                                     | $M_tc$                            | $M_{tr}$                          | $C_tc$                                                | C <sub>tr</sub>                   |
|                 |                                     | 1213,2                            | 2,9                               | 100                                                   | 0                                 |
| Bemerkungen:    | tc: vollständig gebr                |                                   | c: gebrochene K                   |                                                       |                                   |
|                 | tr: vollständig gerur               | ndete Körner                      | r: gerundete Körı                 | ner                                                   |                                   |

| MICHST                           | ÄLISCHE<br>LMS-UNIVERSITÄT<br>FER            |        | ut für Geolog<br>eilung für An<br>PD Dr. P | •       | ontologie<br>Seologie | Anlage:<br>zu: |
|----------------------------------|----------------------------------------------|--------|--------------------------------------------|---------|-----------------------|----------------|
| K                                | Korndichte - Kapill                          | arpykn | ometer DII                                 | N 18124 |                       |                |
| Probenbezeichnung:               | Tragschicht NL                               |        | Tiefe:                                     | -       | m                     | Laborant:      |
| Projekt Nr.:                     |                                              | Α      | rt der Entn.:                              | Haufwei | rksprobe              | Wesche         |
| Entnahmestelle:                  |                                              |        | Entn. am.                                  |         |                       |                |
| Probennehmer:                    | Starke, Phillip                              |        | uchsbeginn:                                | 19.02   | 2.2009                |                |
| Bodenart:                        |                                              | Versu  | ichsende:                                  |         |                       |                |
| Probe Nr. / Pyknometer Nr.:      |                                              |        | 273                                        | 271     | 285                   |                |
| Masse leeres Pyknometer          | $m_{p}$                                      | g      | 40,1                                       | 40,4    | 40,5                  |                |
| Masse der trockenen Probe        | $m_{d}$                                      | g      | 20,4                                       | 20,6    | 20,7                  |                |
| Masse Pyknometer+Probe           | $m_1 = m_p + m_d$                            | g      | 60,5                                       | 61,0    | 61,2                  |                |
| M. Pyknom.+Probe+Wasser          | $m_2 = m_p + m_d + m_{wT}$                   | g      | 152,5                                      | 152,8   | 153,0                 |                |
| Temperatur                       | Т                                            | °C     | 21,0                                       | 21,5    | 21,0                  |                |
| Dichte Wasser bei T              | $ ho_{\scriptscriptstyle WT}$                | g/cm³  | 0,99802                                    | 0,99791 | 0,99802               |                |
| Masse Wasser bei T               | $m_{wT} = m_2 - m_1$                         | g      | 92,00                                      | 91,80   | 91,80                 |                |
| Volumen Wasser im Pyknometer     | $V_{wt} = m_{wT} / \rho_{wT}$                | cm³    | 92,18                                      | 91,99   | 91,98                 |                |
| Volumen Pyknometer               | $V_{pT}$                                     | cm³    | 100,00                                     | 100,00  | 100,00                |                |
| Volumen der Kornphase            | $V_k = V_{pT} - V_{wT}$                      | cm³    | 7,82                                       | 8,01    | 8,02                  |                |
| Korndichte                       | $\rho_s = m_d / V_k$                         | g/cm³  | 2,61                                       | 2,57    | 2,58                  |                |
| Kondichte                        | $ ho_{	extsf{s}}$                            | g/cm³  |                                            | 2,59    | •                     |                |
| Porenanteil                      | $n=1-\left(\rho_{\rm d}/\rho_{\rm s}\right)$ | %      |                                            |         |                       |                |
| Anteil der wassergefüllten Poren | $n_{\rm w} = \rho_{\rm d}/\rho_{\rm w} *w$   | %      |                                            |         |                       |                |
| Luftporenanteil                  | $n_a = n - n_w$                              | %      |                                            |         |                       |                |
| Sättigungszahl                   | $S_r = n/n_w$                                | 1      |                                            |         |                       |                |
| Porenzahl                        | $e = (\rho_{s}/\rho_{d}) - 1$                | %      |                                            |         |                       |                |

| WILH                                   | TFÄLISCHE<br>IELMS-UNIVERSITÄT<br>STER     |        | ut für Geolog<br>eilung für Ar<br>PD Dr. F                                                                      | •                                                                                                          | Geologie | Anlage:<br>zu: |
|----------------------------------------|--------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------|----------------|
|                                        | Korndichte - Kapill                        | arpykn | ometer DII                                                                                                      | N 18124                                                                                                    |          |                |
| Probenbezeichnung:                     | Dränsand NL                                |        | Tiefe:                                                                                                          | -                                                                                                          | m        | Laborant:      |
| Projekt Nr.:                           |                                            | Α      | rt der Entn.:                                                                                                   | Haufwe                                                                                                     | rksprobe | Wesche         |
| Entnahmestelle:                        |                                            |        | Entn. am.                                                                                                       |                                                                                                            |          | -              |
| Probennehmer:                          | Starke, Phillip                            |        | uchsbeginn:                                                                                                     | 03.12                                                                                                      | 2.2008   |                |
| Bodenart:                              |                                            | Versu  | ichsende:                                                                                                       |                                                                                                            |          |                |
| Probe Nr. / Pyknometer Nr.:            |                                            |        | 5                                                                                                               | 273                                                                                                        | 272      |                |
| Masse leeres Pyknometer                | m <sub>p</sub>                             | g      | 45,4                                                                                                            | 40,0                                                                                                       | 39,9     |                |
| Masse der trockenen Probe              | $m_{d}$                                    | g      | 20,9                                                                                                            | 20,4                                                                                                       | 20,8     |                |
| Masse Pyknometer+Probe                 | $m_1 = m_p + m_d$                          | g      | 66,3                                                                                                            | 60,4                                                                                                       | 60,7     |                |
| M. Pyknom.+Probe+Wasser                | $m_2 = m_p + m_d + m_{wT}$                 | g      | 158,1                                                                                                           | 152,4                                                                                                      | 152,6    |                |
| Temperatur                             | Т                                          | °C     | 19,7                                                                                                            | 19,3                                                                                                       | 20,7     |                |
| Dichte Wasser bei T                    | ho wT                                      | g/cm³  | 0,99833                                                                                                         | 0,99833                                                                                                    | 0,99813  |                |
| Masse Wasser bei T                     | $m_{wT} = m_2 - m_1$                       | g      | 91,80                                                                                                           | 92,00                                                                                                      | 91,90    |                |
| Volumen Wasser im Pyknometer           | $V_{wt} = m_{wT} / \rho_{wT}$              | cm³    | 91,95                                                                                                           | 92,15                                                                                                      | 92,07    |                |
| Volumen Pyknometer                     | $V_{\rho T}$                               | cm³    | 100,00                                                                                                          | 100,00                                                                                                     | 100,00   |                |
| Volumen der Kornphase                  | $V_k = V_{pT} - V_{wT}$                    | cm³    | 8,05                                                                                                            | 7,85                                                                                                       | 7,93     |                |
| Korndichte                             | $\rho_s = m_d / V_k$                       | g/cm³  | 2,60                                                                                                            | 2,60                                                                                                       | 2,62     |                |
| Kondichte                              | $ ho_{s}$                                  | g/cm³  | •                                                                                                               | 2,61                                                                                                       | •        | •              |
| Porenanteil                            | $n = 1 - (\rho_d / \rho_s)$                | %      |                                                                                                                 |                                                                                                            |          |                |
| Anteil der wassergefüllten Poren       | $n_{\rm w} = \rho_{\rm d}/\rho_{\rm w} *w$ | %      |                                                                                                                 |                                                                                                            |          |                |
| Luftporenanteil                        | $n_a = n - n_w$                            | %      |                                                                                                                 |                                                                                                            |          |                |
| Sättigungszahl                         | $S_r = n/n_w$                              | 1      |                                                                                                                 |                                                                                                            |          |                |
| Porenzahl                              | $e = (\rho_{s}/\rho_{d}) - 1$              | %      |                                                                                                                 |                                                                                                            |          |                |
| Bemerkungen: Versuch mit ofentrockener | Probe                                      | Dichte | e des Wassers<br>T [°C]<br>18,0<br>18,5<br>19,0<br>19,5<br>20,0<br>20,5<br>21,0<br>21,5<br>22,0<br>22,5<br>23,0 | bei T $\rho_{WT}$ [g/cm³]  0,99862 0,99853 0,99843 0,99823 0,99813 0,99802 0,99791 0,99780 0,99768 0,99757 |          |                |

|                                  | FÄLISCHE<br>ELMS-UNIVERSITÄT<br>ITER         |        | ut für Geolo<br>eilung für Ar<br>PD Dr. F | -       | Seologie | Anlage:<br>zu: |
|----------------------------------|----------------------------------------------|--------|-------------------------------------------|---------|----------|----------------|
|                                  | Korndichte - Kapill                          | arpykn | ometer DI                                 | N 18124 |          | 1              |
| Probenbezeichnung:               | Feld 4 unterer Bereich TL<br>- SoB           |        | Tiefe:                                    | -       | m        | Laborant:      |
| Projekt Nr.:                     |                                              | А      | rt der Entn.:                             | Haufwei | ksprobe  | Wesche         |
| Entnahmestelle:                  | Ot I DI III                                  | 1/     | Entn. am.                                 | 40.00   |          | 1              |
| Probennehmer:  Bodenart:         | Starke, Phillip                              |        | uchsbeginn:<br>uchsende:                  | 19.02   | 2009     |                |
|                                  |                                              | Verse  | icriseriue.                               |         |          |                |
| Probe Nr. / Pyknometer Nr.:      |                                              |        | 285                                       | 271     | 272      |                |
| Masse leeres Pyknometer          | <i>m</i> <sub>p</sub>                        | g      | 40,4                                      | 40,3    | 39,9     |                |
| Masse der trockenen Probe        | $m_{d}$                                      | g      | 20,4                                      | 20,9    | 21,0     |                |
| Masse Pyknometer+Probe           | $m_1 = m_p + m_d$                            | g      | 60,8                                      | 61,2    | 60,9     |                |
| M. Pyknom.+Probe+Wasser          | $m_2 = m_p + m_d + m_{wT}$                   | g      | 153,0                                     | 153,2   | 152,8    |                |
| Temperatur                       | Т                                            | °C     | 19,8                                      | 19,0    | 21,2     |                |
| Dichte Wasser bei T              | $ ho_{\scriptscriptstyle{WT}}$               | g/cm³  | 0,99823                                   | 0,99843 | 0,99802  |                |
| Masse Wasser bei T               | $m_{wT} = m_2 - m_1$                         | g      | 92,20                                     | 92,00   | 91,90    |                |
| Volumen Wasser im Pyknometer     | $V_{wt} = m_{wT} / \rho_{wT}$                | cm³    | 92,36                                     | 92,14   | 92,08    |                |
| Volumen Pyknometer               | $V_{\rho T}$                                 | cm³    | 100,00                                    | 100,00  | 100,00   |                |
| Volumen der Kornphase            | $V_k = V_{\rho T} - V_{wT}$                  | cm³    | 7,64                                      | 7,86    | 7,92     |                |
| Korndichte                       | $\rho_s = m_d / V_k$                         | g/cm³  | 2,67                                      | 2,66    | 2,65     |                |
| Kondichte                        | $ ho_s$                                      | g/cm³  |                                           | 2,66    |          |                |
| Porenanteil                      | $n=1-\left(\rho_{\rm d}/\rho_{\rm s}\right)$ | %      |                                           |         |          |                |
| Anteil der wassergefüllten Poren | $n_{\rm w} = \rho_{\rm d}/\rho_{\rm w} *w$   | %      |                                           |         |          |                |
| Luftporenanteil                  | $n_a = n - n_w$                              | %      |                                           |         |          |                |
| Sättigungszahl                   | $S_r = n/n_w$                                | 1      |                                           |         |          |                |
| Porenzahl                        | $e = (\rho_{s}/\rho_{d}) - 1$                | %      |                                           |         |          |                |

| Westfälische Wilhelms-Universität Münster                               |                                            |        | ut für Geolo<br>eilung für Ar<br>PD Dr. F                                                                       | •                                                                                                          | Seologie | Anlage:<br>zu: |
|-------------------------------------------------------------------------|--------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------|----------------|
|                                                                         | Korndichte - Kapill                        | arpykn | ometer DI                                                                                                       | N 18124                                                                                                    |          |                |
| Probenbezeichnung:                                                      | Feld 5 oberer Bereich TL -<br>SoB          |        | Tiefe:                                                                                                          | -                                                                                                          | m        | Laborant:      |
| Projekt Nr.:                                                            |                                            | Α      | rt der Entn.:                                                                                                   | Haufwei                                                                                                    | rksprobe | Wesche         |
| Entnahmestelle:                                                         |                                            |        | Entn. am.                                                                                                       |                                                                                                            |          | _              |
| Probennehmer:                                                           | Starke, Phillip                            |        | uchsbeginn:                                                                                                     | 10.02                                                                                                      | 2.2009   | _              |
| Bodenart:                                                               |                                            | Versu  | ıchsende:                                                                                                       |                                                                                                            |          |                |
| Probe Nr. / Pyknometer Nr.:                                             |                                            |        | 272                                                                                                             | 273                                                                                                        | 289      |                |
| Masse leeres Pyknometer                                                 | $m_{p}$                                    | g      | 39,9                                                                                                            | 40,1                                                                                                       | 40,8     |                |
| Masse der trockenen Probe                                               | $m_{ m d}$                                 | g      | 20,7                                                                                                            | 20,5                                                                                                       | 20,4     |                |
| Masse Pyknometer+Probe                                                  | $m_1 = m_p + m_d$                          | g      | 60,6                                                                                                            | 60,6                                                                                                       | 61,2     |                |
| M. Pyknom.+Probe+Wasser                                                 | $m_2 = m_p + m_d + m_{wT}$                 | g      | 152,9                                                                                                           | 152,9                                                                                                      | 153,4    |                |
| Temperatur                                                              | Т                                          | °C     | 20,8                                                                                                            | 20,2                                                                                                       | 21,0     |                |
| Dichte Wasser bei T                                                     | $ ho_{\scriptscriptstyle{WT}}$             | g/cm³  | 0,99802                                                                                                         | 0,99823                                                                                                    | 0,99802  |                |
| Masse Wasser bei T                                                      | $m_{wT} = m_2 - m_1$                       | g      | 92,30                                                                                                           | 92,30                                                                                                      | 92,20    |                |
| Volumen Wasser im Pyknometer                                            | $V_{wt} = m_{wT} / \rho_{wT}$              | cm³    | 92,48                                                                                                           | 92,46                                                                                                      | 92,38    |                |
| Volumen Pyknometer                                                      | $V_{ ho T}$                                | cm³    | 100,00                                                                                                          | 100,00                                                                                                     | 100,00   |                |
| Volumen der Kornphase                                                   | $V_k = V_{pT} - V_{wT}$                    | cm³    | 7,52                                                                                                            | 7,54                                                                                                       | 7,62     |                |
| Korndichte                                                              | $\rho_s = m_d / V_k$                       | g/cm³  | 2,75                                                                                                            | 2,72                                                                                                       | 2,68     |                |
| Kondichte                                                               | $ ho_{	extsf{s}}$                          | g/cm³  |                                                                                                                 | 2,72                                                                                                       |          |                |
| Porenanteil                                                             | $n = 1 - (\rho_d / \rho_s)$                | %      |                                                                                                                 |                                                                                                            |          |                |
| Anteil der wassergefüllten Poren                                        | $n_{\rm w} = \rho_{\rm d}/\rho_{\rm w} *w$ | %      |                                                                                                                 |                                                                                                            |          |                |
| Luftporenanteil                                                         | $n_a = n - n_w$                            | %      |                                                                                                                 |                                                                                                            |          |                |
| Sättigungszahl                                                          | $S_r = n/n_w$                              | 1      |                                                                                                                 |                                                                                                            |          |                |
| Porenzahl                                                               | $e = (\rho_{s}/\rho_{d}) - 1$              | %      |                                                                                                                 |                                                                                                            |          |                |
| Bemerkungen:<br>Bestimmung der Korndichte<br>1 / 4 mm Siebanteil (gewas |                                            | Dichte | e des Wassers<br>T [°C]<br>18,0<br>18,5<br>19,0<br>19,5<br>20,0<br>20,5<br>21,0<br>21,5<br>22,0<br>22,5<br>23,0 | bei T  pwt [g/cm³] 0,99862 0,99853 0,99843 0,99823 0,99813 0,99813 0,99810 0,99791 0,99780 0,99768 0,99757 |          |                |

| WILH                             | TFÄLISCHE<br>IELMS-UNIVERSITÄT<br>STER     |        | ut für Geolo<br>eilung für Ar<br>PD Dr. F                                                                       | -                                                                                                             | Geologie | Anlage:<br>zu: |
|----------------------------------|--------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------|----------------|
|                                  | Korndichte - Kapill                        | arpykn | ometer DI                                                                                                       | N 18124                                                                                                       |          |                |
| Probenbezeichnung:               | 0/32 rot/grün                              |        | Tiefe:                                                                                                          | -                                                                                                             | m        | Laborant:      |
| Projekt Nr.:                     |                                            | Α      | rt der Entn.:                                                                                                   | Haufwe                                                                                                        | rksprobe | Wesche         |
| Entnahmestelle:                  |                                            |        | Entn. am.                                                                                                       |                                                                                                               |          |                |
| Probennehmer:                    | Starke, Phillip                            |        | uchsbeginn:                                                                                                     | 19.02                                                                                                         | 2.2009   |                |
| Bodenart:                        |                                            | Versu  | ichsende:                                                                                                       |                                                                                                               |          |                |
| Probe Nr. / Pyknometer Nr.:      |                                            |        | 5                                                                                                               | 289                                                                                                           | 101      |                |
| Masse leeres Pyknometer          | $m_{p}$                                    | g      | 45,3                                                                                                            | 40,8                                                                                                          | 39,9     |                |
| Masse der trockenen Probe        | $m_{d}$                                    | g      | 20,3                                                                                                            | 20,4                                                                                                          | 20,9     |                |
| Masse Pyknometer+Probe           | $m_1 = m_p + m_d$                          | g      | 65,6                                                                                                            | 61,2                                                                                                          | 60,8     |                |
| M. Pyknom.+Probe+Wasser          | $m_2 = m_p + m_d + m_{wT}$                 | g      | 157,8                                                                                                           | 153,4                                                                                                         | 152,7    |                |
| Temperatur                       | Т                                          | °C     | 21,5                                                                                                            | 19,5                                                                                                          | 22,0     |                |
| Dichte Wasser bei T              | $ ho_{\scriptscriptstyle{WT}}$             | g/cm³  | 0,99791                                                                                                         | 0,99833                                                                                                       | 0,99780  |                |
| Masse Wasser bei T               | $m_{wT} = m_2 - m_1$                       | g      | 92,20                                                                                                           | 92,20                                                                                                         | 91,90    |                |
| Volumen Wasser im Pyknometer     | $V_{wt} = m_{wT} / \rho_{wT}$              | cm³    | 92,39                                                                                                           | 92,35                                                                                                         | 92,10    |                |
| Volumen Pyknometer               | $V_{\rho T}$                               | cm³    | 100,00                                                                                                          | 100,00                                                                                                        | 100,00   |                |
| Volumen der Kornphase            | $V_k = V_{pT} - V_{wT}$                    | cm³    | 7,61                                                                                                            | 7,65                                                                                                          | 7,90     |                |
| Korndichte                       | $\rho_s = m_d / V_k$                       | g/cm³  | 2,67                                                                                                            | 2,67                                                                                                          | 2,65     |                |
| Kondichte                        | $ ho_{s}$                                  | g/cm³  |                                                                                                                 | 2,67                                                                                                          |          |                |
| Porenanteil                      | $n = 1 - (\rho_d / \rho_s)$                | %      |                                                                                                                 |                                                                                                               |          |                |
| Anteil der wassergefüllten Poren | $n_{\rm w} = \rho_{\rm d}/\rho_{\rm w} *w$ | %      |                                                                                                                 |                                                                                                               |          |                |
| Luftporenanteil                  | $n_a = n - n_w$                            | %      |                                                                                                                 |                                                                                                               |          |                |
| Sättigungszahl                   | $S_r = n/n_w$                              | 1      |                                                                                                                 |                                                                                                               |          |                |
| Porenzahl                        | $e = (\rho_{s}/\rho_{d}) - 1$              | %      |                                                                                                                 |                                                                                                               |          |                |
| Bemerkungen:                     |                                            | Dicht  | e des Wassers<br>T [°C]<br>18,0<br>18,5<br>19,0<br>19,5<br>20,0<br>20,5<br>21,0<br>21,5<br>22,0<br>22,5<br>23,0 | bei T ρ <sub>wT</sub> [g/cm³] 0,99862 0,99853 0,99843 0,99823 0,99813 0,99802 0,99791 0,99780 0,99768 0,99757 |          |                |

| WILH                                                       | TFÄLISCHE<br>IELMS-UNIVERSITÄT<br>STER     |        | tut für Geolog<br>teilung für Ar<br>PD Dr. F                                                                    |                                                                                                            | Seologie | Anlage:<br>zu: |
|------------------------------------------------------------|--------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------|----------------|
|                                                            | Korndichte - Kapill                        | arpykn | ometer DI                                                                                                       | N 18124                                                                                                    |          |                |
| Probenbezeichnung:                                         | 0/32 grün oben                             |        | Tiefe:                                                                                                          | -                                                                                                          | m        | Laborant:      |
| Projekt Nr.:                                               |                                            | А      | rt der Entn.:                                                                                                   | Haufwei                                                                                                    | rksprobe | Wesche         |
| Entnahmestelle:                                            |                                            |        | Entn. am.                                                                                                       |                                                                                                            |          |                |
| Probennehmer:                                              | Starke, Phillip                            |        | uchsbeginn:                                                                                                     | 10.02                                                                                                      | 2.2009   | _              |
| Bodenart:                                                  |                                            | Versu  | uchsende:                                                                                                       |                                                                                                            |          |                |
| Probe Nr. / Pyknometer Nr.:                                |                                            |        | 271                                                                                                             | 101                                                                                                        | 296      |                |
| Masse leeres Pyknometer                                    | $m_{p}$                                    | g      | 40,4                                                                                                            | 39,9                                                                                                       | 41,1     |                |
| Masse der trockenen Probe                                  | $m_{ m d}$                                 | g      | 20,5                                                                                                            | 20,5                                                                                                       | 20,7     |                |
| Masse Pyknometer+Probe                                     | $m_1 = m_p + m_d$                          | g      | 60,9                                                                                                            | 60,4                                                                                                       | 61,8     |                |
| M. Pyknom.+Probe+Wasser                                    | $m_2 = m_p + m_d + m_{wT}$                 | g      | 152,9                                                                                                           | 152,4                                                                                                      | 153,8    |                |
| Temperatur                                                 | Т                                          | °C     | 20,2                                                                                                            | 20,0                                                                                                       | 19,6     |                |
| Dichte Wasser bei T                                        | $ ho_{\scriptscriptstyle{WT}}$             | g/cm³  | 0,99823                                                                                                         | 0,99823                                                                                                    | 0,99833  |                |
| Masse Wasser bei T                                         | $m_{wT} = m_2 - m_1$                       | g      | 92,00                                                                                                           | 92,00                                                                                                      | 92,00    |                |
| Volumen Wasser im Pyknometer                               | $V_{wt} = m_{wT} / \rho_{wT}$              | cm³    | 92,16                                                                                                           | 92,16                                                                                                      | 92,15    |                |
| Volumen Pyknometer                                         | $V_{pT}$                                   | cm³    | 100,00                                                                                                          | 100,00                                                                                                     | 100,00   |                |
| Volumen der Kornphase                                      | $V_k = V_{pT} - V_{wT}$                    | cm³    | 7,84                                                                                                            | 7,84                                                                                                       | 7,85     |                |
| Korndichte                                                 | $\rho_s = m_d / V_k$                       | g/cm³  | 2,62                                                                                                            | 2,62                                                                                                       | 2,64     |                |
| Kondichte                                                  | $ ho_{s}$                                  | g/cm³  |                                                                                                                 | 2,62                                                                                                       |          | •              |
| Porenanteil                                                | $n = 1 - (\rho_d / \rho_s)$                | %      |                                                                                                                 |                                                                                                            |          |                |
| Anteil der wassergefüllten Poren                           | $n_{\rm w} = \rho_{\rm d}/\rho_{\rm w} *w$ | %      |                                                                                                                 |                                                                                                            |          |                |
| Luftporenanteil                                            | $n_a = n - n_w$                            | %      |                                                                                                                 |                                                                                                            |          |                |
| Sättigungszahl                                             | $S_r = n/n_w$                              | 1      |                                                                                                                 |                                                                                                            |          |                |
| Porenzahl                                                  | $e = (\rho_{s}/\rho_{d}) - 1$              | %      |                                                                                                                 |                                                                                                            |          |                |
| Bemerkungen: Bestimmung der Korndichte 1 / 4 mm Siebanteil | e am                                       | Dicht  | e des Wassers<br>T [°C]<br>18,0<br>18,5<br>19,0<br>19,5<br>20,0<br>20,5<br>21,0<br>21,5<br>22,0<br>22,5<br>23,0 | bei T  pwt [g/cm³] 0,99862 0,99853 0,99843 0,99823 0,99813 0,99813 0,99810 0,99791 0,99780 0,99768 0,99757 |          |                |

| WILH                                                               | tfälische<br>ielms-Universität<br>ster     | Institut für Geologie und Paläontologie Abteilung für Angewandte Geologie PD Dr. Patricia Göbel |                                                                                                                 |                                                                                                                     |         |           |  |  |
|--------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------|-----------|--|--|
|                                                                    | Korndichte - Kapill                        | arpykn                                                                                          | ometer DI                                                                                                       | N 18124                                                                                                             |         |           |  |  |
| Probenbezeichnung:                                                 | 0/32 rot unten                             |                                                                                                 | Tiefe:                                                                                                          | -                                                                                                                   | m       | Laborant: |  |  |
| Projekt Nr.:                                                       |                                            | Α                                                                                               | Wesche                                                                                                          |                                                                                                                     |         |           |  |  |
| Entnahmestelle:                                                    |                                            |                                                                                                 | Entn. am.                                                                                                       |                                                                                                                     |         |           |  |  |
| Probennehmer:                                                      | Starke, Phillip                            |                                                                                                 | uchsbeginn:                                                                                                     | 10.02                                                                                                               | 2.2009  |           |  |  |
| Bodenart:                                                          |                                            | Versu                                                                                           | uchsende:                                                                                                       |                                                                                                                     |         |           |  |  |
| Probe Nr. / Pyknometer Nr.:                                        |                                            |                                                                                                 | 285                                                                                                             | 101                                                                                                                 | 271     |           |  |  |
| Masse leeres Pyknometer                                            | $m_{\mathrm{p}}$                           | g                                                                                               | 40,5                                                                                                            | 39,9                                                                                                                | 40,3    |           |  |  |
| Masse der trockenen Probe                                          | $m_{\mathrm{d}}$                           | g                                                                                               | 20,2                                                                                                            | 20,5                                                                                                                | 20,2    |           |  |  |
| Masse Pyknometer+Probe                                             | $m_1 = m_p + m_d$                          | g                                                                                               | 60,7                                                                                                            | 60,4                                                                                                                | 60,5    |           |  |  |
| M. Pyknom.+Probe+Wasser                                            | $m_2 = m_p + m_d + m_{wT}$                 | g                                                                                               | 152,9                                                                                                           | 152,4                                                                                                               | 152,6   |           |  |  |
| Temperatur                                                         | Т                                          | °C                                                                                              | 20,0                                                                                                            | 21,2                                                                                                                | 21,0    |           |  |  |
| Dichte Wasser bei T                                                | $ ho_{\scriptscriptstyle WT}$              | g/cm³                                                                                           | 0,99823                                                                                                         | 0,99802                                                                                                             | 0,99802 |           |  |  |
| Masse Wasser bei T                                                 | $m_{wT} = m_2 - m_1$                       | g                                                                                               | 92,20                                                                                                           | 92,00                                                                                                               | 92,10   |           |  |  |
| Volumen Wasser im Pyknometer                                       | $V_{wt} = m_{wT} / \rho_{wT}$              | cm³                                                                                             | 92,36                                                                                                           | 92,18                                                                                                               | 92,28   |           |  |  |
| Volumen Pyknometer                                                 | $V_{ ho T}$                                | cm³                                                                                             | 100,00                                                                                                          | 100,00                                                                                                              | 100,00  |           |  |  |
| Volumen der Kornphase                                              | $V_k = V_{\rho T} - V_{wT}$                | cm³                                                                                             | 7,64                                                                                                            | 7,82                                                                                                                | 7,72    |           |  |  |
| Korndichte                                                         | $\rho_s = m_d / V_k$                       | g/cm³                                                                                           | 2,65                                                                                                            | 2,62                                                                                                                | 2,62    |           |  |  |
| Kondichte                                                          | $ ho_{	extsf{s}}$                          | g/cm³                                                                                           |                                                                                                                 | 2,63                                                                                                                |         |           |  |  |
| Porenanteil                                                        | $n = 1 - (\rho_d / \rho_s)$                | %                                                                                               |                                                                                                                 |                                                                                                                     |         |           |  |  |
| Anteil der wassergefüllten Poren                                   | $n_{\rm w} = \rho_{\rm d}/\rho_{\rm w} *w$ | %                                                                                               |                                                                                                                 |                                                                                                                     |         |           |  |  |
| Luftporenanteil                                                    | $n_a = n - n_w$                            | %                                                                                               |                                                                                                                 |                                                                                                                     |         |           |  |  |
| Sättigungszahl                                                     | $S_r = n/n_w$                              | 1                                                                                               |                                                                                                                 |                                                                                                                     |         |           |  |  |
| Porenzahl                                                          | $e = (\rho_{s}/\rho_{d}) - 1$              | %                                                                                               |                                                                                                                 |                                                                                                                     |         |           |  |  |
| Bemerkungen:<br>Bestimmung der Korndicht<br>0,73 / 4 mm Siebanteil | e am                                       | Dicht                                                                                           | e des Wassers<br>T [°C]<br>18,0<br>18,5<br>19,0<br>19,5<br>20,0<br>20,5<br>21,0<br>21,5<br>22,0<br>22,5<br>23,0 | bei T $\rho_{WT}$ [g/cm³]  0,99862  0,99853  0,99843  0,99823  0,99813  0,99802  0,99791  0,99780  0,99768  0,99757 |         |           |  |  |

| WILH                             | tfälische<br>ielms-Universität<br>ster        | Institut für Geologie und Paläontologie Abteilung für Angewandte Geologie PD Dr. Patricia Göbel |                                                                                                                 |                                                                                                            |             |           |  |
|----------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------|-----------|--|
|                                  | Korndichte - Kapill                           | arpykn                                                                                          | ometer DII                                                                                                      | N 18124                                                                                                    |             |           |  |
| Probenbezeichnung:               | HKS 2/5 A                                     |                                                                                                 | Tiefe:                                                                                                          | -                                                                                                          | m           | Laborant: |  |
| Projekt Nr.:                     | -                                             | Α                                                                                               | rt der Entn.:                                                                                                   | Haufwer                                                                                                    | rksprobe    | Wesche    |  |
| Entnahmestelle:                  | Fa. Klostermann                               | Entn. am.                                                                                       |                                                                                                                 | 14.01.2008                                                                                                 |             |           |  |
| Probennehmer:                    | Starke, Phillip                               |                                                                                                 | uchsbeginn:<br>uchsende:                                                                                        |                                                                                                            | :20         | 1         |  |
| Bodenart:                        | Bodenart: fG, gs                              |                                                                                                 |                                                                                                                 | 12                                                                                                         | :00         |           |  |
|                                  | F                                             | Probe Nr.                                                                                       | 1                                                                                                               | 2                                                                                                          | 3           |           |  |
| Masse leeres Pyknometer          | $m_{\mathrm{p}}$                              | g                                                                                               | 48,36                                                                                                           | 39,85                                                                                                      | 48,30       |           |  |
| Masse der trockenen Probe        | $m_{\mathrm{d}}$                              | g                                                                                               | 20,29                                                                                                           | 20,74                                                                                                      | 20,58       |           |  |
| Masse Pyknometer+Probe           | $m_1 = m_p + m_d$                             | g                                                                                               | 68,65                                                                                                           | 60,59                                                                                                      | 68,88       |           |  |
| M. Pyknom.+Probe+Wasser          | $m_2 = m_p + m_d + m_{wT}$                    | g                                                                                               | 164,66                                                                                                          | 152,62                                                                                                     | 163,59      |           |  |
| Temperatur                       | Т                                             | °C                                                                                              | 20,6                                                                                                            | 20,7                                                                                                       | 20,7        |           |  |
| Dichte Wasser bei T              | ho wT                                         | g/cm³                                                                                           | 0,99813                                                                                                         | 0,99813                                                                                                    | 0,99813     |           |  |
| Masse Wasser bei T               | Masse Wasser bei T $m_{wT} = m_2 - m_1$       |                                                                                                 | 96,01                                                                                                           | 92,03                                                                                                      | 94,71       |           |  |
| Volumen Wasser im Pyknometer     | $V_{wt} = m_{wT} / \rho_{wT}$                 | cm³                                                                                             | 96,19                                                                                                           | 92,20                                                                                                      | 94,89       |           |  |
| Volumen Pyknometer               | $V_{ ho T}$                                   | cm³                                                                                             | 103,5                                                                                                           | 100,0                                                                                                      | 102,518     |           |  |
| Volumen der Kornphase            | $V_k = V_{\rho T} - V_{wT}$                   | cm³                                                                                             | 7,35                                                                                                            | 7,80                                                                                                       | 7,63        |           |  |
| Korndichte                       | $\rho_s = m_d / V_k$                          | g/cm³                                                                                           | 2,76                                                                                                            | 2,66                                                                                                       | 2,70        |           |  |
| Kondichte                        | $ ho_{	extsf{s}}$                             | g/cm³                                                                                           |                                                                                                                 | 2,71                                                                                                       |             |           |  |
| Porenanteil                      | $n = 1 - (\rho_d / \rho_s)$                   | %                                                                                               |                                                                                                                 |                                                                                                            |             |           |  |
| Anteil der wassergefüllten Poren | $n_{\rm w} = (\rho_{\rm d}/\rho_{\rm w}) * w$ | %                                                                                               |                                                                                                                 |                                                                                                            |             |           |  |
| Luftporenanteil                  | $n_a = n - n_w$                               | %                                                                                               |                                                                                                                 |                                                                                                            |             |           |  |
| Sättigungszahl                   | $S_r = n/n_w$                                 | 1                                                                                               |                                                                                                                 |                                                                                                            |             |           |  |
| Porenzahl                        | $e = (\rho_{s}/\rho_{d}) - 1$                 | %                                                                                               |                                                                                                                 |                                                                                                            |             |           |  |
| Bemerkungen:                     |                                               | Dicht                                                                                           | e des Wassers<br>T [°C]<br>18,0<br>18,5<br>19,0<br>19,5<br>20,0<br>20,5<br>21,0<br>21,5<br>22,0<br>22,5<br>23,0 | bei T  pwt [g/cm³] 0,99862 0,99853 0,99843 0,99833 0,99823 0,99813 0,99802 0,99791 0,99780 0,99768 0,99757 | Datum: 28.0 | 04.2008   |  |

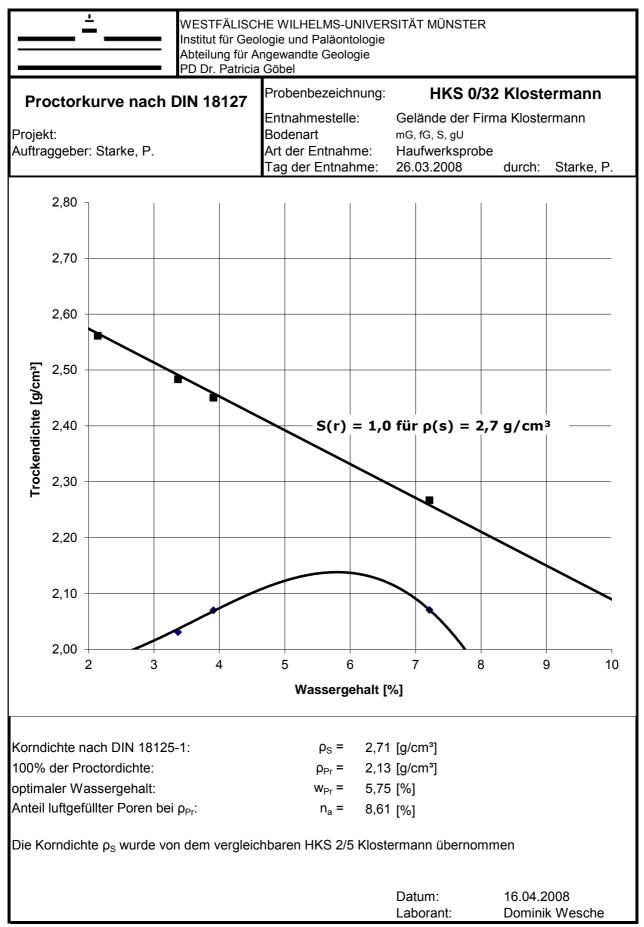
| WILH                                                      | tfälische<br>ielms-Universität<br>ster        | Institut für Geologie und Paläontologie Abteilung für Angewandte Geologie PD Dr. Patricia Göbel |                                                                                                                 |                                                                                                            |             |           |  |
|-----------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------|-----------|--|
|                                                           | Korndichte - Kapill                           | arpykn                                                                                          | ometer DII                                                                                                      | N 18124                                                                                                    |             |           |  |
| Probenbezeichnung:                                        | HKS 2/5 B                                     |                                                                                                 | Tiefe:                                                                                                          | -                                                                                                          | m           | Laborant: |  |
| Projekt Nr.:                                              | -                                             | Α                                                                                               | rt der Entn.:                                                                                                   | Haufwerksprobe                                                                                             |             | Wesche    |  |
| Entnahmestelle:                                           | Fa. Stratiebo                                 | Entn. am.                                                                                       |                                                                                                                 | 14.01                                                                                                      | .2008       | ]         |  |
| Probennehmer:                                             | Starke, Phillip                               |                                                                                                 | uchsbeginn:                                                                                                     |                                                                                                            | :46         | 1         |  |
| Bodenart:                                                 | Bodenart: fG, gs                              |                                                                                                 | ıchsende:                                                                                                       | 13                                                                                                         | :30         |           |  |
|                                                           | F                                             | robe Nr.                                                                                        | 1                                                                                                               | 2                                                                                                          | 3           |           |  |
| Masse leeres Pyknometer                                   | $m_{\mathrm{p}}$                              | g                                                                                               | 39,89                                                                                                           | 40,33                                                                                                      | 47,82       |           |  |
| Masse der trockenen Probe                                 | $m_{d}$                                       | g                                                                                               | 20,05                                                                                                           | 20,31                                                                                                      | 20,35       |           |  |
| Masse Pyknometer+Probe                                    | $m_1 = m_p + m_d$                             | g                                                                                               | 59,94                                                                                                           | 60,64                                                                                                      | 68,17       |           |  |
| M. Pyknom.+Probe+Wasser                                   | $m_2 = m_p + m_d + m_{wT}$                    | g                                                                                               | 152,20                                                                                                          | 152,86                                                                                                     | 161,19      |           |  |
| Temperatur                                                | Τ                                             | °C                                                                                              | 20,0                                                                                                            | 19,7                                                                                                       | 20,0        |           |  |
| Dichte Wasser bei T                                       | $ ho_{\scriptscriptstyle WT}$                 | g/cm³                                                                                           | 0,99823                                                                                                         | 0,99833                                                                                                    | 0,99823     |           |  |
| Masse Wasser bei T                                        | $m_{wT} = m_2 - m_1$                          | g                                                                                               | 92,26                                                                                                           | 92,22                                                                                                      | 93,02       |           |  |
| Volumen Wasser im Pyknometer                              | $V_{wt} = m_{wT} / \rho_{wT}$                 | cm³                                                                                             | 92,42                                                                                                           | 92,37                                                                                                      | 93,18       |           |  |
| Volumen Pyknometer                                        | $V_{\rho T}$                                  | cm³                                                                                             | 100,0                                                                                                           | 100,0                                                                                                      | 100,996     |           |  |
| Volumen der Kornphase                                     | $V_k = V_{\rho T} - V_{wT}$                   | cm³                                                                                             | 7,58                                                                                                            | 7,63                                                                                                       | 7,81        |           |  |
| Korndichte                                                | $\rho_s = m_d / V_k$                          | g/cm³                                                                                           | 2,65                                                                                                            | 2,66                                                                                                       | 2,61        |           |  |
| Kondichte                                                 | $ ho_{	extsf{s}}$                             | g/cm³                                                                                           |                                                                                                                 | 2,64                                                                                                       |             | ,         |  |
| Porenanteil                                               | $n=1-\left(\rho_{\rm d}/\rho_{\rm s}\right)$  | %                                                                                               |                                                                                                                 |                                                                                                            |             |           |  |
| Anteil der wassergefüllten Poren                          | $n_{\rm w} = (\rho_{\rm d}/\rho_{\rm w}) * w$ | %                                                                                               |                                                                                                                 |                                                                                                            |             |           |  |
| Luftporenanteil                                           | $n_a = n - n_w$                               | %                                                                                               |                                                                                                                 |                                                                                                            |             |           |  |
| Sättigungszahl                                            | $S_r = n/n_w$                                 | 1                                                                                               |                                                                                                                 |                                                                                                            |             |           |  |
| Porenzahl                                                 | $e = (\rho_{s}/\rho_{d}) - 1$                 | %                                                                                               |                                                                                                                 |                                                                                                            |             |           |  |
| Bemerkungen:  pd =  pd entspricht der maximale  DIN 18127 | 1,839<br>en Trockendichte nach                | Dicht                                                                                           | e des Wassers<br>T [°C]<br>18,0<br>18,5<br>19,0<br>19,5<br>20,0<br>20,5<br>21,0<br>21,5<br>22,0<br>22,5<br>23,0 | bei T  pwt [g/cm³] 0,99862 0,99853 0,99843 0,99833 0,99823 0,99813 0,99802 0,99791 0,99780 0,99768 0,99757 | Datum: 28.0 | 04 2008   |  |

| WILH                                               | tfälische<br>ielms-Universität<br>ster                     |           | ontologie<br>Geologie                                                                                           | Anlage:<br>zu:                                                                                     |           |           |
|----------------------------------------------------|------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------|-----------|
|                                                    | Korndichte - Kapill                                        | arpykn    | ometer DII                                                                                                      | N 18124                                                                                            |           |           |
| Probenbezeichnung:                                 | Pflastermörtel                                             |           | Tiefe:                                                                                                          | -                                                                                                  | m         | Laborant: |
| Projekt Nr.:                                       | -                                                          | А         | rt der Entn.:                                                                                                   | Haufwer                                                                                            | ksprobe   | Wesche    |
| Entnahmestelle:                                    | Fa. Stratiebo                                              |           | Entn. am.                                                                                                       | 14.01.2008                                                                                         |           | _         |
| Probennehmer:                                      | Starke, Phillip                                            |           | Versuchsbeginn:                                                                                                 |                                                                                                    | :35       | _         |
| Bodenart:                                          | mS, fs, gs                                                 | Versu     | ıchsende:                                                                                                       | 13                                                                                                 | :15       |           |
|                                                    | F                                                          | Probe Nr. | 1                                                                                                               | 2                                                                                                  | 3         |           |
| Masse leeres Pyknometer                            | $m_{\mathrm{p}}$                                           | g         | 45,34                                                                                                           | 41,09                                                                                              | 47,13     |           |
| Masse der trockenen Probe                          | $m_{\mathrm{d}}$                                           | g         | 20,13                                                                                                           | 20,29                                                                                              | 20,27     |           |
| asse Pyknometer+Probe $m_1 = m_p + m_d$            |                                                            | g         | 65,47                                                                                                           | 61,38                                                                                              | 67,40     |           |
| I. Pyknom.+Probe+Wasser $m_2 = m_p + m_d + m_{wT}$ |                                                            | g         | 157,64                                                                                                          | 153,38                                                                                             | 161,81    |           |
| Femperatur T                                       |                                                            | °C        | 19,9                                                                                                            | 18,9                                                                                               | 19,8      |           |
| Dichte Wasser bei T $ ho_{\mathit{wT}}$            |                                                            | g/cm³     | 0,99823                                                                                                         | 0,99843                                                                                            | 0,99823   |           |
| Masse Wasser bei T $m_{wT} = m_2 - m_1$            |                                                            | g         | 92,17                                                                                                           | 92,00                                                                                              | 94,41     |           |
| Volumen Wasser im Pyknometer                       | Volumen Wasser im Pyknometer $V_{wt} = m_{wT} / \rho_{wT}$ |           | 92,33                                                                                                           | 92,14                                                                                              | 94,58     |           |
| Volumen Pyknometer                                 | $V_{\rho T}$                                               | cm³       | 100,000                                                                                                         | 100,000                                                                                            | 102,260   |           |
| Volumen der Kornphase                              | $V_k = V_{pT} - V_{wT}$                                    | cm³       | 7,67                                                                                                            | 7,86                                                                                               | 7,68      |           |
| Korndichte                                         | $\rho_s = m_d / V_k$                                       | g/cm³     | 2,63                                                                                                            | 2,58                                                                                               | 2,64      |           |
| Kondichte                                          | $ ho_{	extsf{s}}$                                          | g/cm³     |                                                                                                                 | 2,62                                                                                               |           |           |
| Porenanteil                                        | $n = 1 - (\rho_d / \rho_s)$                                | %         |                                                                                                                 |                                                                                                    |           |           |
| Anteil der wassergefüllten Poren                   | $n_{\rm w} = (\rho_{\rm d}/\rho_{\rm w}) * w$              | %         |                                                                                                                 |                                                                                                    |           |           |
| Luftporenanteil                                    | $n_a = n - n_w$                                            | %         |                                                                                                                 |                                                                                                    |           |           |
| Sättigungszahl                                     | $S_r = n/n_w$                                              | 1         |                                                                                                                 |                                                                                                    |           |           |
| Porenzahl                                          | $e = (\rho_{s}/\rho_{d}) - 1$                              | %         |                                                                                                                 |                                                                                                    |           |           |
| Bemerkungen:<br>ofengetrocknete Probenma           | asse m <sub>d</sub>                                        | Dicht     | e des Wassers<br>T [°C]<br>18,0<br>18,5<br>19,0<br>19,5<br>20,0<br>20,5<br>21,0<br>21,5<br>22,0<br>22,5<br>23,0 | bei T  pwt [g/cm³] 0,99862 0,99853 0,99843 0,99823 0,99813 0,99802 0,99791 0,99780 0,99768 0,99757 | Datum: 25 | .04.2008  |

| WILH                                     | TFÄLISCHE<br>IELMS-UNIVERSITÄT<br>STER        | Instit<br>Abt   | Anlage:<br>zu:                                                              |         |             |                     |
|------------------------------------------|-----------------------------------------------|-----------------|-----------------------------------------------------------------------------|---------|-------------|---------------------|
|                                          | Korndichte - Kapill                           | arpykn          | ometer DII                                                                  | N 18124 |             |                     |
| Probenbezeichnung:                       | Glasasche                                     |                 | Tiefe:                                                                      | -       | m           | Laborant:           |
| Projekt Nr.:                             | -                                             | A               | rt der Entn.:                                                               | Haufwei | ksprobe     | Wesche              |
| Entnahmestelle:                          | Fa. Stratiebo                                 | Entn. am.       |                                                                             |         | .2008       |                     |
| Probennehmer:                            | Starke, Phillip                               | Versuchsbeginn: |                                                                             |         | :00         | 1                   |
| Bodenart:                                | gS, fg, ms`, mg`                              | Versu           | ıchsende:                                                                   | 12      | :45         |                     |
|                                          | F                                             | Probe Nr.       | 1                                                                           | 2       | 3           |                     |
| Masse leeres Pyknometer                  | $m_{p}$                                       | g               | 47,74                                                                       | 41,09   | 40,84       |                     |
| Masse der trockenen Probe                | $m_{d}$                                       | g               | 20,11                                                                       | 20,17   | 20,20       |                     |
| Masse Pyknometer+Probe $m_1 = m_p + m_d$ |                                               | g               | 67,85                                                                       | 61,26   | 61,04       |                     |
| M. Pyknom.+Probe+Wasser                  | $m_2 = m_p + m_d + m_{wT}$                    | g               | 163,68                                                                      | 153,23  | 152,94      |                     |
| Temperatur                               | Т                                             | °C              | 20,6                                                                        | 20,6    | 20,5        |                     |
| Dichte Wasser bei T                      | $ ho_{\scriptscriptstyle{WT}}$                | g/cm³           | 0,99813                                                                     | 0,99813 | 0,99813     |                     |
| Masse Wasser bei T                       | $m_{wT} = m_2 - m_1$                          | g               | 95,83                                                                       | 91,97   | 91,90       |                     |
| Volumen Wasser im Pyknometer             | $V_{wt} = m_{wT} / \rho_{wT}$                 | cm³             | 96,01                                                                       | 92,14   | 92,07       |                     |
| Volumen Pyknometer                       | $V_{\rho T}$                                  | cm³             | 103,821                                                                     | 100,0   | 100,000     |                     |
| Volumen der Kornphase                    | $V_k = V_{pT} - V_{wT}$                       | cm³             | 7,81                                                                        | 7,86    | 7,93        |                     |
| Korndichte                               | $\rho_s = m_d / V_k$                          | g/cm³           | 2,57                                                                        | 2,57    | 2,55        |                     |
| Kondichte                                | $ ho_{	extsf{s}}$                             | g/cm³           |                                                                             | 2,56    |             |                     |
| Porenanteil                              | $n = 1 - (\rho_d / \rho_s)$                   | %               |                                                                             |         |             |                     |
| Anteil der wassergefüllten Poren         | $n_{\rm w} = (\rho_{\rm d}/\rho_{\rm w}) * w$ | %               |                                                                             |         |             |                     |
| Luftporenanteil                          | $n_a = n - n_w$                               | %               |                                                                             |         |             |                     |
| Sättigungszahl                           | $S_r = n/n_w$                                 | 1               |                                                                             |         |             |                     |
| Porenzahl                                | $e = (\rho_{s}/\rho_{d}) - 1$                 | %               |                                                                             |         |             |                     |
| Bemerkungen:                             |                                               | Dicht           | e des Wassers T [°C] 18,0 18,5 19,0 19,5 20,0 20,5 21,0 21,5 22,0 22,5 23,0 | bei T   | Datum: 28.0 | 04.2008<br>© bext08 |

| WILH                                  | TFÄLISCHE<br>IELMS-UNIVERSITÄT<br>STER        | Institut für Geologie und Paläontologie Abteilung für Angewandte Geologie PD Dr. Patricia Göbel |                                                                                                                 |                                                                                                            |            |                |  |
|---------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------|----------------|--|
|                                       | Korndichte - Kapill                           | arpykn                                                                                          | ometer DII                                                                                                      | N 18124                                                                                                    |            |                |  |
| Probenbezeichnung:                    | Glasasche-Sand                                |                                                                                                 | Tiefe:                                                                                                          | -                                                                                                          |            | Laborant:      |  |
| Projekt Nr.:                          | -                                             |                                                                                                 |                                                                                                                 |                                                                                                            | ksprobe    | Wesche         |  |
| Entnahmestelle:                       | Fa. Stratiebo                                 | Entn. am.                                                                                       |                                                                                                                 |                                                                                                            | 14.01.2008 |                |  |
| Probennehmer:                         | Starke, Phillip                               | Versuchsbeginn:                                                                                 |                                                                                                                 |                                                                                                            | :20        |                |  |
| Bodenart:                             | S, fg                                         | versu                                                                                           | uchsende:                                                                                                       | 11                                                                                                         | :55        |                |  |
|                                       | F                                             | Probe Nr.                                                                                       | 1                                                                                                               | 2                                                                                                          | 3          |                |  |
| Masse leeres Pyknometer               | m <sub>p</sub>                                | g                                                                                               | 40,35                                                                                                           | 40,33                                                                                                      | 39,94      |                |  |
| Masse der trockenen Probe             | $m_{d}$                                       | g                                                                                               | 20,08                                                                                                           | 20,49                                                                                                      | 20,62      |                |  |
| Masse Pyknometer+Probe                | $m_1 = m_p + m_d$                             | g                                                                                               | 60,43                                                                                                           | 60,82                                                                                                      | 60,56      |                |  |
| M. Pyknom.+Probe+Wasser               | $m_2 = m_p + m_d + m_{wT}$                    | g                                                                                               | 152,45                                                                                                          | 152,74                                                                                                     | 152,33     |                |  |
| Temperatur                            | Т                                             | °C                                                                                              | 20,8                                                                                                            | 20,8                                                                                                       | 20,7       |                |  |
| Dichte Wasser bei T                   | $ ho_{\scriptscriptstyle WT}$                 | g/cm³                                                                                           | 0,99802                                                                                                         | 0,99802                                                                                                    | 0,99812    |                |  |
| Masse Wasser bei T                    | $m_{wT} = m_2 - m_1$                          | g                                                                                               | 92,02                                                                                                           | 91,92                                                                                                      | 91,77      |                |  |
| Volumen Wasser im Pyknometer          | $V_{wt} = m_{wT} / \rho_{wT}$                 | cm³                                                                                             | 92,20                                                                                                           | 92,10                                                                                                      | 91,94      |                |  |
| Volumen Pyknometer                    | V <sub>pT</sub>                               | cm³                                                                                             | 100,0                                                                                                           | 100,0                                                                                                      | 100,0      |                |  |
| Volumen der Kornphase                 | $V_k = V_{pT} - V_{wT}$                       | cm³                                                                                             | 7,80                                                                                                            | 7,90                                                                                                       | 8,06       |                |  |
| Korndichte                            | $\rho_s = m_d / V_k$                          | g/cm³                                                                                           | 2,58                                                                                                            | 2,59                                                                                                       | 2,56       |                |  |
| Kondichte                             | $ ho_{s}$                                     | g/cm³                                                                                           |                                                                                                                 | 2,58                                                                                                       |            |                |  |
| Porenanteil                           | $n = 1 - (\rho_d / \rho_s)$                   | %                                                                                               |                                                                                                                 |                                                                                                            |            |                |  |
| Anteil der wassergefüllten Poren      | $n_{\rm w} = (\rho_{\rm d}/\rho_{\rm w}) * w$ | %                                                                                               |                                                                                                                 |                                                                                                            |            |                |  |
| Luftporenanteil                       | $n_a = n - n_w$                               | %                                                                                               |                                                                                                                 |                                                                                                            |            |                |  |
| Sättigungszahl                        | $S_r = n/n_w$                                 | 1                                                                                               |                                                                                                                 |                                                                                                            |            |                |  |
| Porenzahl                             | $e = (\rho_{s}/\rho_{d}) - 1$                 | %                                                                                               |                                                                                                                 |                                                                                                            |            |                |  |
| Bemerkungen: ofengetrocknete Probenma | asse m <sub>d</sub>                           | Dicht                                                                                           | e des Wassers<br>T [°C]<br>18,0<br>18,5<br>19,0<br>19,5<br>20,0<br>20,5<br>21,0<br>21,5<br>22,0<br>22,5<br>23,0 | bei T  pwt [g/cm³] 0,99862 0,99853 0,99843 0,99833 0,99823 0,99813 0,99802 0,99791 0,99780 0,99768 0,99757 | Dote       | um: 25.04.2008 |  |

| WILH                                               | tfälische<br>elms-Universität<br>ster         |           | ontologie<br>Geologie                                                                                           | Anlage:<br>zu:                                                                                     |            |           |
|----------------------------------------------------|-----------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------|-----------|
|                                                    | Korndichte - Kapill                           | arpykn    | ometer DII                                                                                                      | N 18124                                                                                            |            |           |
| Probenbezeichnung:                                 | Basalt 1/3                                    |           | Tiefe:                                                                                                          | -                                                                                                  | m          | Laborant: |
| Projekt Nr.:                                       | -                                             | Α         | rt der Entn.:                                                                                                   | Haufwer                                                                                            | ksprobe    | Wesche    |
| Entnahmestelle:                                    | Fa. Stratiebo                                 |           | Entn. am.                                                                                                       | 14.01.2008                                                                                         |            |           |
| Probennehmer:                                      | Starke, Phillip                               |           | uchsbeginn:                                                                                                     |                                                                                                    | :50        | 1         |
| Bodenart:                                          | Versu                                         | uchsende: | 10                                                                                                              | :45                                                                                                |            |           |
|                                                    | F                                             | robe Nr.  | 1                                                                                                               | 2                                                                                                  | 3          |           |
| Masse leeres Pyknometer                            | $m_{p}$                                       | g         | 40,36                                                                                                           | 47,51                                                                                              | 39,94      |           |
| Masse der trockenen Probe                          | $m_{	extsf{d}}$                               | g         | 20,10                                                                                                           | 20,21                                                                                              | 20,34      |           |
| Masse Pyknometer+Probe $m_1 = m_p + m_d$           |                                               | g         | 60,46                                                                                                           | 67,72                                                                                              | 60,28      |           |
| M. Pyknom.+Probe+Wasser $m_2 = m_p + m_d + m_{wT}$ |                                               | g         | 153,29                                                                                                          | 161,50                                                                                             | 153,02     |           |
| Temperatur T                                       |                                               | °C        | 20,8                                                                                                            | 20,9                                                                                               | 21,0       |           |
| Dichte Wasser bei T                                | $ ho_{\scriptscriptstyle WT}$                 | g/cm³     | 0,99802                                                                                                         | 0,99802                                                                                            | 0,99802    |           |
| Masse Wasser bei T $m_{wT} = m_2 - m_1$            |                                               | g         | 92,83                                                                                                           | 93,78                                                                                              | 92,74      |           |
| Volumen Wasser im Pyknometer                       | $V_{wt} = m_{wT} / \rho_{wT}$                 | cm³       | 93,01                                                                                                           | 93,97                                                                                              | 92,92      |           |
| Volumen Pyknometer                                 | $V_{\rho T}$                                  | cm³       | 100,000                                                                                                         | 100,9                                                                                              | 100,000    |           |
| Volumen der Kornphase                              | $V_k = V_{pT} - V_{wT}$                       | cm³       | 6,99                                                                                                            | 6,97                                                                                               | 7,08       |           |
| Korndichte                                         | $\rho_s = m_d / V_k$                          | g/cm³     | 2,88                                                                                                            | 2,90                                                                                               | 2,87       |           |
| Kondichte                                          | $ ho_{	extsf{s}}$                             | g/cm³     |                                                                                                                 | 2,88                                                                                               |            |           |
| Porenanteil                                        | $n=1-\left(\rho_{\rm d}/\rho_{\rm s}\right)$  | %         |                                                                                                                 |                                                                                                    |            |           |
| Anteil der wassergefüllten Poren                   | $n_{\rm w} = (\rho_{\rm d}/\rho_{\rm w}) * w$ | %         |                                                                                                                 |                                                                                                    |            |           |
| Luftporenanteil                                    | $n_a = n - n_w$                               | %         |                                                                                                                 |                                                                                                    |            |           |
| Sättigungszahl                                     | $S_r = n/n_w$                                 | 1         |                                                                                                                 |                                                                                                    |            |           |
| Porenzahl                                          | $e = (\rho_{s}/\rho_{d}) - 1$                 | %         |                                                                                                                 |                                                                                                    |            |           |
| Bemerkungen:                                       |                                               | Dicht     | e des Wassers<br>T [°C]<br>18,0<br>18,5<br>19,0<br>19,5<br>20,0<br>20,5<br>21,0<br>21,5<br>22,0<br>22,5<br>23,0 | bei T  pwt [g/cm³] 0,99862 0,99853 0,99843 0,99823 0,99813 0,99802 0,99791 0,99780 0,99768 0,99757 | Datum: 28. | 04.2008   |

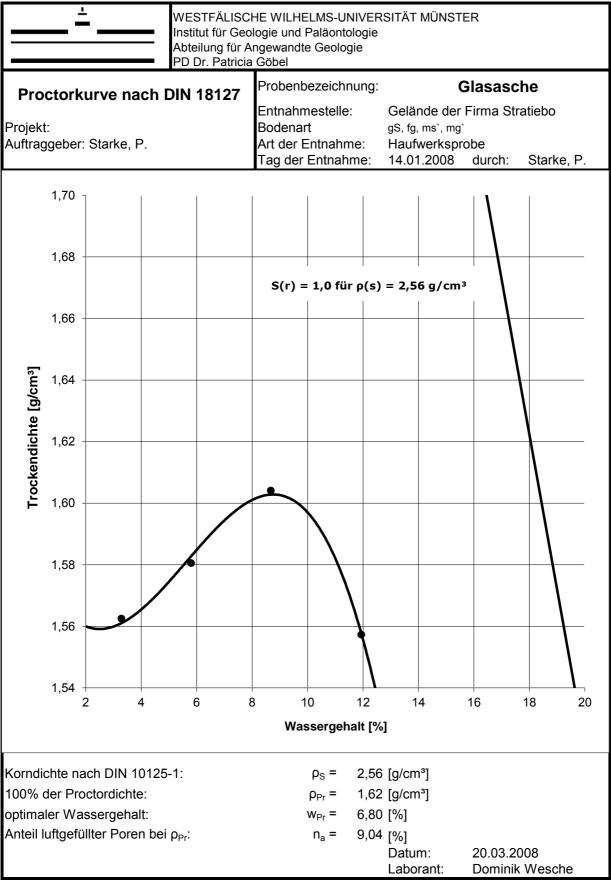

| WILH                                   | tfälische<br>ielms-Universität<br>ster     | Institut für Geologie und Paläontologie Abteilung für Angewandte Geologie PD Dr. Patricia Göbel |                                                                                                                 |                                                                                                            |          |           |  |
|----------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------|-----------|--|
|                                        | Korndichte - Kapill                        | arpykn                                                                                          | ometer DII                                                                                                      | N 18124                                                                                                    |          |           |  |
| Probenbezeichnung:                     | Extensivsubstrat                           |                                                                                                 | Tiefe:                                                                                                          | -                                                                                                          | m        | Laborant: |  |
| Projekt Nr.:                           |                                            | Α                                                                                               | rt der Entn.:                                                                                                   | Haufwei                                                                                                    | rksprobe | Wesche    |  |
| Entnahmestelle:                        |                                            |                                                                                                 |                                                                                                                 |                                                                                                            |          |           |  |
| Probennehmer:                          | Starke, Phillip                            |                                                                                                 | uchsbeginn:                                                                                                     | 10.12                                                                                                      | 2.2008   |           |  |
| Bodenart:                              |                                            | Versu                                                                                           | ıchsende:                                                                                                       |                                                                                                            |          |           |  |
| Probe Nr. / Pyknometer Nr.:            |                                            | 285                                                                                             | 289                                                                                                             | 290                                                                                                        |          |           |  |
| Masse leeres Pyknometer                | $m_{\mathrm{p}}$                           | g                                                                                               | 40,4                                                                                                            | 40,8                                                                                                       | 39,8     |           |  |
| Masse der trockenen Probe              | $m_{\mathrm{d}}$                           | g                                                                                               | 20,9                                                                                                            | 20,1                                                                                                       | 20,4     |           |  |
| Masse Pyknometer+Probe                 | $m_1 = m_p + m_d$                          | g                                                                                               | 61,3                                                                                                            | 60,9                                                                                                       | 60,2     |           |  |
| M. Pyknom.+Probe+Wasser                | $m_2 = m_p + m_d + m_{wT}$                 | g                                                                                               | 152,8                                                                                                           | 152,9                                                                                                      | 152,0    |           |  |
| Temperatur                             | Т                                          | °C                                                                                              | 21,0                                                                                                            | 21,0                                                                                                       | 19,8     |           |  |
| Dichte Wasser bei T                    | $ ho_{\scriptscriptstyle WT}$              | g/cm³                                                                                           | 0,99791                                                                                                         | 0,99802                                                                                                    | 0,99823  |           |  |
| Masse Wasser bei T                     | $m_{wT} = m_2 - m_1$                       | g                                                                                               | 91,50                                                                                                           | 92,00                                                                                                      | 91,80    |           |  |
| Volumen Wasser im Pyknometer           | $V_{wt} = m_{wT} / \rho_{wT}$              | cm³                                                                                             | 91,69                                                                                                           | 92,18                                                                                                      | 91,96    |           |  |
| Volumen Pyknometer                     | $V_{pT}$                                   | cm³                                                                                             | 100,00                                                                                                          | 100,00                                                                                                     | 100,00   |           |  |
| Volumen der Kornphase                  | $V_k = V_{\rho T} - V_{wT}$                | cm³                                                                                             | 8,31                                                                                                            | 7,82                                                                                                       | 8,04     |           |  |
| Korndichte                             | $\rho_s = m_d / V_k$                       | g/cm³                                                                                           | 2,52                                                                                                            | 2,57                                                                                                       | 2,54     |           |  |
| Kondichte                              | $ ho_{	extsf{s}}$                          | g/cm³                                                                                           |                                                                                                                 | 2,54                                                                                                       |          |           |  |
| Porenanteil                            | $n = 1 - (\rho_d / \rho_s)$                | %                                                                                               |                                                                                                                 |                                                                                                            |          |           |  |
| Anteil der wassergefüllten Poren       | $n_{\rm w} = \rho_{\rm d}/\rho_{\rm w} *w$ | %                                                                                               |                                                                                                                 |                                                                                                            |          |           |  |
| Luftporenanteil                        | $n_a = n - n_w$                            | %                                                                                               |                                                                                                                 |                                                                                                            |          |           |  |
| Sättigungszahl                         | $S_r = n/n_w$                              | 1                                                                                               |                                                                                                                 |                                                                                                            |          |           |  |
| Porenzahl                              | $e = (\rho_{s}/\rho_{d}) - 1$              | %                                                                                               |                                                                                                                 |                                                                                                            |          |           |  |
| Bemerkungen: Versuch mit ofentrockener | Probe                                      | Dicht                                                                                           | e des Wassers<br>T [°C]<br>18,0<br>18,5<br>19,0<br>19,5<br>20,0<br>20,5<br>21,0<br>21,5<br>22,0<br>22,5<br>23,0 | bei T  PWT [g/cm³] 0,99862 0,99853 0,99843 0,99823 0,99813 0,99813 0,99802 0,99791 0,99780 0,99768 0,99757 |          |           |  |

| WILH                                               | tfälische<br>ielms-Universität<br>ster     | Instit<br>Abt | Anlage:<br>zu:                                                                                                  |                                                                                                            |          |           |
|----------------------------------------------------|--------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------|-----------|
|                                                    | Korndichte - Kapill                        | arpykn        | ometer DII                                                                                                      | N 18124                                                                                                    |          |           |
| Probenbezeichnung:                                 | gewaschener Sand 0/2                       |               | Tiefe:                                                                                                          | -                                                                                                          | m        | Laborant: |
| Projekt Nr.:                                       | -                                          | Α             | rt der Entn.:                                                                                                   | Haufwei                                                                                                    | rksprobe | Wesche    |
| Entnahmestelle:                                    | Fa. Stratiebo                              | Entn. am.     |                                                                                                                 | 14.01.2008                                                                                                 |          |           |
| Probennehmer:                                      | Starke, Phillip                            |               | uchsbeginn:                                                                                                     |                                                                                                            | :00      | _         |
| Bodenart:                                          | mS, fs, gs                                 | Versu         | ıchsende:                                                                                                       | 16                                                                                                         | :51      |           |
|                                                    | F                                          | Probe Nr.     | 1                                                                                                               | 2                                                                                                          | 3        |           |
| Masse leeres Pyknometer                            | $m_{\mathrm{p}}$                           | g             | 47,15                                                                                                           | 48,55                                                                                                      | 47,81    |           |
| Masse der trockenen Probe                          | asse der trockenen Probe $m_{ m d}$        |               | 20,40                                                                                                           | 20,40                                                                                                      | 20,04    |           |
| lasse Pyknometer+Probe $m_1 = m_p + m_d$           |                                            | g             | 67,55                                                                                                           | 68,95                                                                                                      | 67,85    |           |
| M. Pyknom.+Probe+Wasser $m_2 = m_p + m_d + m_{wT}$ |                                            | g             | 160,60                                                                                                          | 163,49                                                                                                     | 161,13   |           |
| Temperatur T                                       |                                            | °C            | 20,7                                                                                                            | 20,9                                                                                                       | 21,0     |           |
| Dichte Wasser bei T                                | $ ho_{\scriptscriptstyle{WT}}$             | g/cm³         | 0,99813                                                                                                         | 0,99802                                                                                                    | 0,99802  |           |
| Masse Wasser bei T $m_{wT} = m_2 - m_1$            |                                            | g             | 93,05                                                                                                           | 94,54                                                                                                      | 93,28    |           |
| Volumen Wasser im Pyknometer                       | $V_{wt} = m_{wT} / \rho_{wT}$              | cm³           | 93,22                                                                                                           | 94,73                                                                                                      | 93,47    |           |
| Volumen Pyknometer                                 | $V_{\rho T}$                               | cm³           | 100,996                                                                                                         | 102,518                                                                                                    | 100,932  |           |
| Volumen der Kornphase                              | $V_k = V_{pT} - V_{wT}$                    | cm³           | 7,77                                                                                                            | 7,79                                                                                                       | 7,47     |           |
| Korndichte                                         | $\rho_s = m_d / V_k$                       | g/cm³         | 2,62                                                                                                            | 2,62                                                                                                       | 2,68     |           |
| Kondichte                                          | $ ho_{s}$                                  | g/cm³         |                                                                                                                 | 2,64                                                                                                       |          |           |
| Porenanteil                                        | $n = 1 - (\rho_d / \rho_s)$                | %             |                                                                                                                 |                                                                                                            |          |           |
| Anteil der wassergefüllten Poren                   | $n_{\rm w} = \rho_{\rm d}/\rho_{\rm w} *w$ | %             |                                                                                                                 |                                                                                                            |          |           |
| Luftporenanteil                                    | $n_a = n - n_w$                            | %             |                                                                                                                 |                                                                                                            |          |           |
| Sättigungszahl                                     | $S_r = n/n_w$                              | 1             |                                                                                                                 |                                                                                                            |          |           |
| Porenzahl                                          | $e = (\rho_{s}/\rho_{d}) - 1$              | %             |                                                                                                                 |                                                                                                            |          |           |
| Bemerkungen:<br>Versuch mit ofentrockener          | Probe                                      | Dicht         | e des Wassers<br>T [°C]<br>18,0<br>18,5<br>19,0<br>19,5<br>20,0<br>20,5<br>21,0<br>21,5<br>22,0<br>22,5<br>23,0 | bei T  PWT [g/cm³] 0,99862 0,99853 0,99843 0,99823 0,99813 0,99813 0,99802 0,99791 0,99780 0,99768 0,99757 |          |           |

| WILH                                                            | tfälische<br>ielms-Universität<br>ster                     | Instit<br>Abt                                                                                                   | Anlage:<br>zu:                                                                                             |            |         |           |
|-----------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------|---------|-----------|
|                                                                 | Korndichte - Kapill                                        | arpykn                                                                                                          | ometer DII                                                                                                 | N 18124    |         |           |
| Probenbezeichnung:                                              | Füllsand                                                   |                                                                                                                 | Tiefe:                                                                                                     | -          | m       | Laborant: |
| Projekt Nr.:                                                    | -                                                          | Α                                                                                                               | rt der Entn.:                                                                                              | Haufwer    | ksprobe | Wesche    |
| Entnahmestelle:                                                 | Fa. Stratiebo                                              |                                                                                                                 | Entn. am.                                                                                                  | 14.01.2008 |         |           |
| Probennehmer:                                                   | Starke, Phillip                                            |                                                                                                                 | uchsbeginn:<br>uchsende:                                                                                   |            | :11     | 1         |
| Bodenart:                                                       | Bodenart: mS, fs, gs`                                      |                                                                                                                 |                                                                                                            | 16         | :00     |           |
|                                                                 | F                                                          | Probe Nr.                                                                                                       | 1                                                                                                          | 2          | 3       |           |
| Masse leeres Pyknometer                                         | $m_{\mathrm{p}}$                                           | g                                                                                                               | 48,61                                                                                                      | 47,78      | 47,00   |           |
| Masse der trockenen Probe                                       | $m_{\mathrm{d}}$                                           | g                                                                                                               | 20,01                                                                                                      | 20,29      | 20,06   |           |
| Masse Pyknometer+Probe                                          | $m_1 = m_p + m_d$                                          | g                                                                                                               | 68,62                                                                                                      | 68,07      | 67,06   |           |
| M. Pyknom.+Probe+Wasser $m_2 = m_p + m_d + m_{wT}$              |                                                            | g                                                                                                               | 162,74                                                                                                     | 162,48     | 162,80  |           |
| Temperatur T                                                    |                                                            | °C                                                                                                              | 20,9                                                                                                       | 20,4       | 20,8    |           |
| Dichte Wasser bei T $ ho_{\mathit{wT}}$                         |                                                            | g/cm³                                                                                                           | 0,99803                                                                                                    | 0,99823    | 0,99802 |           |
| Masse Wasser bei T $m_{wT} = m_2 - m_1$                         |                                                            | g                                                                                                               | 94,12                                                                                                      | 94,41      | 95,74   |           |
| Volumen Wasser im Pyknometer                                    | /olumen Wasser im Pyknometer $V_{wt} = m_{wT} / \rho_{wT}$ |                                                                                                                 | 94,31                                                                                                      | 94,58      | 95,93   |           |
| Volumen Pyknometer                                              | $V_{\rho T}$                                               | cm³                                                                                                             | 103,542                                                                                                    | 103,821    | 104,857 |           |
| Volumen der Kornphase                                           | $V_k = V_{pT} - V_{wT}$                                    | cm³                                                                                                             | 9,24                                                                                                       | 9,24       | 8,93    |           |
| Korndichte                                                      | $\rho_s = m_d / V_k$                                       | g/cm³                                                                                                           | 2,17                                                                                                       | 2,20       | 2,25    |           |
| Kondichte                                                       | $ ho_{s}$                                                  | g/cm³                                                                                                           |                                                                                                            | 2,20       |         | ·         |
| Porenanteil                                                     | $n=1-\left(\rho_{\rm d}/\rho_{\rm s}\right)$               | %                                                                                                               |                                                                                                            |            |         |           |
| Anteil der wassergefüllten Poren                                | $n_{\rm w} = (\rho_{\rm d}/\rho_{\rm w}) * w$              | %                                                                                                               |                                                                                                            |            |         |           |
| Luftporenanteil                                                 | $n_a = n - n_w$                                            | %                                                                                                               |                                                                                                            |            |         |           |
| Sättigungszahl                                                  | $S_r = n/n_w$                                              | 1                                                                                                               |                                                                                                            |            |         |           |
| Porenzahl                                                       | $e = (\rho_{s}/\rho_{d}) - 1$                              | %                                                                                                               |                                                                                                            |            |         |           |
| Bemerkungen:  pd = 1,839  pd entspricht der maximale  DIN 18127 | Dicht                                                      | e des Wassers<br>T [°C]<br>18,0<br>18,5<br>19,0<br>19,5<br>20,0<br>20,5<br>21,0<br>21,5<br>22,0<br>22,5<br>23,0 | bei T  pwt [g/cm³] 0,99862 0,99853 0,99843 0,99823 0,99813 0,99813 0,99802 0,99791 0,99780 0,99768 0,99757 | Datum: 22. | 04.2008 |           |

| WILH                                               | TFÄLISCHE<br>IELMS-UNIVERSITÄT<br>STER        |                 | ut für Geolog<br>eilung für Ar<br>PD Dr. F                                                                      |            | Seologie | Anlage:<br>zu:             |
|----------------------------------------------------|-----------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|------------|----------|----------------------------|
| ı                                                  | Korndichte - Kapilla                          | rpykno          | meter DIN                                                                                                       | 18125-1    |          |                            |
| Probenbezeichnung:                                 | Füllsand                                      |                 | Tiefe:                                                                                                          | -          | m        | Laborant:                  |
| Projekt Nr.:                                       | -                                             | А               | rt der Entn.:                                                                                                   | Haufwei    | rksprobe | Wesche                     |
| Entnahmestelle:                                    | Fa. Stratiebo                                 | Entn. am.       |                                                                                                                 | 14.01.2008 |          | _                          |
| Probennehmer:                                      | Starke, Phillip                               | Versuchsbeginn: |                                                                                                                 |            | :55      | _                          |
| Bodenart:                                          | mS, fs, gs`                                   | Versu           | ichsende:                                                                                                       | 12         | :35      |                            |
|                                                    | Pyknometer Nr. +                              | Kapillere       | 290                                                                                                             | 296        | 289      |                            |
| Masse leeres Pyknometer                            | $m_{\mathrm{p}}$                              | g               | 39,82                                                                                                           | 40,11      | 40,86    |                            |
| Masse der trockenen Probe                          | $m_{	extsf{d}}$                               | g               | 20,16                                                                                                           | 20,32      | 20,43    |                            |
| Masse Pyknometer+Probe                             | $m_1 = m_p + m_d$                             | g               | 59,98                                                                                                           | 60,43      | 61,29    |                            |
| M. Pyknom.+Probe+Wasser $m_2 = m_p + m_d + m_{wT}$ |                                               | g               | 152,03                                                                                                          | 152,36     | 153,18   |                            |
| Temperatur T                                       |                                               | °C              | 20,4                                                                                                            | 19,7       | 20,0     |                            |
| Dichte Wasser bei T                                | ho wT                                         | g/cm³           | 0,99813                                                                                                         | 0,99833    | 0,99823  |                            |
| Masse Wasser bei T                                 | $m_{wT} = m_2 - m_1$                          | g               | 92,05                                                                                                           | 91,93      | 91,89    |                            |
| Volumen Wasser im Pyknometer                       | $V_{wt} = m_{wT} / \rho_{wT}$                 | cm³             | 92,22                                                                                                           | 92,08      | 92,05    |                            |
| Volumen Pyknometer                                 | $V_{\rho T}$                                  | cm³             | 100,0                                                                                                           | 100,0      | 100,0    |                            |
| Volumen der Kornphase                              | $V_k = V_{pT} - V_{wT}$                       | cm³             | 7,78                                                                                                            | 7,92       | 7,95     |                            |
| Korndichte                                         | $\rho_s = m_d / V_k$                          | g/cm³           | 2,59                                                                                                            | 2,57       | 2,57     |                            |
| Kondichte                                          | $ ho_{	extsf{s}}$                             | g/cm³           |                                                                                                                 | 2,58       |          |                            |
| Porenanteil                                        | $n = 1 - (\rho_d / \rho_s)$                   | %               |                                                                                                                 |            |          |                            |
| Anteil der wassergefüllten Poren                   | $n_{\rm w} = (\rho_{\rm d}/\rho_{\rm w}) * w$ | %               |                                                                                                                 |            |          |                            |
| Luftporenanteil                                    | $n_a = n - n_w$                               | %               |                                                                                                                 |            |          |                            |
| Sättigungszahl                                     | $S_r = n/n_w$                                 | 1               |                                                                                                                 |            |          |                            |
| Porenzahl                                          | $e = (\rho_{s}/\rho_{d}) - 1$                 | %               |                                                                                                                 |            |          |                            |
| Bemerkungen:<br>ofengetrocknete Probenma           | asse m <sub>d</sub>                           | Dicht           | e des Wassers<br>T [°C]<br>18,0<br>18,5<br>19,0<br>19,5<br>20,0<br>20,5<br>21,0<br>21,5<br>22,0<br>22,5<br>23,0 | bei T      | Dat      | um: 25.04.2008<br>© bext08 |

| Inst         |                     | <u> </u>         |                                                                                                       |                                                  |                                               |           |              |               | Anlage:                                      |                         |            |
|--------------|---------------------|------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------|--------------|---------------|----------------------------------------------|-------------------------|------------|
| Ahte         |                     |                  |                                                                                                       | LMS-UNIVER                                       | SITÄT                                         |           |              |               | zu:                                          |                         |            |
|              |                     | _                | ia Göbel                                                                                              |                                                  |                                               |           | <b>.</b>     |               |                                              |                         |            |
| Pro          | cto                 |                  | ersuch nach DIN 1                                                                                     | 8127                                             | 8127                                          |           |              |               |                                              | rmann<br>, gU<br>:probe |            |
| Projek       | ct Ni               |                  | Auftraggeber: Sta                                                                                     | arke. Phillip                                    |                                               |           | Entn. am:    | 26.03.2008    |                                              | durch:                  | Starke, P. |
| ,-           |                     |                  | uchszylinder                                                                                          | р                                                |                                               |           | Anzahl der   | Schichten:    |                                              |                         | 3          |
|              | Durchmesser $d_1$ : |                  |                                                                                                       |                                                  |                                               |           | Anzahl der   | Schläge pro   | Schicht:                                     |                         | 22         |
|              | Höh                 | e h              | į:                                                                                                    | 125                                              | mm                                            |           | zulässiges   | Größtkorn i   | n mm:                                        |                         | 32         |
|              | Volu                | ımeı             | n Versuchszylinder Vz:                                                                                | 2208,93                                          | cm <sup>3</sup>                               |           | Anteil des   | Überkornes    | <i>ü</i> in %:                               |                         | -          |
|              | F                   | allg             | ewicht                                                                                                |                                                  |                                               |           | Korndichte   | / Überkorn    | $ ho_{	extst{s	ilde{u}}}$ in g/cm $^{\circ}$ | 3 <sub>.</sub>          | -          |
|              | Mas                 | se:              |                                                                                                       | 4,5                                              | kg                                            |           | Wassergel    | nalt / Überko | orn w <sub>ü</sub> in %                      |                         | -          |
|              | Fall                | höhe             | ):                                                                                                    | 450                                              | mm                                            |           | Probe Nr.:   |               |                                              |                         | -          |
|              | Ver                 | such             | Nr.                                                                                                   |                                                  |                                               | 1         | 2            | 3             | 4                                            | 5                       | 6          |
|              | Zylinder $m_Z$      |                  |                                                                                                       |                                                  | g                                             | 12396     | 12396        | 12396         | 12396                                        | 12396                   | 12396      |
| Dichte       | feuc                | hte              | Probe + Zylinder                                                                                      | $m_1 + m_Z$                                      | g                                             | 16871     | 16785        | 16903         | 17033                                        | 17147                   | 17300      |
|              | feuc                | hte              | Probe                                                                                                 | $m_{\mathrm{f}}$                                 | g                                             | 4475      | 4389         | 4507          | 4637                                         | 4751                    | 4904       |
|              | Dich                | nte              |                                                                                                       | $\rho = m_f / V_Z$                               | g/cm <sup>3</sup>                             | 2,03      | 1,99         | 2,04          | 2,10                                         | 2,15                    | 2,22       |
|              | a <sup>*</sup> l    | o <sup>*</sup> c |                                                                                                       |                                                  |                                               |           |              |               |                                              |                         |            |
| Ī            | 1                   | 4 1              | Behälter                                                                                              | $m_{B}$                                          | g                                             | 192,3     | 262,3        | 364,8         | 362,2                                        | 365,8                   | 224,2      |
| halt         | 2                   | 2 3              | trockene Probe + Behälter                                                                             | $m_{\rm d} + m_{\rm B}$                          | g                                             | 697,2     | 702,7        | 1116,1        | 1053,7                                       | 1036,1                  | 1006,1     |
| Wassergehalt | 3                   | 1 2              | Behälter + feuchte Probe                                                                              | $m_{\rm B}$ + $m_{\rm f}$                        | g                                             | 698,6     | 710,2        | 1132,2        | 1077,0                                       | 1062,3                  | 1062,5     |
| Nass         | 4                   | 5 4              | Wasser                                                                                                | $m_{W}$                                          | g                                             | 1,4       | 7,5          | 16,1          | 23,3                                         | 26,2                    | 56,4       |
|              | 5                   | 3 5              | trockene Probe                                                                                        | $m_{d}$                                          | g                                             | 504,9     | 440,4        | 751,3         | 691,5                                        | 670,3                   | 781,9      |
| ľ            | Wa                  | sser             | gehalt w = (m <sub>W</sub> /                                                                          | m <sub>d</sub> ) × 100 %                         | %                                             | 0,28      | 1,70         | 2,14          | 3,37                                         | 3,91                    | 7,21       |
| •            | Tro                 | ken              | dichte $ ho_{\epsilon}$                                                                               | $t = \frac{\rho}{1 + \frac{w}{100}}$             | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 2,02      | 1,95         | 2,00          | 2,03                                         | 2,07                    | 2,07       |
| Anmo         | erku                | a)<br>b)         | Zeilenfolge<br>bei Trocknen von Teilprobe<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenn | n<br>e der Gesam                                 | •                                             | e am Ende | des Gesan    | ntversuches   |                                              |                         |            |
|              |                     | igier            | · · · · · · · · · · · · · · · · · · ·                                                                 |                                                  |                                               |           |              |               |                                              |                         |            |
|              |                     | igier<br>cken    | te dichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) +$                             | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{s0}$ | t/m³                                          |           |              |               |                                              |                         |            |
| Beme         | rkur                | ıg:              | Trotz Zugabe von Wasser i                                                                             | st eine Abnah                                    | me der L                                      | agerungsd | lichte nicht |               | Datum:                                       | 16.04.08                |            |
| erkeni       | nbaı                | . Die            | eser Effekt kann durch zertrü                                                                         |                                                  |                                               |           |              |               | Laborant:                                    | Wesche, I               | Dominik    |

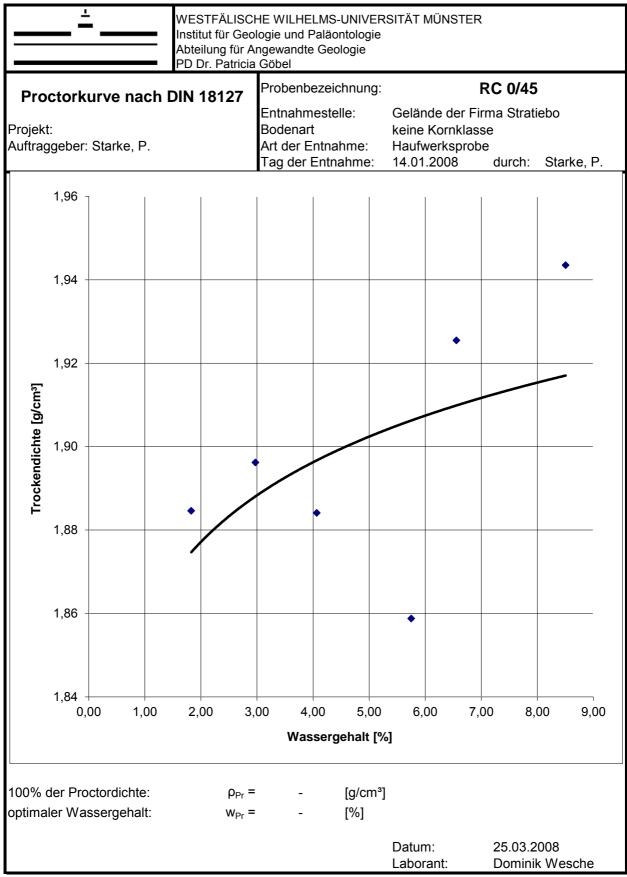



| =            |                |                |                |                                                                                                       | ÄLISCHE<br>LMS-UNIVER                            | SITÄT                                         |           |              |               | Anlage:<br>zu:          |                   |            |
|--------------|----------------|----------------|----------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------|--------------|---------------|-------------------------|-------------------|------------|
| Ab           | teilu          | ıng            | für            | ologie und Paläontologie<br>Angewandte Geologie<br>a Göbel                                            | ER                                               |                                               |           |              |               |                         |                   |            |
|              |                |                |                |                                                                                                       |                                                  |                                               |           | Entnahmes    | stelle:       | Gelände d               | er Fa. Stra       | atibo      |
| Pro          | Ct             | tor            | V              | ersuch nach DIN 1                                                                                     | 18127                                            |                                               |           | Tiefe:       |               | k.A.                    |                   |            |
|              |                |                |                |                                                                                                       |                                                  |                                               |           | Bodenart:    |               | G, fs`, gs`             |                   |            |
|              |                |                |                | Tragschicht NI                                                                                        | _                                                |                                               |           | Art der Ent  | n.:           | Haufwerks               | probe             |            |
| Proje        | kt I           | Nr.:           |                | Auftraggeber:                                                                                         |                                                  |                                               |           | Entn. am: 1  | 14.01.2008    |                         | durch:            | Starke, P. |
|              |                | Ve             | rsu            | chszylinder                                                                                           |                                                  |                                               |           | Anzahl der   | Schichten:    |                         |                   | 3          |
|              | Dι             | urch           | me             | esser d <sub>1</sub> :                                                                                | 150                                              | mm                                            |           | Anzahl der   | Schläge pr    | o Schicht:              |                   | 22         |
|              | Ηċ             | ihe            | h <sub>1</sub> |                                                                                                       | 125                                              | mm                                            |           | zulässiges   | Größtkorn     | n mm:                   |                   | 45         |
|              | Vc             | olun           | nen            | Versuchszylinder V <sub>z</sub> :                                                                     | 2208,93                                          | cm <sup>3</sup>                               |           | Anteil des l | Überkornes    | <i>ü</i> in %:          |                   | _          |
|              |                | Fa             | llae           | ewicht                                                                                                |                                                  |                                               |           | Korndichte   | / Überkorn    | ρ <sub>sü</sub> in a/cm | 3.                | _          |
|              | Ma             | asse           | -              |                                                                                                       | 4,5                                              | ka                                            |           | Wassergeh    |               |                         |                   | _          |
|              |                | allhö          |                |                                                                                                       |                                                  | mm                                            |           | Probe Nr.:   |               | u                       |                   | _          |
|              | _              | ersu           |                |                                                                                                       |                                                  |                                               | 1         | 2            | 3             | 4                       | 5                 | 6          |
|              | Zy             | lind           | er             |                                                                                                       | m <sub>Z</sub>                                   | g                                             | 14557     | 14557        | 14557         | 14557                   | 14557             |            |
| Dichte       | feı            | uch            | te F           | Probe + Zylinder                                                                                      | $m_1 + m_Z$                                      | g                                             | 16809     | 16978        | 17054         | 17241                   | 17321             |            |
| Ö            | H              |                |                | Probe                                                                                                 | m <sub>f</sub>                                   | g                                             | 2252      | 2421         | 2497          | 2684                    | 2764              |            |
|              | Di             | chte           | <del>)</del>   |                                                                                                       | $\rho = m_f / V_Z$                               | g/cm <sup>3</sup>                             | 1,019     | 1,096        | 1,130         | 1,215                   | 1,251             |            |
|              | a <sup>*</sup> | b <sup>*</sup> | c <sup>*</sup> |                                                                                                       | <u> </u>                                         | Ü                                             |           |              |               |                         |                   |            |
|              | 1              | H              | 1              | Behälter                                                                                              | m <sub>B</sub>                                   | g                                             | 1000,0    | 1000         | 1000          | 1000                    | 1000,0            |            |
| alt          | 2              | Н              | 3              | trockene Probe + Behälter                                                                             | $m_{\rm d} + m_{\rm B}$                          | g                                             | 0         | 1910,4       | 1936,3        | 1995,4                  | 2116,7            |            |
| Wassergehalt | 3              |                |                | Behälter + feuchte Probe                                                                              | m <sub>B</sub> +m <sub>f</sub>                   | g                                             | 0,0       | 1928,5       | 1973,3        | 2057,4                  | 2210,5            |            |
| asse         | 4              |                |                | Wasser                                                                                                | m <sub>W</sub>                                   | g                                             | 0,0       | 18,1         | 37            | 62                      | 93,8              |            |
| >            | 5              | H              |                | trockene Probe                                                                                        | $m_{\rm d}$                                      |                                               | -1000     | 910,4        | 936,3         | 995,4                   | 1116,7            |            |
|              | H              |                |                |                                                                                                       | m <sub>d</sub> ) × 100 %                         | g<br>%                                        | 0,00      | 1,99         |               | 6,23                    | 8,40              |            |
|              | <u> </u>       |                |                |                                                                                                       | $\frac{\rho}{1 + \frac{w}{100}}$                 | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,019     | 1,075        | 3,95<br>1,087 | 1,144                   | 1,154             |            |
| * Anm        | nerk           | kung           | a)<br>b)       | Zeilenfolge<br>bei Trocknen von Teilprobe<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenn | n<br>e der Gesam                                 | tprobe                                        | e am Ende | des Gesami   | tversuches    |                         |                   |            |
| korn         |                | rrig<br>ass    | iert           |                                                                                                       |                                                  |                                               |           |              |               |                         |                   |            |
| Überkorn     |                | rrig<br>ock    |                | e dichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) +$                              | $0,9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{s0}$ | t/m³                                          |           |              |               |                         |                   |            |
| Beme         | erkı           | ung            | :              |                                                                                                       |                                                  |                                               |           | •            |               | Datum:<br>Laborant:     | 10.6.08<br>Starke | •          |

bm11 8bex07

|              |                |                |                  | a Göbel                                                                                               |                                                        |                                               |           |                     |              | zu:                               |             |        |
|--------------|----------------|----------------|------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|-----------|---------------------|--------------|-----------------------------------|-------------|--------|
| FIOC         | ااد            | ^              |                  | ersuch nach DIN 1                                                                                     | 0127                                                   |                                               |           | Entnahmes           | telle:       |                                   |             |        |
|              |                | ΟI             | ve               | ersuch nach bin i                                                                                     | 10121                                                  |                                               |           | Tiefe:<br>Bodenart: |              |                                   |             |        |
|              |                |                | D                | ränsand NL                                                                                            |                                                        |                                               |           | Art der Ent         | n.:          | Haufwerks                         | orobe       |        |
| Projekt      | t N            | r.:            |                  | Auftraggeber:                                                                                         |                                                        |                                               |           | Entn. am:           |              |                                   | durch: Star | ke, P. |
|              |                | Ve             | rsu              | chszylinder                                                                                           |                                                        |                                               |           | Anzahl der          | Schichten:   |                                   |             | 3      |
|              | Dui            | rch            | me               | esser d <sub>1</sub> :                                                                                | 100                                                    | mm                                            |           | Anzahl der          | Schläge pro  | o Schicht:                        |             | 25     |
| H            | Höl            | he             | h <sub>1</sub> : |                                                                                                       | 120                                                    | mm                                            |           | zulässiges          | Größtkorn i  | n mm:                             |             | -      |
| ١            | /ol            | un             | en               | Versuchszylinder $V_z$ :                                                                              | 942,48                                                 | cm³                                           |           | Anteil des l        | Überkornes   | <i>ü</i> in %:                    |             | -      |
|              |                | Fa             | llge             | ewicht                                                                                                |                                                        |                                               |           | Korndichte          | / Überkorn   | $ ho_{	extst{sü}}$ in g/cm $^3$   | 3.          | -      |
| N            | Иа             | SS             | e:               |                                                                                                       | 2,5                                                    | kg                                            |           | Wassergeh           | alt / Überko | orn $w_{\ddot{\mathrm{u}}}$ in %: |             | -      |
| F            | al             | lhċ            | he:              |                                                                                                       | 300                                                    | mm                                            |           | Probe Nr.:          |              |                                   |             | -      |
| \            | /er            | su             | ch               | Nr.                                                                                                   | •                                                      |                                               | 1         | 2                   | 3            | 4                                 | 5           |        |
|              | Zyli           | ind            | er               |                                                                                                       | $m_Z$                                                  | g                                             | 6480      | 6480                | 6480         | 6480                              | 6480        | 6480   |
| Dichte       | eu             | ch             | e F              | Probe + Zylinder                                                                                      | $m_1 + m_Z$                                            | g                                             | 8014      | 7974                | 8001         | 8056                              | 8123        | 8185   |
| □ f          | eu             | ch             | e F              | Probe                                                                                                 | $m_{\mathrm{f}}$                                       | g                                             | 1534      | 1494                | 1521         | 1576                              | 1643        | 1705   |
|              | Dic            | hte            | )                |                                                                                                       | $\rho = m_{\rm f}/V_{\rm Z}$                           | g/cm <sup>3</sup>                             | 1,628     | 1,585               | 1,614        | 1,672                             | 1,743       | 1,809  |
| á            | a <sup>*</sup> | b <sup>*</sup> | c <sup>*</sup>   |                                                                                                       |                                                        |                                               |           |                     |              |                                   |             |        |
|              | 1              | 4              | 1                | Behälter                                                                                              | $m_{B}$                                                | g                                             | 1000,0    | 1000,0              | 1000,0       | 1000                              | 1000,0      | 1000   |
| shalt        | 2              | 2              | 3                | trockene Probe + Behälter                                                                             | $m_{\rm d} + m_{\rm B}$                                | g                                             | 0         | 1377,3              | 1415,7       | 1444,8                            | 1479,0      | 1481,3 |
| Wassergehalt | 3              | 1              | 2                | Behälter + feuchte Probe                                                                              | $m_{\rm B}$ + $m_{\rm f}$                              | g                                             | 0,0       | 1389,7              | 1439,8       | 1483,4                            | 1536,2      | 1557,8 |
| Wass         | 4              | 5              | 4                | Wasser                                                                                                | $m_{W}$                                                | g                                             | 0         | 12,4                | 24,1         | 38,6                              | 57,2        | 76,5   |
|              | 5              | 3              | 5                | trockene Probe                                                                                        | $m_{d}$                                                | g                                             | -1000     | 377,3               | 415,7        | 444,8                             | 479         | 481,3  |
| ٧            | Na             | ıss            | erg              | ehalt w = (m <sub>W</sub> /                                                                           | m <sub>d</sub> ) × 100 %                               | %                                             | 0,00      | 3,29                | 5,80         | 8,68                              | 11,94       | 15,89  |
| T            | Гго            | ck             | end              | dichte $ ho_d$                                                                                        | $v_{t} = \frac{\rho}{1 + \frac{w}{100}}$               | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,59      | 1,56                | 1,58         | 1,60                              | 1,56        | 1,56   |
| * Anme       | erki           | unţ            | a)<br>b)         | eilenfolge<br>bei Trocknen von Teilprober<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenm | n<br>e der Gesami                                      | •                                             | e am Ende | des Gesam           | tversuches   |                                   |             |        |
| Überkorn     | kor<br>Na      | rig<br>ISS     | ert<br>erg       | er ehalt $w' = w \cdot \left(1 - \frac{\ddot{u}}{100}\right)$                                         | $+\frac{w_{\ddot{u}}\cdot\ddot{u}}{100}$               | %                                             |           |                     |              |                                   |             |        |
| Übei<br>K    | cor<br>Γro     | rig<br>ck      | erto             | e dichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0$                            | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{s\dot{u}}$ |                                               |           |                     |              |                                   |             |        |
| Bemer        | ku             | ng             |                  |                                                                                                       |                                                        |                                               |           |                     |              | Datum:                            | 11.06.08    |        |
| bm11         |                |                |                  |                                                                                                       |                                                        |                                               |           |                     |              | Laborant:                         | Starke      | ®bex07 |

Seite A110




| _           |          |                | _              |                                                                                                       | ÄLISCHE<br>LMS-UNIVER                                   | SITÄT                                         |           |                                                              |              | Anlage:<br>zu:                                |               |                                                  |
|-------------|----------|----------------|----------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|-----------|--------------------------------------------------------------|--------------|-----------------------------------------------|---------------|--------------------------------------------------|
| Ab          | teil     | ung            | für            | ologie und Paläontologie<br>Angewandte Geologie<br>a Göbel                                            | EK                                                      |                                               |           |                                                              |              |                                               |               |                                                  |
| Pro         | oc<br>F  | to<br>Fe       | ve<br>d        | ersuch nach DIN 1                                                                                     |                                                         | SoB                                           |           | Entnahmes<br>Tiefe:<br>Bodenart:<br>Art der Ent<br>Entn. am: | n.:          | Gelände d<br>k.A.<br>G, fs`, gs`<br>Haufwerks | probe         | atibo<br>Starke, P                               |
| Proje       | eKt      | Nr.:           |                | Auftraggeber:                                                                                         |                                                         |                                               |           | Liitii. aiii.                                                | 14.01.2000   |                                               | durch:        | Starke, F                                        |
|             |          | Ve             | rsu            | chszylinder                                                                                           |                                                         |                                               |           | Anzahl der                                                   | Schichten:   |                                               |               | 3                                                |
|             | D        | urch           | ıme            | esser d <sub>1</sub> :                                                                                | 150                                                     | mm                                            |           | Anzahl der                                                   | Schläge pr   | o Schicht:                                    |               | 22                                               |
|             | Н        | öhe            | h <sub>1</sub> |                                                                                                       | 125                                                     | mm                                            |           | zulässiges                                                   | Größtkorn    | in mm:                                        |               | 45                                               |
|             | V        | olur           | nen            | Versuchszylinder $V_z$ :                                                                              | 2208,93                                                 | cm <sup>3</sup>                               |           | Anteil des                                                   | Überkornes   | <i>ü</i> in %:                                |               | -                                                |
|             |          | Fa             | llge           | ewicht                                                                                                |                                                         |                                               |           |                                                              | / Überkorn   |                                               |               | -                                                |
|             | M        | lass           | e:             |                                                                                                       | 4,5                                                     | kg                                            |           | Wassergeh                                                    | nalt / Überk | orn w <sub>ü</sub> in %                       | :             | -                                                |
|             | ÷        | allh           |                |                                                                                                       | 450                                                     | mm                                            |           | Probe Nr.:                                                   | •            | •                                             | 1             | -                                                |
|             | -        | ersı           |                | Nr.                                                                                                   | l                                                       |                                               | 1         | 2                                                            | 3            | 4                                             | 5             | 6                                                |
| <u>t</u> e  | H        | ylind          |                | Ducke I Zulinden                                                                                      | m <sub>Z</sub>                                          | g                                             | 14557     | 14557                                                        | 14557        | 14557                                         | 14557         |                                                  |
| Dichte      | H        |                |                | Probe + Zylinder                                                                                      | $m_1 + m_Z$                                             | g                                             | 17131     | 17311                                                        | 17356        | 17505                                         | 17531<br>2974 |                                                  |
|             | $\vdash$ | icht           |                | Tobe                                                                                                  | m <sub>f</sub>                                          | g<br>, 3                                      | 2574      | 2754                                                         | 2799         | 2948                                          |               |                                                  |
|             | ╄        | _              |                |                                                                                                       | $\rho = m_f / V_Z$                                      | g/cm <sup>3</sup>                             | 1,165     | 1,247                                                        | 1,267        | 1,335                                         | 1,346         |                                                  |
|             | H        | b <sup>*</sup> |                | D 1                                                                                                   |                                                         |                                               | 1000.0    | 1000                                                         | 4000         | 1000                                          | 40000         |                                                  |
| Ħ           | 1        | +              | 1              | Behälter                                                                                              | m <sub>B</sub>                                          | g                                             | 1000,0    | 1000                                                         | 1000         | 1000                                          | 1000,0        |                                                  |
| assergehalt | 2        | +              | -              | trockene Probe + Behälter                                                                             | $m_{\rm d} + m_{\rm B}$                                 | g                                             | 0         | 1921,5                                                       | 1926,3       | 1721,3                                        | 2002,9        |                                                  |
| sser        | 3        | -              |                | Behälter + feuchte Probe                                                                              | m <sub>B</sub> + m <sub>f</sub>                         | g                                             | 0,0       | 1948,4                                                       | 1965,5       | 1760,4                                        | 2071          |                                                  |
| ×           | 4        | Ť              |                | Wasser                                                                                                | m <sub>W</sub>                                          | g                                             | 0,0       | 26,9                                                         | 39,2         | 39,1                                          | 68,1          |                                                  |
|             | 5        |                |                | trockene Probe                                                                                        | <i>m</i> <sub>d</sub>                                   | g                                             | -1000     | 921,5                                                        | 926,3        | 721,3                                         | 1002,9        | <del>                                     </del> |
|             | W        | ass            | erg            |                                                                                                       | m <sub>d</sub> ) × 100 %                                | %                                             | 0,00      | 2,92                                                         | 4,23         | 5,42                                          | 6,79          |                                                  |
|             | Tı       | rock           | end            | dichte $ ho_{ m c}$                                                                                   | $t = \frac{\rho}{1 + \frac{w}{100}}$                    | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,165     | 1,211                                                        | 1,216        | 1,266                                         | 1,261         |                                                  |
| Ann         | ner      | kun            | a)<br>b)       | Zeilenfolge<br>bei Trocknen von Teilprobe<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenn | e der Gesam                                             | •                                             | e am Ende | des Gesam                                                    | tversuches   |                                               |               |                                                  |
| korn        |          | orrig<br>/ass  | iert           | ,                                                                                                     |                                                         | %                                             |           |                                                              |              |                                               |               |                                                  |
| Überkorn    |          | orrig          |                | e dichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) +$                              | $0,9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{\text{sû}}$ | t/m³                                          |           |                                                              |              |                                               |               |                                                  |
| Beme        | erk      | ung            | :              |                                                                                                       |                                                         |                                               |           |                                                              |              | Datum:                                        | 10.6.08       |                                                  |
|             |          |                |                |                                                                                                       |                                                         |                                               |           |                                                              |              | Laborant:                                     | Starke        |                                                  |

bm11 8bex07

| Abt          | teil        | ung           | für              |                                                                                                        | ÄLISCHE<br>LMS-UNIVER<br>ER                             | SITÄT                                         |           |                                  |              | Anlage:<br>zu:                   |                  |            |
|--------------|-------------|---------------|------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|-----------|----------------------------------|--------------|----------------------------------|------------------|------------|
|              |             |               |                  | ersuch nach DIN 1                                                                                      | 18127                                                   |                                               |           | Entnahmes<br>Tiefe:<br>Bodenart: | stelle:      | Gelände d<br>k.A.<br>keine Korr  |                  | tratiebo   |
|              |             |               | R                | C 0/45                                                                                                 |                                                         |                                               |           | Art der Ent                      | n.:          | Haufwerks                        |                  |            |
| Proje        | kt          | Nr.:          |                  | Auftraggeber: Sta                                                                                      | arke, Phillip                                           |                                               |           | Entn. am: 1                      | 14.01.2008   |                                  | durch:           | Starke, P. |
|              |             | Ve            | rsu              | chszylinder                                                                                            |                                                         |                                               |           | Anzahl der                       | Schichten:   |                                  |                  | 3          |
|              | D           | urch          | me               | esser d <sub>1</sub> :                                                                                 | 150                                                     | mm                                            |           | Anzahl der                       | Schläge p    | o Schicht:                       |                  | 22         |
|              | Н           | öhe           | h <sub>1</sub> : |                                                                                                        | 125                                                     | mm                                            |           | zulässiges                       | Größtkorn    | in mm:                           |                  | -          |
|              | V           | olun          | nen              | Versuchszylinder Vz:                                                                                   | 2208,93                                                 | cm³                                           |           | Anteil des                       | Überkornes   | s <i>ü</i> in %:                 |                  | -          |
|              |             | Fa            | llge             | ewicht                                                                                                 |                                                         |                                               |           | Korndichte                       | / Überkorn   | $ ho_{	ext{s\"{u}}}$ in g/cm     | 1 <sup>3</sup> : | -          |
|              | М           | lasse         | e:               |                                                                                                        | 4,5                                                     | kg                                            |           | Wassergeh                        | nalt / Überk | orn $w_{\ddot{\mathrm{u}}}$ in % | ΄ο:              | -          |
|              | F           | allhö         | he               | :                                                                                                      | 450                                                     | mm                                            |           | Probe Nr.:                       |              |                                  |                  | -          |
|              | ٧           | ersu          | ch               | Nr.                                                                                                    |                                                         |                                               | 1         | 2                                | 3            | 4                                | 5                | 6          |
|              | Z           | ylind         | er               |                                                                                                        | $m_Z$                                                   | g                                             | 12396     | 12396                            | 12396        | 12396                            | 12396            | 12396      |
| Dichte       | fe          | uch           | e F              | Probe + Zylinder                                                                                       | $m_1 + m_Z$                                             | g                                             | 16635     | 16709                            | 16727        | 16738                            | 16928            | 17054      |
|              | fe          | uch           | e F              | Probe                                                                                                  | $m_{\mathrm{f}}$                                        | g                                             | 4239      | 4313                             | 4331         | 4342                             | 4532             | 4658       |
|              | D           | ichte         | )                |                                                                                                        | $\rho = m_f / V_Z$                                      | g/cm <sup>3</sup>                             | 1,919     | 1,953                            | 1,961        | 1,966                            | 2,052            | 2,109      |
|              | a           | b*            | c                |                                                                                                        |                                                         |                                               |           |                                  |              |                                  |                  |            |
|              | 1           | 4             | 1                | Behälter                                                                                               | $m_{B}$                                                 | g                                             | 365,8     | 305,7                            | 314,2        | 488,2                            | 395,1            | 445,3      |
| halt         | 2           | 2             | 3                | trockene Probe + Behälter                                                                              | $m_{\rm d}$ + $m_{\rm B}$                               | g                                             | 803,7     | 665,8                            | 697,9        | 929,9                            | 746,0            | 820,5      |
| erge         | 3           | 1             | 2                | Behälter + feuchte Probe                                                                               | m <sub>B</sub> +m <sub>f</sub>                          | g                                             | 811,7     | 676,5                            | 713,5        | 955,3                            | 769,0            | 852,4      |
| Wassergehalt | 4           | 5             | 4                | Wasser                                                                                                 | $m_{W}$                                                 | g                                             | 8,0       | 10,7                             | 15,6         | 25,4                             | 23,0             | 31,9       |
|              | 5           | 3             | 5                | trockene Probe                                                                                         | $m_{\rm d}$                                             | g                                             | 437,9     | 360,1                            | 383,7        | 441,7                            | 350,9            | 375,2      |
|              | W           | /ass          | erg              | ehalt w = (m <sub>W</sub> /                                                                            | m <sub>d</sub> ) × 100 %                                | %                                             | 1,83      | 2,97                             | 4,07         | 5,75                             | 6,55             | 8,50       |
|              | Tı          | rock          | enc              | dichte $ ho_c$                                                                                         | $\frac{\rho}{1 + \frac{w}{100}}$                        | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,885     | 1,896                            | 1,884        | 1,859                            | 1,925            | 1,943      |
| * Anm        | ner         | kung          | a)<br>b)         | Zeilenfolge<br>bei Trocknen von Teilprobei<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenn | e der Gesam                                             | •                                             | e am Ende | des Gesam                        | tversuches   |                                  |                  |            |
| Überkorn     |             | orrig<br>/ass |                  | er ehalt $w' = w \cdot \left(1 - \frac{\ddot{u}}{100}\right)$                                          | $ +\frac{w_{\ddot{u}}\cdot\ddot{u}}{100}$               | %                                             |           |                                  |              |                                  |                  |            |
| Übe          |             | orrig<br>rock |                  | e dichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) +$                               | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{\text{sû}}$ | t/m <sup>3</sup>                              |           |                                  |              |                                  |                  |            |
| Beme         | erk         | ung           |                  |                                                                                                        |                                                         |                                               |           |                                  |              | Datum:                           | 25.03.08         |            |
| Mate         | rial<br>nt. | l bei         | m F              | Bestimmung der Trochendic<br>Proctor-Verfahren gebrochei<br>ch nimmt die Trockendichte                 | n wird und es                                           |                                               |           |                                  |              | Laborant:                        | Wesche,          | Dominik    |

bm11 ®bex0'

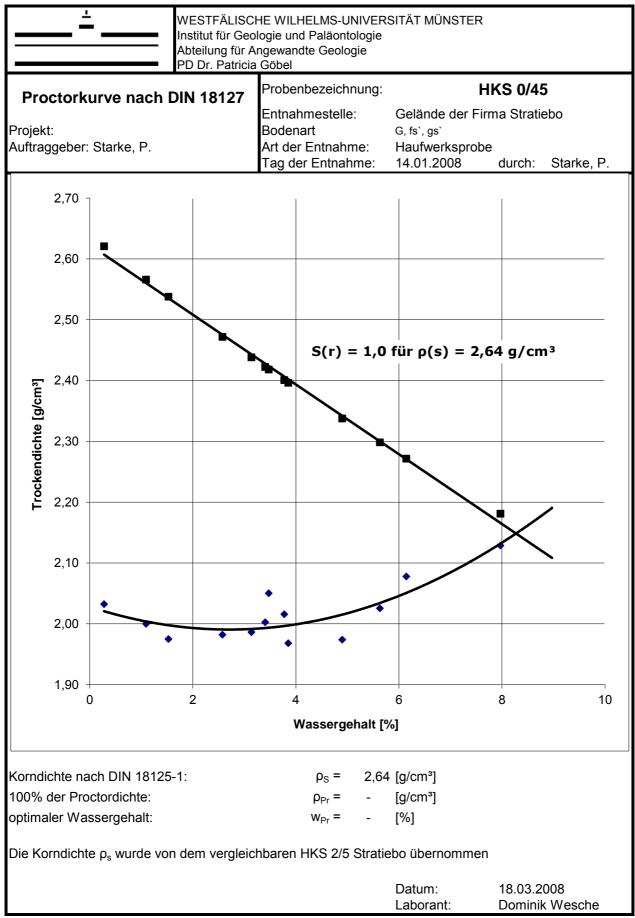


Anhang: WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER Institut für Geologie und Paläontologie Abteilung für Angewandte Geologie PD Dr. Patricia Göbel Bodendetails: Bestimmung der Korngrößenverteilung Entnahmestelle: Gelände der Firma Stratiebo durch Siebung nach DIN 18123 Tiefe: kΑ Art der Entnahme: Haufwerksbeprobung Entnahme am: durch: Starke, Phillip Projekt: Geohydraulische Untersuchungen an wasserdurchlässigen Flächenbefestigungen 14.01.2008 Bezeichnung HKS 0/45 HKS 0/45 nach dem Proctor-Versuch der Probe Probe Nr. Masse der trockenen 14666,5 2729,4 Probe  $m_d$  in g Einwaage des U=79,9  $C_C$ =6,6  $k_f$ =6,7\*10^-4 Siebanteils me in g Maschenweite Rückstand Rückstand Durchg./ Rückst. Durchg./ Rückst.  $(m_{\rm R}/\sum m_{\rm R})$  $(m_{\rm R}/\sum m_{\rm R})$ %  $m_R$ %  $m_R$ % % mm g g 0,00 100,00 45,0 0,00 31,5 2484,2 16,94 83,06 0,00 0,00 100,00 22,4 2512,7 17,13 65,93 734,1 26,90 72,95 63,99 16,0 1919,6 13,09 52,84 243,2 8,91 1496,3 10,20 11,2 42,64 278,4 10,20 53,73 47,69 1049,2 7,15 35,48 163,9 6,00 8,0 7,47 5,0 1096.1 28,01 220.7 8.09 39,56 1178,9 8,04 306,0 28,28 2,0 19,97 11,21 0,71 928,7 6,33 13,64 259,8 9,52 18,71 13,46 0,25 552,3 3,77 9,87 142,4 5,22 10,53 0,09 328,8 2,24 7,63 79,6 2,92 0,063 78,4 0,53 0,23 10,30 7,10 6,2 Schale < 0,063 1040,9 7,10 279,6 10,24 0,00 0,00 Summe  $(\sum m_R)$ 14666,1 2713,9 99,43 100,00 Verlust  $(m_e - \sum m_R)$ 0,4 15.5 Bemerkung: (z.B. Kornform usw.) Datum: 7. + 28.3.2008 Siebung des Hartkalksteinschotters HKS 0/32 am 7.3.2008 durch Kaul, V. Laborant: Kaul, V.

®bex07

Wesche, D.

Siebung des HKS 0/32 nach dem Proctor-Verfahren am 28.3.2008 durch Wesche, D.

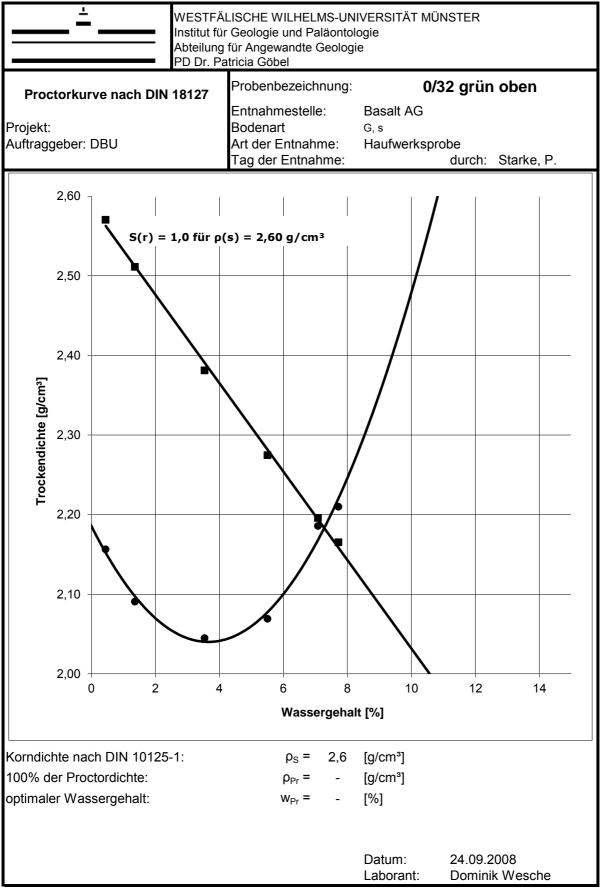

Der Massenverlust von 15,5 g entpricht einem Anteil von 0,568 %

| Ab           | teil       | ung            | für .            |                                                                                                       | ÄLISCHE<br>.MS-UNIVER<br>.ER                              | SITÄT                                         |           |            |              | Anlage:<br>zu:                        |                  |            |
|--------------|------------|----------------|------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|-----------|------------|--------------|---------------------------------------|------------------|------------|
|              | <i>D</i> 1 | . 1 at         |                  | CODE                                                                                                  |                                                           |                                               |           | Entnahme   | stelle:      | Gelände d                             | er Firma S       | Stratiebo  |
| Pro          | C          | tor            | ve               | ersuch nach DIN 1                                                                                     | 8127                                                      |                                               |           | Tiefe:     |              | k.A.                                  |                  |            |
|              |            |                |                  |                                                                                                       |                                                           |                                               |           | Bodenart:  |              | G, fs`, gs`                           |                  |            |
|              |            |                | H                | IKS 0/45                                                                                              |                                                           |                                               |           | Art der En | tn.:         | Haufwerks                             | sprobe           |            |
| Proje        | kt         | Nr.:           |                  | Auftraggeber: Sta                                                                                     | rke, Phillip                                              |                                               |           | Entn. am:  | 14.01.2008   |                                       | durch:           | Starke, P. |
|              |            | Ve             | rsu              | chszylinder                                                                                           |                                                           |                                               |           | Anzahl der | Schichten:   |                                       |                  | 3          |
|              | D          | urch           | me               | sser d <sub>1</sub> :                                                                                 | 150                                                       | mm                                            |           | Anzahl der | Schläge pi   | o Schicht:                            |                  | 22         |
|              | Н          | öhe            | h <sub>1</sub> : |                                                                                                       | 125                                                       | mm                                            |           | zulässiges | Größtkorn    | in mm:                                |                  | 45         |
|              | V          | olum           | nen              | Versuchszylinder V <sub>z</sub> :                                                                     | 2208,93                                                   | cm <sup>3</sup>                               |           | Anteil des | Überkornes   | <i>ü</i> in %:                        |                  | -          |
|              |            | Fa             | llge             | wicht                                                                                                 |                                                           |                                               |           | Korndichte | / Überkorn   | $\rho_{s0}$ in g/cn                   | n <sup>3</sup> : | -          |
|              | М          | asse           |                  |                                                                                                       | 4,5                                                       | ka                                            |           |            | halt / Überk |                                       |                  | _          |
|              | Fá         | allhö          | he:              |                                                                                                       |                                                           | mm                                            |           | Probe Nr.: |              | ű                                     |                  | _          |
|              |            | ersu           | _                |                                                                                                       |                                                           |                                               | 1         | 2          | 3            | 4                                     | 5                | 6          |
|              | Zy         | ylind          | er               |                                                                                                       | $m_Z$                                                     | g                                             | 12399     | 12399      | 12399        | 12399                                 | 12399            | 12399      |
| Dichte       | fe         | ucht           | e F              | Probe + Zylinder                                                                                      | $m_1 + m_Z$                                               | g                                             | 16901     | 16865      | 16828        | 16890                                 | 16914            | 16924      |
| ă            | fe         | ucht           | e F              | Probe                                                                                                 | $m_{\mathrm{f}}$                                          | g                                             | 4502      | 4466       | 4429         | 4491                                  | 4515             | 4525       |
|              | Di         | ichte          | <u>,</u>         |                                                                                                       | $\rho = m_f / V_Z$                                        | g/cm <sup>3</sup>                             | 2,038     | 2,022      | 2,005        | 2,033                                 | 2,044            | 2,049      |
|              | a          | b <sup>*</sup> | c <sup>*</sup>   |                                                                                                       | ,                                                         | 3                                             | ,         | ŕ          | ,            | , , , , , , , , , , , , , , , , , , , | ,                | ,          |
|              | 1          | + +            | 1                | Behälter                                                                                              | $m_{B}$                                                   | g                                             | 262,0     | 314,2      | 361,8        | 362,1                                 | 195,0            | 224,7      |
| aĦ           | 2          | +              |                  | trockene Probe + Behälter                                                                             | $m_{\rm d} + m_{\rm B}$                                   | g                                             | 947,9     | 873,98     | 938,2        | 1064,5                                | 758,0            | 881,1      |
| rgeh         | 3          | +              |                  | Behälter + feuchte Probe                                                                              | $m_{\rm B} + m_{\rm f}$                                   |                                               | 949,8     | 880,1      | 947,0        | 1082,6                                | 779,7            | 901,7      |
| Wassergehalt | 7          | +              | _                | Wasser                                                                                                |                                                           | g                                             | 1,9       | 1          | 8,8          | 18,1                                  | 21,7             | · ·        |
| ×            | <u> </u>   | 4              |                  |                                                                                                       | m <sub>W</sub>                                            | g                                             | -         | 6,12       | -            |                                       |                  | 20,6       |
|              | г          |                |                  | trockene Probe                                                                                        | <i>m</i> <sub>d</sub>                                     | g                                             | 685,9     | 559,78     | 576,4        | 702,4                                 | 563              | 656,4      |
|              | W          | ass            | erg              |                                                                                                       | m <sub>d</sub> ) × 100 %                                  | %                                             | 0,28      | 1,09       | 1,53         | 2,58                                  | 3,85             | 3,14       |
|              | Tr         | rock           | end              | lichte $ ho_d$                                                                                        | $t = \frac{\rho}{1 + \frac{w}{100}}$                      | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 2,03      | 2,00       | 1,97         | 1,98                                  | 1,97             | 1,99       |
| * Ann        | ner        |                | a)<br>b)         | eilenfolge<br>bei Trocknen von Teilprober<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenm | e der Gesam                                               | '                                             | e am Ende | des Gesam  | itversuches  |                                       |                  |            |
| Überkorn     |            | orrigi<br>/ass |                  | er ehalt $w = w \cdot \left(1 - \frac{\ddot{u}}{100}\right)$                                          | $\frac{1}{100} + \frac{w_{\ddot{u}} \cdot \ddot{u}}{100}$ | %                                             |           |            |              |                                       |                  |            |
| Übe          |            | orrigi         |                  | e lichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0$                            | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{\text{sú}}$   | t/m³                                          |           |            |              |                                       |                  |            |
| Beme         | erk        | ung            |                  | Versuch 1 mit ofentrockene                                                                            | m Boden                                                   |                                               |           |            |              | Datum:                                | 18.03.08         |            |
|              |            |                |                  | Bestimmung der Bodenart o                                                                             | durch Kaul, Vi                                            | iktoria                                       |           |            |              | Laborant:                             | Wesche,          | Dominik    |
| bm1          | _          |                |                  |                                                                                                       |                                                           |                                               |           |            |              |                                       |                  | ®bex07     |

bm11 ®bex07

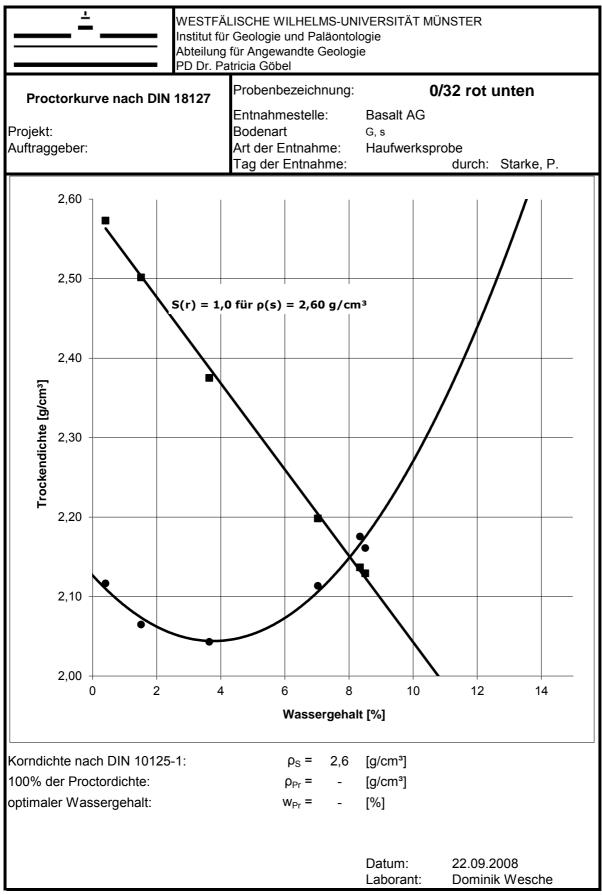
| _            |                |                | _                |                                                                           | ÄLISCHE                                                | - · - · ·                                     |               |                                       |               | Anlage:                  |               |               |
|--------------|----------------|----------------|------------------|---------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|---------------|---------------------------------------|---------------|--------------------------|---------------|---------------|
| Abt          | eilu           | ng i           | für .            | MÜNST<br>ologie und Paläontologie<br>Angewandte Geologie                  | .ms-Univer<br>er                                       | SITÄT                                         |               |                                       |               | zu:                      |               |               |
| PD           | Dr.            | Pat            | rici             | a Göbel                                                                   |                                                        |                                               |               | Entnahmes                             | telle:        | Gelände de               | er Firma S    | tratieho      |
| Pro          | ct             | or             | νε               | ersuch nach DIN 1                                                         | 8127                                                   |                                               |               | Tiefe:                                | otolio.       | k.A.                     |               | ti atiobo     |
|              |                | _              |                  |                                                                           |                                                        |                                               |               | Bodenart:                             |               | G, fs`, gs`              |               |               |
|              |                |                | $\vdash$         | IKS 0/45                                                                  |                                                        |                                               |               | Art der Ent                           | n.:           | Haufwerks                | probe         |               |
| Projel       | ct N           | lr.:           |                  | Auftraggeber: Sta                                                         | rke, Phillip                                           |                                               |               | Entn. am: 1                           | 14.01.2008    |                          | durch:        | Starke, P     |
|              |                | Ve             | rsu              | chszylinder                                                               |                                                        |                                               |               | Anzahl der                            | Schichten:    |                          |               | 3             |
|              | Du             | rch            | me               | sser d <sub>1</sub> :                                                     | 150                                                    | mm                                            |               | Anzahl der                            | Schläge pr    | o Schicht:               |               | 22            |
|              | Hö             | he             | h <sub>1</sub> : |                                                                           | 125                                                    | mm                                            |               | zulässiges                            | Größtkorn     | in mm:                   |               | 45            |
|              | Vo             | lum            | nen              | Versuchszylinder V <sub>z</sub> :                                         | 2208,93                                                | cm³                                           |               | Anteil des                            | Überkornes    | <i>ü</i> in %:           |               | _             |
|              |                | Fal            | llge             | wicht                                                                     |                                                        |                                               |               | Korndichte                            | / Überkorn    | $ ho_{	ext{su}}$ in g/cm | 3.            | _             |
|              | Ма             |                | Ū                |                                                                           | 4,5                                                    | ka                                            |               |                                       |               | orn w <sub>o</sub> in %  |               | _             |
|              | Fal            |                |                  |                                                                           |                                                        | mm                                            |               | Probe Nr.:                            |               | ŭ                        |               |               |
|              |                | rsu            |                  |                                                                           |                                                        |                                               | 7             | 8                                     | 9             | 10                       | 11            | 12            |
|              | Zyl            | ind            | er               |                                                                           | $m_Z$                                                  | g                                             | 12399         | 12399                                 | 12399         | 12399                    | 12399         | 12399         |
| Dichte       | feu            | cht            | e F              | Probe + Zylinder                                                          | $m_1 + m_Z$                                            | g                                             | 16973         | 16973                                 | 17085         | 17020                    | 17125         | 17271         |
| Dic          | feu            | cht            | e F              | Probe                                                                     | $m_{\mathrm{f}}$                                       | g                                             | 4574          | 4574                                  | 4686          | 4621                     | 4726          | 4872          |
|              | Dic            | chte           | )                |                                                                           | $\rho = m_{\rm f}/V_{\rm Z}$                           | g/cm <sup>3</sup>                             | 2,071         | 2,071                                 | 2,121         | 2,092                    | 2,139         | 2,206         |
|              | a <sup>*</sup> | b <sup>*</sup> | c <sup>*</sup>   |                                                                           | , , , _                                                | 9                                             | ,             | , , , , , , , , , , , , , , , , , , , | ,             | ,                        | ,             |               |
|              | 1              | 4              | 1                | Behälter                                                                  | $m_{\mathrm{B}}$                                       | g                                             | 261,3         | 229,2                                 | 225,4         | 224,5                    | 192,3         | 261,3         |
| alt          | 2              | -              |                  | trockene Probe + Behälter                                                 | $m_{\rm d} + m_{\rm B}$                                | g                                             | 834,7         | 834,3                                 | 824,0         | 802,1                    | 774,9         | 813,0         |
| rgeh         | 3              | 1              |                  | Behälter + feuchte Probe                                                  | $m_{\rm B}$ + $m_{\rm f}$                              | g                                             | 862,8         | 854,9                                 | 844,8         | 823,9                    | 807,7         | 846,9         |
| Wassergehalt | 4              | $\dashv$       |                  | Wasser                                                                    | $m_{\rm W}$                                            |                                               | 28,1          | 20,6                                  | 20,8          | 21,8                     | 32,8          | 33,9          |
| >            | 5              | _              |                  | trockene Probe                                                            |                                                        | g                                             |               | 605,1                                 |               |                          |               | +             |
|              |                |                | _                |                                                                           | $m_{\rm d}$ $m_{\rm d}$ × 100 %                        | g<br>%                                        | 573,4<br>4,90 | 3,40                                  | 598,6<br>3,47 | 577,6<br>3,77            | 582,6<br>5,63 | 551,7<br>6,14 |
|              |                |                |                  |                                                                           | $a = \frac{\rho}{1 + \frac{w}{}}$                      | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,97          | 2,00                                  | 2,05          | 2,02                     | 2,03          | 2,08          |
| * Anm        | erk            | unc            | y: 7             | 'eilenfolge                                                               | 100                                                    | VIII                                          |               |                                       |               | <u> </u>                 |               | 1             |
| ,            | <i></i>        | ui ig          |                  | bei Trocknen von Teilprobei                                               | 1                                                      |                                               |               |                                       |               |                          |               |               |
|              |                |                | ′                | bei bekannter Trockenmass                                                 |                                                        | •                                             |               |                                       |               |                          |               |               |
|              |                |                | c) .             | bei Ermittlung der Trockenm                                               |                                                        |                                               | e am Ende     | e des Gesan                           | ntversuches   | S<br>                    | ı             | <del></del>   |
| Überkorn     | kor<br>Wa      | rigi<br>ass    | iert<br>erg      | er ehalt $w' = w \cdot \left(1 - \frac{\ddot{u}}{100}\right)$             | $+\frac{w_{\rm u}\cdot\ddot{u}}{100}$                  | %                                             |               |                                       |               |                          |               |               |
| Übe          | kor<br>Tro     | rigi           | iert             | elichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0$ | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{s\dot{u}}$ | t/m <sup>3</sup>                              |               |                                       |               |                          |               |               |
| Beme         | rku            | ıng:           |                  |                                                                           |                                                        |                                               |               |                                       |               | Datum:                   | 18.03.08      | 3             |
|              |                |                |                  | te Teilmengen V1 - V7 wurd<br>rünglicher Wassergehalt wu                  |                                                        |                                               |               |                                       |               | Laborant:                | Wesche,       | Dominik       |

| =            |                |              | _                | WILHEL                                                                                                 | ÄLISCHE<br>.ms-Univer                                  | SITÄT                     |           |             |               | Anlage:<br>zu:           |            |           |
|--------------|----------------|--------------|------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------|-----------|-------------|---------------|--------------------------|------------|-----------|
| Abt          | eilu           | ung          | für              | MÜNST<br>ologie und Paläontologie<br>Angewandte Geologie<br>a Göbel                                    | ER                                                     |                           |           |             |               |                          |            |           |
|              |                |              |                  |                                                                                                        |                                                        |                           |           | Entnahmes   | stelle:       | Gelände d                | er Firma S | Stratiebo |
| Pro          | C              | tor          | νe               | ersuch nach DIN 1                                                                                      | 8127                                                   |                           |           | Tiefe:      |               | k.A.                     |            |           |
|              |                |              |                  |                                                                                                        |                                                        |                           |           | Bodenart:   |               | G, fs`, gs`              |            |           |
|              |                |              | H                | IKS 0/45                                                                                               |                                                        |                           |           | Art der Ent | n.:           | Haufwerks                | probe      |           |
| Proje        | kt I           | Nr.:         |                  | Auftraggeber: Sta                                                                                      | rke, Phillip                                           |                           |           | Entn. am:   | 14.01.2008    |                          | durch:     | Starke, P |
|              |                | Ve           | rsu              | chszylinder                                                                                            |                                                        |                           |           | Anzahl der  | Schichten:    |                          |            | 3         |
|              | Dι             | urch         | me               | esser d <sub>1</sub> :                                                                                 | 150                                                    | mm                        |           | Anzahl der  | Schläge pr    | o Schicht:               |            | 22        |
|              | Hö             | öhe          | h <sub>1</sub> : |                                                                                                        | 125                                                    | mm                        |           | zulässiges  | Größtkorn     | n mm:                    |            | 45        |
|              | Vo             | olun         | nen              | Versuchszylinder $V_z$ :                                                                               | 2208,93                                                | cm³                       |           | Anteil des  | Überkornes    | <i>ü</i> in %:           |            | -         |
|              |                | Fa           | llge             | ewicht                                                                                                 |                                                        |                           |           | Korndichte  | / Überkorn    | $ ho_{	ext{sü}}$ in g/cm | 3.         | -         |
|              | M              | asse         | e:               |                                                                                                        | 4,5                                                    | kg                        |           | Wassergel   | nalt / Überko | orn w <sub>ü</sub> in %  | :          | -         |
|              | Fa             | allhö        | he               | :                                                                                                      | 450                                                    | mm                        |           | Probe Nr.:  |               |                          |            | -         |
|              | Ve             | ersu         | ch               | Nr.                                                                                                    |                                                        |                           | 13        |             |               |                          |            |           |
|              | Ζy             | /lind        | er               |                                                                                                        | $m_Z$                                                  | g                         | 12399     |             |               |                          |            |           |
| Dichte       | fe             | uch          | e F              | Probe + Zylinder                                                                                       | $m_1 + m_Z$                                            | g                         | 17475     |             |               |                          |            |           |
|              | fe             | uch          | e F              | Probe                                                                                                  | $m_{\mathrm{f}}$                                       | g                         | 5077      |             |               |                          |            |           |
|              | Di             | chte         | ;                |                                                                                                        | $\rho = m_f / V_Z$                                     | g/cm <sup>3</sup>         | 2,298     |             |               |                          |            |           |
|              | a <sup>*</sup> | b*           | c <sup>*</sup>   |                                                                                                        |                                                        |                           |           |             |               |                          |            |           |
|              | 1              | +            | 1                | Behälter                                                                                               | $m_{B}$                                                | g                         | 314,3     |             |               |                          |            |           |
| nalt         | 2              | 2            | 3                | trockene Probe + Behälter                                                                              | $m_{\rm d} + m_{\rm B}$                                | g                         | 947,7     |             |               |                          |            |           |
| Wassergehalt | 3              | +            |                  | Behälter + feuchte Probe                                                                               | $m_{\rm B}$ + $m_{\rm f}$                              | g                         | 998,2     |             |               |                          |            |           |
| /ass         | 4              | 5            |                  | Wasser                                                                                                 | m <sub>W</sub>                                         | g                         | 50,5      |             |               |                          |            |           |
| >            | 5              | +            | _                | trockene Probe                                                                                         | $m_{d}$                                                | g                         | 633,4     |             |               |                          |            |           |
|              | ⊢              | ш            |                  |                                                                                                        | m <sub>d</sub> ) × 100 %                               | %                         | 7,97      |             |               |                          |            |           |
|              | <u> </u>       |              |                  |                                                                                                        | $=\frac{\rho}{1+\frac{w}{100}}$                        | g/cm <sup>3</sup><br>bzw. | 2,13      |             |               |                          |            |           |
| *Anm         | neri           | kung         | a)<br>b)         | Zeilenfolge<br>bei Trocknen von Teilprober<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenm | n<br>e der Gesam                                       |                           | e am Ende | e des Gesan | ntversuches   |                          |            |           |
| korn         |                | orrig<br>ass |                  | er ehalt $w = w \cdot \left(1 - \frac{\ddot{u}}{100}\right)$                                           | $\left(\frac{w_{\ddot{u}} \cdot \ddot{u}}{100}\right)$ | %                         |           |             |               |                          |            |           |
| Überkorn     |                | rrig         |                  | e dichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0$                             | $0,9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{s\dot{u}}$ | t/m³                      |           |             |               |                          |            |           |
| Beme         | erk            | ung          |                  |                                                                                                        |                                                        |                           |           |             |               | Datum:                   | 18.03.0    | 8         |
|              |                | _            |                  |                                                                                                        |                                                        |                           |           |             |               | Laborant:                |            |           |



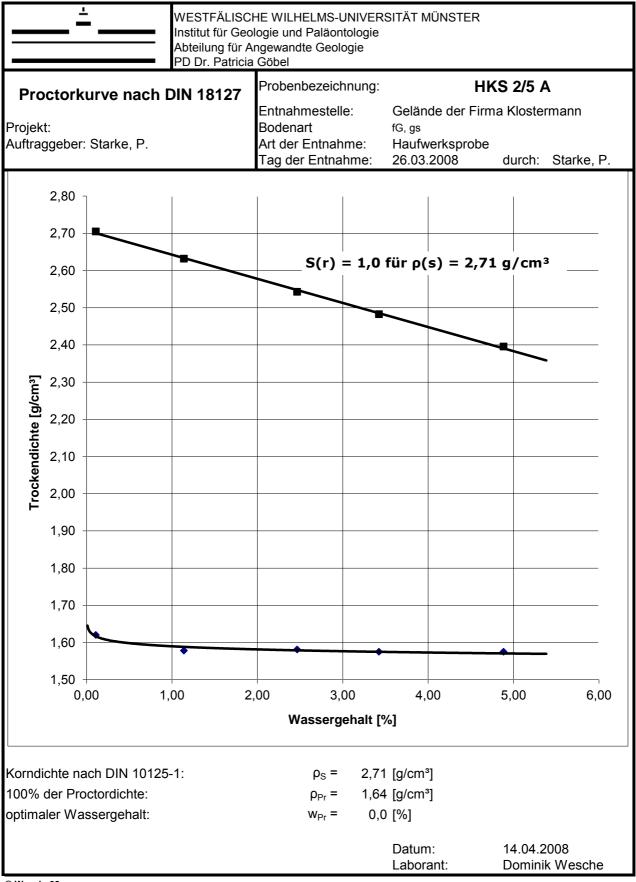

| =            |          |      |                | WIL                                                                                           | STFÄLISCHE<br>HELMS-UNIVER<br>NSTER                                          | SITÄT                                         |           |                                                              |              | Anlage:<br>zu:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |            |
|--------------|----------|------|----------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-----------|--------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| Abt          | teil     | ung  | j für          | eologie und Paläontologie<br>Angewandte Geologie<br>ia Göbel                                  |                                                                              |                                               |           |                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |
|              | С        | to   | rve<br>O       | ersuch nach DII<br>0/32 rot/grün<br>Auftraggeber:                                             |                                                                              |                                               |           | Entnahmes<br>Tiefe:<br>Bodenart:<br>Art der Ent<br>Entn. am: |              | Basalt AG<br>k.A.<br>G<br>Haufwerks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Starke, P. |
|              |          | V    | ersu           | uchszylinder                                                                                  |                                                                              |                                               |           | Anzahl der                                                   | Schichten    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 3          |
|              | D        |      |                | esser d₁:                                                                                     | 100                                                                          | mm                                            |           | Anzahl der                                                   | Schläge p    | ro Schicht:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 25         |
|              | Н        | öhe  | e h 1          | :                                                                                             | 120                                                                          | mm                                            |           | zulässiges                                                   | Größtkorn    | in mm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 32         |
|              |          |      |                | n Versuchszylinder V <sub>z</sub> :                                                           | 942,48                                                                       | cm³                                           |           | Anteil des                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -          |
|              |          | F    | allge          | ewicht                                                                                        |                                                                              |                                               |           | Korndichte                                                   | / Überkorr   | n $ ho_{	extstyle 	extsty$ | m³:        | -          |
|              | M        | lass | se:            |                                                                                               | 2,5                                                                          | kg                                            |           | Wassergel                                                    | nalt / Überk | orn w <sub>ü</sub> in <sup>9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>%</b> : | -          |
|              | F        | allh | öhe            | :                                                                                             |                                                                              | mm                                            |           | Probe Nr.:                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -          |
|              | ٧        | ers  | uch            | Nr.                                                                                           |                                                                              |                                               | 1         | 2                                                            | 3            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5          |            |
| 4)           | Z        | ylin | der            |                                                                                               | $m_Z$                                                                        | g                                             | 6478      | 6478                                                         | 6478         | 6478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6478       |            |
| Dichte       | fe       | ucl  | nte F          | Probe + Zylinder                                                                              | $m_1 + m_Z$                                                                  | g                                             | 8485      | 8501                                                         | 8434         | 8485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8664       |            |
|              | fe       | ucl  | nte F          | Probe                                                                                         | $m_{\mathrm{f}}$                                                             | g                                             | 2007      | 2023                                                         | 1956         | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2186       |            |
|              | D        | ich  | te             |                                                                                               | $\rho = m_{\rm f}/V_{\rm Z}$                                                 | g/cm <sup>3</sup>                             | 2,13      | 2,15                                                         | 2,08         | 2,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,32       |            |
|              | a        | * b  | c <sup>*</sup> |                                                                                               |                                                                              |                                               |           |                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |
|              | 1        | 4    | 1              | Behälter                                                                                      | m <sub>B</sub>                                                               | g                                             | 262,4     | 232,7                                                        | 262,5        | 229,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 220,7      |            |
| əhalt        | 2        | 2    | 3              | trockene Probe + Behäl                                                                        | ter $m_d + m_B$                                                              | g                                             | 809,7     | 888,5                                                        | 845,7        | 934,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1004,5     |            |
| Wassergehalt | 3        | 1    | 2              | Behälter + feuchte Prob                                                                       | $m_{\rm B} + m_{\rm f}$                                                      | g                                             | 812,1     | 895,3                                                        | 854,5        | 962,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1070,1     |            |
| Was          | 4        | . 5  | 4              | Wasser                                                                                        | $m_{\mathrm{W}}$                                                             | g                                             | 2,4       | 6,8                                                          | 8,8          | 27,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65,6       |            |
|              | 5        | 3    | 5              | trockene Probe                                                                                | $m_{d}$                                                                      | g                                             | 547,3     | 655,8                                                        | 583,2        | 705,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 783,8      |            |
|              | W        | /as  | serg           | gehalt w = (m                                                                                 | $l_W / m_d) \times 100 \%$                                                   | %                                             | 0,44      | 1,04                                                         | 1,51         | 3,94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,37       |            |
|              | Tı       | roc  | kend           | dichte                                                                                        | $\rho_d = \frac{\rho}{1 + \frac{w}{100}}$                                    | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 2,12      | 2,12                                                         | 2,04         | 2,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,14       |            |
| *Anm         | ner      | kur  | a)<br>b)       | Zeilenfolge<br>bei Trocknen von Teilpro<br>bei bekannter Trockenm<br>bei Ermittlung der Trock | asse der Gesam                                                               | e am Ende                                     | des Gesam | tversuches                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |
| Überkorn     |          |      | giert<br>serg  | ter $w = w \cdot \left(1 - \frac{1}{1}\right)$                                                | $\left(\frac{\ddot{u}}{00}\right) + \frac{w_{\ddot{u}} \cdot \ddot{u}}{100}$ | %                                             |           |                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |
| Über         | ko<br>Ti | orri | giert<br>kend  | te dichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right)$                       | $+0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{su}$                            | t/m³                                          |           |                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |
| Beme         | erk      | un   | g:             |                                                                                               |                                                                              |                                               |           |                                                              |              | Datum:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.09.08   |            |
|              |          |      |                |                                                                                               |                                                                              |                                               |           |                                                              |              | Laborant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wesche,    | Dominik    |
| bm11         | Г        |      |                |                                                                                               |                                                                              |                                               |           |                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ®bex0      |

-----

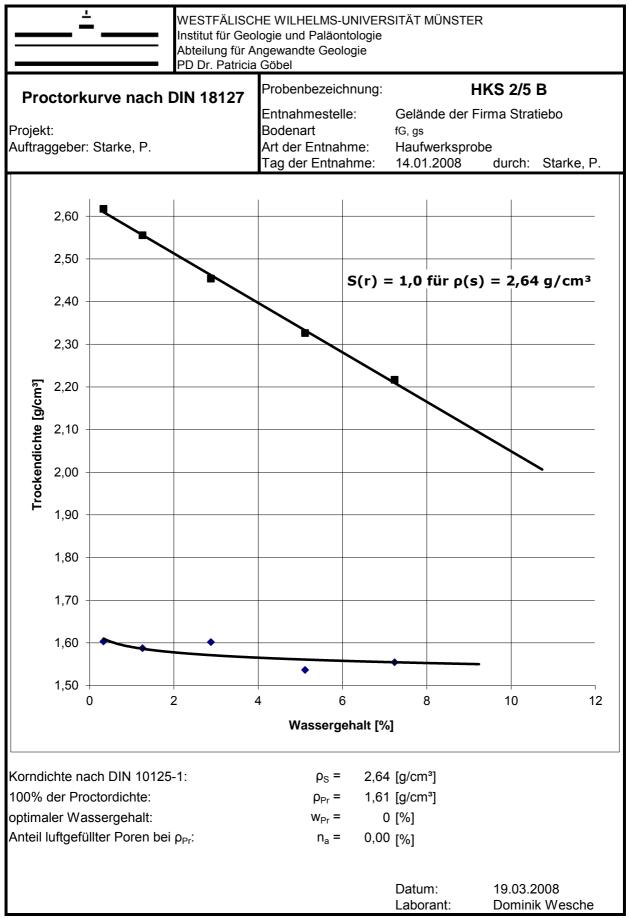

| =            |        |                  |              | <u> </u>                   |                                                                          | ÄLISCHE                                                   | *-                                            |           |             |            | Anlage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |            |
|--------------|--------|------------------|--------------|----------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|-----------|-------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| Ab           | tei    | ilung            | j für        | Angewandte                 | MÜNST Paläontologie                                                      | .ms-Univer<br>er                                          | SITAT                                         |           |             |            | zu:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |            |
| PD           | D      | r. Pa            | atric        | ia Göbel                   |                                                                          |                                                           |                                               |           | Entnahmes   | stelle:    | Basalt AG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u> |            |
| Pro          | oc     | to               | rv           | ersuch                     | nach DIN 1                                                               | 8127                                                      |                                               |           | Tiefe:      | stolic.    | k.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,        |            |
|              |        |                  |              |                            |                                                                          |                                                           |                                               |           | Bodenart:   |            | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |
|              |        |                  | C            | )/32 rc                    | ot/grün                                                                  |                                                           |                                               |           | Art der Ent | n.:        | Haufwerks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sprobe   |            |
| Proje        | kt     | Nr.              | :            | ı                          | Auftraggeber: DB                                                         | U                                                         |                                               |           | Entn. am:   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | durch:   | Starke, P. |
|              |        | ٧                | ersı         | uchszylinde                | r                                                                        |                                                           |                                               |           | Anzahl der  | Schichten  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 3          |
|              |        | Durc             | hm           | esser d <sub>1</sub> :     |                                                                          | 100                                                       | mm                                            |           | Anzahl der  | Schläge p  | ro Schicht:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 25         |
|              | H      | löhe             | e h 1        | :                          |                                                                          | 120                                                       | mm                                            |           | zulässiges  | Größtkorn  | in mm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 3          |
|              | ١      | /olu             | mer          | n Versuchsz                | zylinder V <sub>z</sub> :                                                | 942,48                                                    | cm <sup>3</sup>                               |           | Anteil des  | Überkorne  | s <i>ü</i> in %:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | -          |
|              |        | F                | allg         | ewicht                     |                                                                          |                                                           |                                               |           | Korndichte  | / Überkorr | n $ ho_{	extstyle 	extsty$ | m³:      | -          |
|              | Ν      | /las             | _            |                            |                                                                          | 2,5                                                       | kg                                            |           | Wassergel   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | _          |
|              | F      | allh             | iöhe         | :                          |                                                                          |                                                           | mm                                            |           | Probe Nr.:  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -          |
|              | ١      | /ers             | uch          | Nr.                        |                                                                          |                                                           |                                               | 6         | 7           | 8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
|              | Z      | Żylin            | der          |                            |                                                                          | $m_Z$                                                     | g                                             | 6478      | 6478        | 6478       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Dichte       | f      | euc              | nte          | Probe + Zyl                | inder                                                                    | $m_1 + m_Z$                                               | g                                             | 8468      | 8519        | 8696       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Di           | f      | euc              | nte          | Probe                      |                                                                          | $m_{\mathrm{f}}$                                          | g                                             | 1990      | 2041        | 2218       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
|              |        | Dich             | te           |                            |                                                                          | $\rho = m_f / V_Z$                                        | g/cm <sup>3</sup>                             | 2,11      | 2,17        | 2,35       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
|              | á      | a <sup>*</sup> b | * c*         |                            |                                                                          |                                                           |                                               |           |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
|              | H      | 1 4              | +            | Behälter                   |                                                                          | $m_{\mathrm{B}}$                                          | g                                             | 225,3     | 262,9       | 260,1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| nalt         | 1      | 2 2              | +            |                            | Probe + Behälter                                                         | $m_{\rm d} + m_{\rm B}$                                   | g                                             | 856,6     | 884,0       | 1137,4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Wassergehalt | H      | 3 1              | +            | -                          | feuchte Probe                                                            | $m_{\rm B}$ + $m_{\rm f}$                                 | g                                             | 870,9     | 907,7       | 1198,6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| /asse        | ۱      | 4 5              | +            | Wasser                     |                                                                          | m <sub>W</sub>                                            | g                                             | 14,3      | 23,7        | 61,2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| >            | H      | 5 3              | +            | trockene F                 | Prohe                                                                    | $m_{\rm d}$                                               | g                                             | 631,3     | 621,1       | 877,3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
|              | H      |                  |              | gehalt                     |                                                                          | m <sub>d</sub> ) × 100 %                                  | %                                             | 2,27      | 3,82        | 6,98       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1          |
|              | _      |                  |              | dichte                     |                                                                          | $r = \frac{\rho}{1 + \frac{w}{100}}$                      | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 2,06      | 2,09        | 2,20       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| * Ann        | пе     | rkui             | -            | Zeilenfolge<br>bei Trockn  | en von Teilprober                                                        |                                                           |                                               |           | 1           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1          |
|              | _      | _                | b)           | bei bekann                 | nter Trockenmass<br>ung der Trockenm                                     | e der Gesam                                               | •                                             | e am Ende | des Gesam   | tversuches | <u>.                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |            |
| korn         | k<br>V | orri<br>Vas      | gier<br>serç | ter<br>gehalt <sup>V</sup> | $v = w \cdot \left(1 - \frac{\ddot{u}}{100}\right)$                      | $\frac{1}{100} + \frac{w_{\ddot{u}} \cdot \ddot{u}}{100}$ | %                                             |           |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Überkorn     | k<br>T | orri<br>roc      | gier<br>ken  | te $ ho_{ m d}$            | $\hat{r} = \rho_{\rm d} \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0$ | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{so}$          | t/m³                                          |           |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Beme         | er     | kun              | g:           |                            |                                                                          |                                                           |                                               |           |             |            | Datum:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.09.08 | 3          |
|              |        |                  |              |                            |                                                                          |                                                           |                                               |           |             |            | Laborant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wesche,  | Dominik    |
| bm1          | 1      |                  |              |                            |                                                                          |                                                           |                                               |           |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ®bex07     |

|              |        |                 |                  | Westri                                                   | ÄLISCHE                         |                                               |           |              |            | Anlage:                                     |           |            |
|--------------|--------|-----------------|------------------|----------------------------------------------------------|---------------------------------|-----------------------------------------------|-----------|--------------|------------|---------------------------------------------|-----------|------------|
| Ab           | tei    | ilung           | für              |                                                          | MS-UNIVER                       | SITÄT                                         |           |              |            | zu:                                         |           |            |
|              |        | п. га           | HICH             | a Gobei                                                  |                                 |                                               |           | Entnahmes    | stelle:    | Basalt AG                                   |           |            |
| Pro          | O      | ctor            | ve               | ersuch nach DIN 1                                        | 8127                            |                                               |           | Tiefe:       | iono.      | k.A.                                        |           |            |
|              |        |                 |                  |                                                          |                                 |                                               |           | Bodenart:    |            | G, s                                        |           |            |
|              |        |                 | 0                | /32 grün oben                                            |                                 |                                               |           | Art der Ent  | n.:        | Haufwerks                                   | probe     |            |
| Proje        | kt     | t Nr.:          |                  | Auftraggeber: DB                                         | U                               |                                               |           | Entn. am:    |            |                                             | durch:    | Starke, P. |
|              |        | Ve              | rsu              | chszylinder                                              |                                 |                                               |           | Anzahl der   | Schichten  |                                             |           | 3          |
|              | С      | Durch           | me               | esser d <sub>1</sub> :                                   | 100                             | mm                                            |           | Anzahl der   | Schläge p  | ro Schicht:                                 |           | 25         |
|              | H      | Höhe            | h <sub>1</sub> : |                                                          | 120                             | mm                                            |           | zulässiges   | Größtkorn  | in mm:                                      |           | 32         |
|              | ٧      | /olun           | nen              | Versuchszylinder V <sub>z</sub> :                        | 942,48                          | cm³                                           |           | Anteil des l | Überkornes | s <i>ü</i> in %:                            |           | 3,47       |
|              |        | Fa              | llge             | ewicht                                                   |                                 |                                               |           | Korndichte   | / Überkorn | $ ho_{\mathrm{s}\ddot{\mathrm{u}}}$ in g/cn | n³:       | 2,60       |
|              | Ν      | Mass            |                  |                                                          | 2,5                             | kg                                            |           | Wassergeh    |            |                                             |           | 0,44       |
|              | F      | allhö           | he               | :                                                        |                                 | mm                                            |           | Probe Nr.:   |            |                                             |           | -          |
|              | ٧      | /ersu           | ch               | Nr.                                                      |                                 |                                               | 1         | 2            | 3          | 4                                           | 5         | 6          |
|              | z      | Zylind          | er               |                                                          | $m_Z$                           | g                                             | 6478      | 6478         | 6478       | 6478                                        | 6478      | 6478       |
| Dichte       | fe     | euch            | te F             | Probe + Zylinder                                         | $m_1 + m_Z$                     | g                                             | 8513      | 8467         | 8465       | 8529                                        | 8722      | 8683       |
| Ω            | fe     | euch            | te F             | Probe                                                    | $m_{\mathrm{f}}$                | g                                             | 2035      | 1989         | 1987       | 2051                                        | 2244      | 2205       |
|              |        | Dichte          | •                |                                                          | $\rho = m_{\rm f} / V_{\rm Z}$  | g/cm <sup>3</sup>                             | 2,16      | 2,11         | 2,11       | 2,18                                        | 2,38      | 2,34       |
|              | ٦      | a b             | c <sup>*</sup>   |                                                          |                                 | J                                             |           |              |            |                                             |           |            |
|              | H      | 1 4             | 1                | Behälter                                                 | $m_{B}$                         | g                                             | 262,7     | 229,3        | 232,6      | 220,8                                       | 262,4     | 391,0      |
| alt          | H      | 2 2             |                  | trockene Probe + Behälter                                | $m_{\rm d} + m_{\rm B}$         | _                                             | 878,4     | 928,3        | 792,9      | 828,4                                       | 1011,9    | 1134,7     |
| rgeh         | H      | 3 1             |                  | Behälter + feuchte Probe                                 | ·                               | g                                             |           |              |            |                                             |           |            |
| Wassergehalt | Ė      |                 |                  |                                                          | m <sub>B</sub> +m <sub>f</sub>  | g                                             | 881,1     | 938,0        | 813,3      | 862,9                                       | 1071,7    | 1189,1     |
| ×            | Ľ      | 4 5             |                  | Wasser                                                   | m <sub>W</sub>                  | g                                             | 2,7       | 9,7          | 20,4       | 34,5                                        | 59,8      | 54,4       |
|              | H      | 5 3             |                  | trockene Probe                                           | m <sub>d</sub>                  | g                                             | 615,7     | 699,0        | 560,3      | 607,6                                       | 749,5     | 743,7      |
|              | ۷      | Vass            | erg              | ehalt w = (m <sub>W</sub> /                              | m <sub>d</sub> ) × 100 %        | %                                             | 0,44      | 1,39         | 3,64       | 5,68                                        | 7,98      | 7,31       |
|              | T      | Γrock           | enc              | dichte $ ho_d$                                           | $=\frac{\rho}{1+\frac{w}{100}}$ | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 2,15      | 2,08         | 2,03       | 2,06                                        | 2,21      | 2,18       |
| * Ann        | ne     | rkun            |                  | Zeilenfolge                                              |                                 |                                               |           |              |            |                                             |           |            |
|              |        |                 | ,                | bei Trocknen von Teilprober<br>bei bekannter Trockenmass |                                 | tnrohe                                        |           |              |            |                                             |           |            |
|              |        |                 |                  | bei Ermittlung der Trockenm                              |                                 | •                                             | e am Ende | des Gesam    | tversuches |                                             |           |            |
| corn         |        | corrig<br>Vass  | iert             |                                                          |                                 |                                               | 0,44      | 1,35         | 3,53       | 5,50                                        | 7,72      | 7,08       |
| Überkorn     | k<br>T | corrig<br>Frock | iert<br>end      |                                                          |                                 |                                               | 2,16      | 2,09         | 2,04       | 2,07                                        | 2,21      | 2,19       |
| Beme         | erl    | kung            | :                | m (Probe gesamt) = 7290 g                                | , m (Überkorr                   | n) = 253 g                                    | )         |              |            | Datum:                                      | 24.09.08  | •          |
|              |        |                 |                  | Versuch 6 = Kontrollversuch                              | 1                               |                                               |           |              |            | Laborant:                                   | Wesche, I | Dominik    |
| bm1          | 1      |                 |                  |                                                          |                                 |                                               |           |              |            |                                             |           | ®bex07     |




| Abt          | teilu          | ıng            | für .            |                                                                                                       | ÄLISCHE<br>LMS-UNIVER<br>ER                      | SITÄT                                         |           |                                  |             | Anlage:<br>zu:                    |                  |            |
|--------------|----------------|----------------|------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------|----------------------------------|-------------|-----------------------------------|------------------|------------|
|              |                |                | ·ve              | ersuch nach DIN 1                                                                                     | 8127                                             |                                               |           | Entnahmes<br>Tiefe:<br>Bodenart: | itelle:     | Basalt AG<br>k.A.<br>G            |                  |            |
| <u>.</u>     |                |                | U                | /32 rot unten                                                                                         |                                                  |                                               |           | Art der Ent                      | n.:         | Haufwerks                         |                  | Charles D  |
| Proje        | kt ľ           | Nr.:           |                  | Auftraggeber: DB                                                                                      | U                                                |                                               |           | Entn. am:                        |             |                                   | durch:           | Starke, P. |
|              |                | Ve             | rsu              | chszylinder                                                                                           |                                                  |                                               |           | Anzahl der                       | Schichten:  | :                                 |                  | 3          |
|              | Dι             | urch           | me               | sser d <sub>1</sub> :                                                                                 | 100                                              | mm                                            |           | Anzahl der                       | Schläge p   | ro Schicht:                       |                  | 25         |
|              | Ηċ             | bhe            | h <sub>1</sub> : |                                                                                                       | 120                                              | mm                                            |           | zulässiges                       | Größtkorn   | in mm:                            |                  | 32         |
|              | Vo             | olun           | nen              | Versuchszylinder $V_z$ :                                                                              | 942,48                                           | cm³                                           |           | Anteil des l                     | Überkornes  | s <i>ü</i> in %:                  |                  | 4,85       |
|              |                | Fa             | llge             | wicht                                                                                                 |                                                  |                                               |           | Korndichte                       | / Überkorn  | $ ho_{	extst{s	ilde{u}}}$ in g/cr | n <sup>3</sup> : | 2,60       |
|              | Ma             | ass            | e:               |                                                                                                       | 2,5                                              | kg                                            |           | Wassergeh                        | alt / Überk | orn w <sub>ü</sub> in %           | 6:               | 0,40       |
|              | Fa             | allhċ          | he:              |                                                                                                       | 300                                              | mm                                            |           | Probe Nr.:                       |             |                                   |                  | -          |
|              | Ve             | ersu           | ch               | Nr.                                                                                                   | 1                                                |                                               | 1         | 2                                | 3           | 4                                 | 5                |            |
| Φ            | Zy             | /linc          | ler              |                                                                                                       | m <sub>Z</sub>                                   | g                                             | 6478      | 6478                             | 6478        | 6478                              | 6478             | 6478       |
| Dichte       | fe             | uch            | te F             | Probe + Zylinder                                                                                      | $m_1 + m_Z$                                      | g                                             | 8470      | 8441                             | 8462        | 8605                              | 8699             | 8687       |
|              | feı            | uch            | te F             | Probe                                                                                                 | m <sub>f</sub>                                   | g                                             | 1992      | 1963                             | 1984        | 2127                              | 2221             | 2209       |
|              | Di             | chte           | Э                |                                                                                                       | $\rho = m_{\rm f}/V_{\rm Z}$                     | g/cm <sup>3</sup>                             | 2,11      | 2,08                             | 2,11        | 2,26                              | 2,36             | 2,34       |
|              | a <sup>*</sup> | b <sup>*</sup> | c <sup>*</sup>   |                                                                                                       |                                                  |                                               |           |                                  |             |                                   |                  |            |
|              | 1              | 4              | 1                | Behälter                                                                                              | $m_{B}$                                          | g                                             | 220,6     | 229,2                            | 262,5       | 232,7                             | 262,2            | 391,0      |
| shalt        | 2              | 2              | 3                | trockene Probe + Behälter                                                                             | $m_{\rm d} + m_{\rm B}$                          | g                                             | 714,5     | 757,4                            | 748,3       | 840,6                             | 844,2            | 1231,9     |
| Wassergehalt | 3              | 1              | 2                | Behälter + feuchte Probe                                                                              | $m_{\rm B}$ + $m_{\rm f}$                        | g                                             | 716,5     | 765,7                            | 766,8       | 885,4                             | 895,1            | 1306,9     |
| Was          | 4              | 5              | 4                | Wasser                                                                                                | $m_{W}$                                          | g                                             | 2,0       | 8,3                              | 18,5        | 44,8                              | 50,9             | 75,0       |
|              | 5              | 3              | 5                | trockene Probe                                                                                        | $m_{d}$                                          | g                                             | 493,9     | 528,2                            | 485,8       | 607,9                             | 582,0            | 840,9      |
|              | W              | ass            | erg              | ehalt w = (m <sub>W</sub> /                                                                           | m <sub>d</sub> ) × 100 %                         | %                                             | 0,40      | 1,57                             | 3,81        | 7,37                              | 8,75             | 8,92       |
|              | Tr             | ock            | end              | lichte $ ho_a$                                                                                        | $t_{f} = \frac{\rho}{1 + \frac{w}{100}}$         | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 2,11      | 2,05                             | 2,03        | 2,10                              | 2,17             | 2,15       |
| * Anm        | nerk           | kun            | a)<br>b)         | eilenfolge<br>bei Trocknen von Teilprobei<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenm | e der Gesam                                      | •                                             | e am Ende | des Gesam                        | tversuches  |                                   |                  |            |
| Überkorn     |                | rrig<br>ass    |                  | er ehalt $w' = w \cdot \left(1 - \frac{\ddot{u}}{100}\right)$                                         | $ +$ $\frac{w_{\ddot{u}} \cdot \ddot{u}}{100}$   | %                                             | 0,40      | 1,51                             | 3,64        | 7,03                              | 8,34             | 8,51       |
| Über         | ko<br>Tr       | rrig<br>ock    | ierto<br>enc     | e lichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0$                            | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{s0}$ | t/m³                                          | 2,12      | 2,06                             | 2,04        | 2,11                              | 2,18             | 2,16       |
| Beme         | erkı           | ung            | :                | m (Probe gesamt) = 6248 g                                                                             |                                                  |                                               |           |                                  |             | Datum:                            | 25.09.08         |            |
|              |                |                |                  | m (Überkorn) = 303,1                                                                                  |                                                  |                                               |           |                                  |             | Laborant:                         | Wesche,          | Dominik    |
| bm11         |                |                |                  |                                                                                                       |                                                  |                                               |           |                                  |             |                                   |                  | ®bex07     |

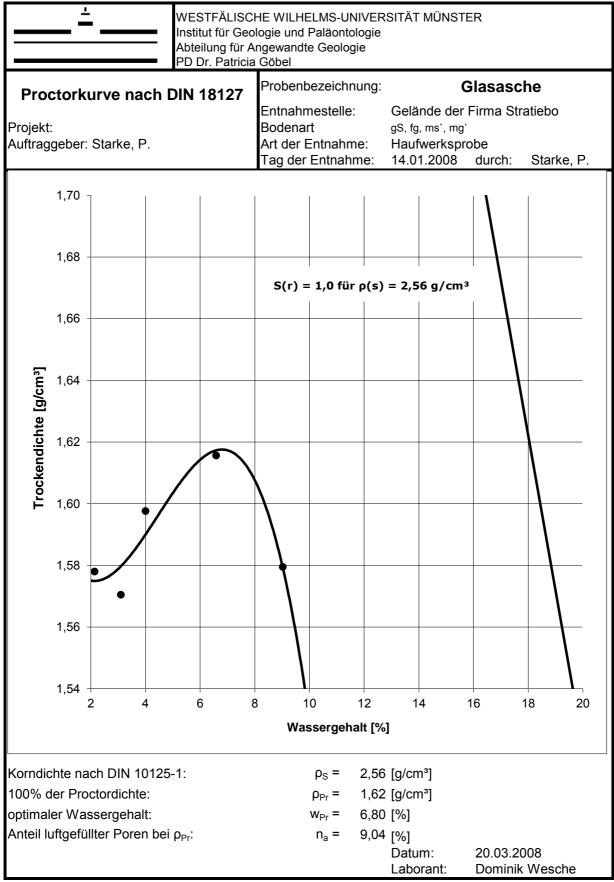
Seite A124



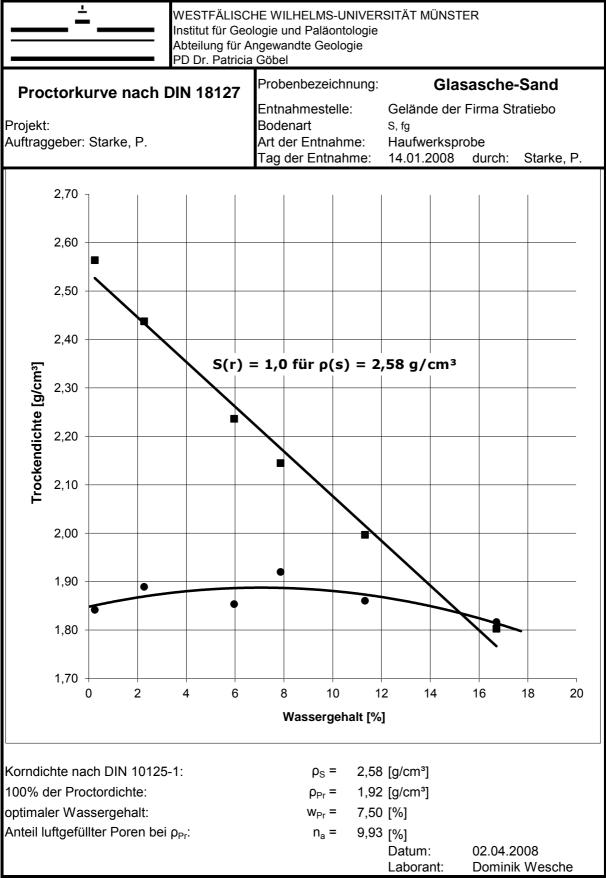

| Ab           | teilu          | ıng            | für            |                                                                                                        | LISCHE<br>MS-UNIVER<br>ER                              | SITÄT                                         |           |                                                 |               | Anlage:<br>zu:                            |            |         |
|--------------|----------------|----------------|----------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|-----------|-------------------------------------------------|---------------|-------------------------------------------|------------|---------|
|              |                |                | 'Vé            | ersuch nach DIN 1                                                                                      | 8127                                                   |                                               |           | Entnahmes<br>Tiefe:<br>Bodenart:<br>Art der Ent | n.:           | Fa. Kloste<br>k.A.<br>fG, gs<br>Haufwerks | sprobe     |         |
| Proje        | kt N           | ۱r.:           |                | Auftraggeber: Sta                                                                                      | rke, Phillip                                           |                                               |           | Entn. am: 2                                     | 26.03.2008    |                                           | durch: Sta | rke, P. |
|              |                | Ve             | rsu            | chszylinder                                                                                            |                                                        |                                               |           | Anzahl der                                      | Schichten:    |                                           |            | 3       |
|              | Dι             | ırch           | me             | esser d <sub>1</sub> :                                                                                 | 100                                                    | mm                                            |           | Anzahl der                                      | Schläge pro   | Schicht:                                  |            | 25      |
|              | Ηċ             | he             | h <sub>1</sub> |                                                                                                        | 120                                                    | mm                                            |           | zulässiges                                      | Größtkorn i   | n mm:                                     |            | 5       |
|              | Vc             | lun            | nen            | Versuchszylinder V <sub>z</sub> :                                                                      | 942,48                                                 | cm <sup>3</sup>                               |           | Anteil des l                                    | Überkornes    | <i>ü</i> in %:                            |            | -       |
|              |                | Fa             | llge           | ewicht                                                                                                 |                                                        |                                               |           | Korndichte                                      | / Überkorn    | $ ho_{	extsf{s}\ddot{	extsf{u}}}$ in g/cm | 3.         | -       |
|              | Ma             | ass            | e:             |                                                                                                        | 2,5                                                    | kg                                            |           | Wassergeh                                       | nalt / Überko | orn w <sub>ü</sub> in %                   | :          | -       |
|              | Fa             | llhċ           | he             | :                                                                                                      | 300                                                    | mm                                            |           | Probe Nr.:                                      |               |                                           |            | -       |
|              | $\vdash$       | rsu            |                | Nr.                                                                                                    |                                                        |                                               | 1         | 2                                               | 3             | 4                                         | 5          |         |
| Φ            | Ľ              | lind           |                |                                                                                                        | m <sub>Z</sub>                                         | g                                             | 6481      | 6481                                            | 6481          | 6481                                      | 6481       |         |
| Dichte       | -              |                |                | Probe + Zylinder                                                                                       | $m_1 + m_Z$                                            | g                                             | 8005      | 7985                                            | 8008          | 8016                                      | 8038       |         |
|              | feι            | ıch            | te F           | Probe                                                                                                  | m <sub>f</sub>                                         | g                                             | 1524      | 1504                                            | 1527          | 1535                                      | 1557       |         |
|              | Di             | chte           | )              |                                                                                                        | $\rho = m_{\rm f}/\ V_{\rm Z}$                         | g/cm <sup>3</sup>                             | 1,62      | 1,60                                            | 1,62          | 1,63                                      | 1,65       |         |
|              | a <sup>*</sup> | b <sup>*</sup> | c*             |                                                                                                        |                                                        |                                               |           |                                                 |               |                                           |            |         |
|              | 1              | 4              | 1              | Behälter                                                                                               | $m_{B}$                                                | g                                             | 192.3     | 262,3                                           | 362,2         | 224,7                                     | 236,8      |         |
| ehalt        | 2              | 2              | 3              | trockene Probe + Behälter                                                                              | $m_{\rm d} + m_{\rm B}$                                | g                                             | 369,3     | 516,6                                           | 670,3         | 490,5                                     | 587,0      |         |
| Wassergehalt | 3              | 1              | 2              | Behälter + feuchte Probe                                                                               | $m_{\rm B}$ + $m_{\rm f}$                              | g                                             | 370,1     | 519,5                                           | 677,9         | 499,6                                     | 604,1      |         |
| Was          | 4              | 5              | 4              | Wasser                                                                                                 | $m_{\mathrm{W}}$                                       | g                                             | 0,2       | 2,9                                             | 7,6           | 9,1                                       | 17,1       |         |
|              | 5              | 3              | 5              | trockene Probe                                                                                         | $m_{d}$                                                | g                                             | 177,6     | 254,3                                           | 308,1         | 265,8                                     | 350,2      |         |
|              | W              | ass            | erg            | ehalt $w = (m_W /$                                                                                     | m <sub>d</sub> ) × 100 %                               | %                                             | 0,11      | 1,14                                            | 2,47          | 3,42                                      | 4,88       |         |
|              | Tre            | ock            | end            | dichte $ ho_d$                                                                                         | $=\frac{\rho}{1+\frac{w}{100}}$                        | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,62      | 1,58                                            | 1,58          | 1,57                                      | 1,58       |         |
| * Ann        | nerk           | aunę           | a)<br>b)       | eilenfolge<br>bei Trocknen von Teilprober<br>bei bekannter Trockenmasso<br>bei Ermittlung der Trockenm | n<br>e der Gesam                                       | •                                             | e am Ende | des Gesam                                       | tversuches    |                                           |            |         |
|              | kο             | rrig           |                | -                                                                                                      |                                                        |                                               |           | 22000                                           |               |                                           |            |         |
| Überkorn     |                |                |                | ehalt $W = W \cdot \left(1 - \frac{1}{100}\right)$                                                     |                                                        |                                               |           |                                                 |               |                                           |            |         |
| ÿqÜ          | ko<br>Tr       | rrig<br>ock    | iert<br>end    | e dichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0$                             | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{s\dot{u}}$ | t/m <sup>3</sup>                              |           |                                                 |               |                                           |            |         |
| Beme         | erkı           | ıng            |                |                                                                                                        |                                                        |                                               |           | -                                               |               | Datum:                                    | 14.04.08   |         |
|              |                |                |                |                                                                                                        |                                                        |                                               |           |                                                 |               | Laborant:                                 | Wesche, [  | Dominik |

bm11 ®bex07



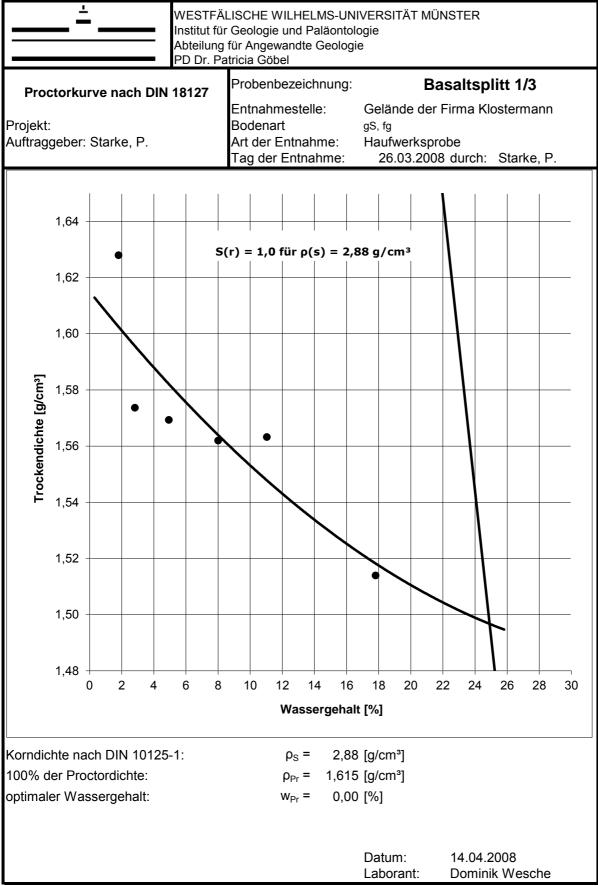

| Proctorversuch nach DIN 18127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Abt   | te | ilung            | für            |                                                                        | ÄLISCHE<br>LMS-UNIVER<br>FER                           | SITÄT             |           |                     |               | Anlage:<br>zu:               |         |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|------------------|----------------|------------------------------------------------------------------------|--------------------------------------------------------|-------------------|-----------|---------------------|---------------|------------------------------|---------|------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |    |                  | rve            | ersuch nach DIN 1                                                      | 18127                                                  |                   |           | Tiefe:<br>Bodenart: |               | k.A.<br>fG, gs               |         | Stratiebo  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Proje | ek | t Nr.:           | -              |                                                                        | arke, Phillip                                          |                   |           |                     |               | Tiaulweiks                   |         | Starke, P. |
| Höhe $h_1$ : 120 mm zulässiges Größtkorn in mm: 5 Natteil des Überkornes $\bar{u}$ in $\bar{w}$ : - Fallgewicht Korndichte / Überkorn $\rho_{a0}$ in $g/cm^3$ : - Fallgewicht Korndichte / Überkorn $\rho_{a0}$ in $g/cm^3$ : - Fallgewicht Korndichte / Überkorn $\rho_{a0}$ in $g/cm^3$ : - Wassergehalt / Überkorn $w_0$ in $\bar{w}$ : - Fallgewicht Korndichte / Überkorn $w_0$ in $\bar{w}$ : - Fallgewicht Korndichte / Überkorn $w_0$ in $\bar{w}$ : - Fallgewicht Korndichte / Überkorn $w_0$ in $\bar{w}$ : - Fallgewicht Korndichte / Überkorn $w_0$ in $\bar{w}$ : - Fallgewicht Robert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |    | Ve               | ersu           | ıchszylinder                                                           |                                                        |                   |           | Anzahl der          | Schichten:    |                              |         | 3          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | [  | Durcl            | nme            | esser d <sub>1</sub> :                                                 | 100                                                    | mm                |           | Anzahl der          | Schläge pro   | o Schicht:                   |         | 25         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | ŀ  | Höhe             | h <sub>1</sub> | :                                                                      | 120                                                    | mm                |           | zulässiges          | Größtkorn i   | n mm:                        |         | 5          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | ١  | √olur            | ner            | Versuchszylinder Vz:                                                   | 942,48                                                 | cm³               |           | Anteil des          | Überkornes    | <i>ü</i> in %:               |         | -          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |    | Fa               | allge          | ewicht                                                                 |                                                        |                   |           | Korndichte          | / Überkorn    | $ ho_{	ext{s\"{u}}}$ in g/cm | 3.      | -          |
| $\frac{\text{Persuch Nr.}}{\text{Zylinder}} = \frac{m_Z}{\text{Image of the probe } + \text{Zylinder}} = \frac{m_Z}{\text{Image of the probe } + Zyl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | ľ  | Mass             | e:             |                                                                        | 2,5                                                    | kg                |           | Wassergeh           | nalt / Überko | orn w <sub>ü</sub> in %      | :       | -          |
| $ \frac{2}{4} \frac{\sqrt{y}}{\sqrt{y}} \frac{y}{\sqrt{y}}} \frac{\sqrt{y}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}}} \frac{\sqrt{y}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}}} \frac{\sqrt{y}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}}} \frac{\sqrt{y}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}}} \frac{\sqrt{y}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}}} \frac{\sqrt{y}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}}} \frac{y}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}}} \frac{\sqrt{y}}{\sqrt{y}}} \frac{\sqrt{y}}{\sqrt{y}}} \frac{\sqrt{y}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{y}}} \frac{\sqrt{y}}{\sqrt{y}}}$ |       | F  | allh             | öhe            | :                                                                      | 300                                                    | mm                |           | Probe Nr.:          |               |                              |         | -          |
| $\frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | ١  | /ersi            | ıch            | Nr.                                                                    |                                                        |                   | 1         | 2                   | 3             | 4                            | 5       | 6          |
| Feuchte Probe $m_1$ g 1516 1515 1553 1522 1571 161. Dichte $\rho = m_1 l \ V_Z$ g/cm³ 1,609 1,607 1,648 1,615 1,667 1,71    The probability of the probe $l = l = l = l = l = l = l = l = l = l $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43    | Ž  | Zylin            | der            |                                                                        | m <sub>Z</sub>                                         | g                 | 7263      | 7263                | 7263          | 6479                         | 6479    | 6479       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ichte | f  | euch             | te F           | Probe + Zylinder                                                       | $m_1 + m_Z$                                            | g                 | 8779      | 8778                | 8816          | 8001                         | 8050    | 8091       |
| $ \begin{array}{ c c c c c c c c c } \hline a & b & c \\ \hline 1 & 4 & 1 & Behälter \\ \hline 2 & 2 & 3 & trockene Probe + Behälter \\ \hline 3 & 1 & 2 & Behälter + feuchte Probe \\ \hline 4 & 5 & 4 & Wasser \\ \hline 5 & 3 & 5 & trockene Probe \\ \hline Wassergehalt & w = (m_W / m_d) \times 100 \% \\ \hline Annwerkung: Zeilenfolge \\ a) bei Trockendichte \\ \hline B & Wassergehalt \\ \hline C & Vassergehalt \\ \hline C & V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | f  | euch             | te F           | Probe                                                                  | $m_{\mathrm{f}}$                                       | g                 | 1516      | 1515                | 1553          | 1522                         | 1571    | 1612       |
| $ \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{1} \frac{1} \frac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | [  | Dicht            | е              |                                                                        | $\rho = m_f / V_Z$                                     | g/cm <sup>3</sup> | 1,609     | 1,607               | 1,648         | 1,615                        | 1,667   | 1,710      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | į  | a <sup>*</sup> b | c <sup>*</sup> |                                                                        |                                                        |                   |           |                     |               |                              |         |            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | ľ  | 1 4              | 1              | Behälter                                                               | $m_{\mathrm{B}}$                                       | g                 | 224,8     | 361,8               | 314,3         | 126,1                        | 164,9   | 192,4      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | halt  | ľ  | 2 2              | 3              | trockene Probe + Behälter                                              | $m_{\rm d} + m_{\rm B}$                                | g                 | 497,1     | 608,9               | 630,5         | 376,5                        | 449,5   | 442,4      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | erge  | ľ  | 3 1              | 2              | Behälter + feuchte Probe                                               | $m_{\rm B}$ + $m_{\rm f}$                              | g                 | 498,0     | 612,0               | 639,6         | 389,3                        | 470,1   | 469,5      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vass  | ľ  | 4 5              | 4              | Wasser                                                                 | $m_{\mathrm{W}}$                                       | g                 | 0,9       | 3,1                 | 9,1           | 12,8                         | 20,6    | 27,1       |
| Trockendichte $ \rho_d = \frac{\rho}{1 + \frac{w}{100}}  \frac{g/cm^3}{bzw.}  1,603  1,588  1,602  1,536  1,554  1,54 $ $ 1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,54  1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     | r  | 5 3              | 5              | trockene Probe                                                         | $m_{d}$                                                | g                 | 272,3     | 247,1               | 316,2         | 250,4                        | 284,6   | 250        |
| Trockendichte $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | ١  | Nas              | serg           | gehalt w = (m <sub>W</sub> /                                           | m <sub>d</sub> ) × 100 %                               | %                 | 0,33      | 1,25                | 2,88          | 5,11                         | 7,24    | 10,84      |
| a) bei Trocknen von Teilproben b) bei bekannter Trockenmasse der Gesamtprobe c) bei Ermittlung der Trockenmasse der Gesamtprobe am Ende des Gesamtversuches  korrigierter Wassergehalt $W = W \cdot \left(1 - \frac{\ddot{u}}{100}\right) + \frac{W_{\ddot{u}} \cdot \ddot{u}}{100}$ %  korrigierte Trockendichte $\rho_{\rm d} = \rho_{\rm d} \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{\rm su}$ $t/{\rm m}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |    | Frock            | end            | dichte $ ho_{a}$                                                       | $\frac{\rho}{1 + \frac{w}{100}}$                       | bzw.              | 1,603     | 1,588               | 1,602         | 1,536                        | 1,554   | 1,543      |
| Wassergehalt $W = W \cdot \left(1 - \frac{\ddot{u}}{100}\right) + \frac{\ddot{u}}{100}$ %  korrigierte Trockendichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{s0}$ $t/m^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * Anm | ne | erkun            | a)<br>b)       | bei Trocknen von Teilprobe<br>bei bekannter Trockenmass                | se der Gesam                                           | •                 | e am Ende | des Gesam           | tversuches    |                              |         |            |
| Trockendichte $p_d - p_d \cdot (1 - 100) + 0.9 \cdot 100 \cdot p_{s0} $ $t/m^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rkorn |    |                  | jiert          |                                                                        |                                                        |                   |           |                     |               |                              |         |            |
| Bemerkung: Einwaage $m_d$ = 3301,1g Datum: 19.3.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Übe   |    |                  |                | dichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) +$ | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{s\dot{u}}$ | t/m³              |           |                     |               |                              |         |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Beme  | er | kung             | j: Ei          | inwaage m <sub>d</sub> = 3301,1g                                       |                                                        |                   |           | -                   | -             | Datum:                       | 19.3.08 |            |
| Versuch 1 mit ofentrockenem Boden Laborant: Dominik Wesche  bm11    Bee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |    |                  | Ve             | ersuch 1 mit ofentrockenem                                             | Boden                                                  |                   |           |                     |               | Laborant:                    | Dominik | Wesche     |



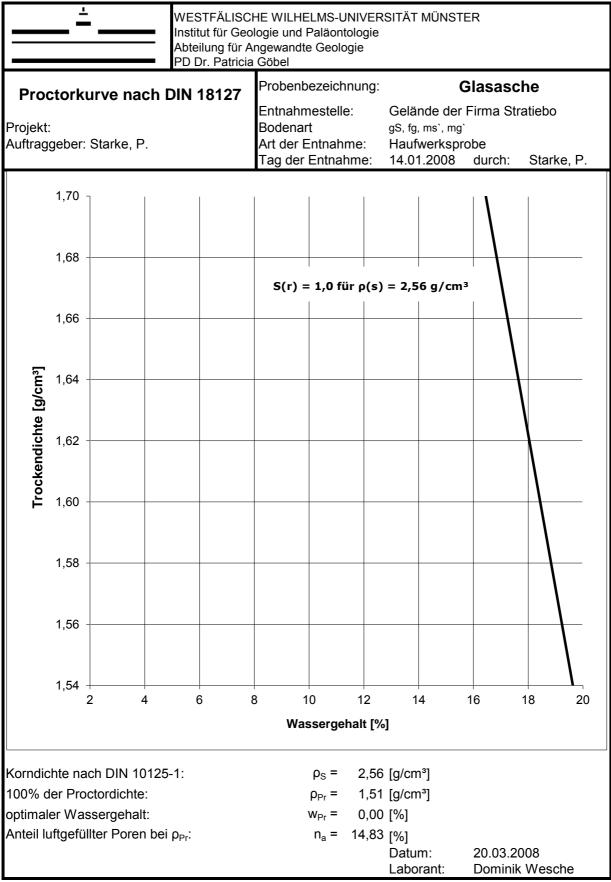

| Ab          | teilu          | ng                     | für                           | WILHEI<br>MÜNST<br>ologie und Paläontologie<br>Angewandte Geologie                                    | ÄLISCHE<br>LMS-UNIVER<br>ER                             | SITÄT                                         |           |                                                 |                                                     | Anlage:<br>zu:                                |                    |                          |
|-------------|----------------|------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|-----------|-------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|--------------------|--------------------------|
|             |                |                        | ve                            | ersuch nach DIN 1<br>Eflastermörtel                                                                   | 8127                                                    |                                               |           | Entnahmes<br>Tiefe:<br>Bodenart:<br>Art der Ent |                                                     | Gelände de<br>k.A.<br>mS, fs, gs<br>Haufwerks |                    | Stratiebo                |
| Proje       | kt N           | lr.:                   | ı                             | Auftraggeber: Sta                                                                                     | ırke, Phillip                                           |                                               |           | Entn. am:                                       |                                                     | nauiweiks                                     | durch:             | Starke, P                |
|             | Du<br>Hö<br>Vo | rch<br>he<br>lum<br>Fa | me<br>h <sub>1</sub> :<br>nen | chszylinder sser $d_1$ :  Versuchszylinder $V_2$ : wicht                                              |                                                         |                                               |           |                                                 | Schläge pr<br>Größtkorn<br>Überkornes<br>/ Überkorn | in mm:                                        |                    | 3<br>25<br>2<br>-<br>-   |
|             | Fa             | llhö                   | he:                           |                                                                                                       | 300                                                     | mm                                            |           | Probe Nr.:                                      |                                                     |                                               |                    | -                        |
|             | H              | rsu                    | _                             | Nr.                                                                                                   | Γ                                                       |                                               | 1         | 2                                               | 3                                                   | 4                                             | 5                  | 6                        |
| ē           | H              | lind                   |                               |                                                                                                       | m <sub>Z</sub>                                          | g                                             | 6480      | 6480                                            | 6480                                                | 6480                                          | 6480               | 6480                     |
| Dichte      | $\vdash$       |                        |                               | Probe + Zylinder                                                                                      | $m_1 + m_Z$                                             | g                                             | 8030      | 8180                                            | 8229                                                | 8363                                          | 8383               | 8375                     |
| _           | feι            | ıcht                   | e F                           | Probe                                                                                                 | $m_{\mathrm{f}}$                                        | g                                             | 1550      | 1700                                            | 1749                                                | 1883                                          | 1903               | 1895                     |
|             | Dic            | chte                   | ;                             |                                                                                                       | $\rho = m_{\rm f}/V_{\rm Z}$                            | g/cm <sup>3</sup>                             | 1,64      | 1,80                                            | 1,86                                                | 2,00                                          | 2,02               | 2,01                     |
|             | a <sup>*</sup> | b <sup>*</sup>         | c <sup>*</sup>                |                                                                                                       |                                                         |                                               |           |                                                 |                                                     |                                               |                    |                          |
|             | 1              | 4                      | 1                             | Behälter                                                                                              | m <sub>B</sub>                                          | g                                             | 192,2     | 260,1                                           | 267,5                                               | 361,9                                         | 225,3              | 224,7                    |
| ehalt       | 2              | 2                      | 3                             | trockene Probe + Behälter                                                                             | $m_{\rm d} + m_{\rm B}$                                 | g                                             | 360,8     | 541,0                                           | 551,5                                               | 629,5                                         | 370,1              | 476,2                    |
| assergehalt | 3              | 1                      | 2                             | Behälter + feuchte Probe                                                                              | $m_{\rm B}$ + $m_{\rm f}$                               | g                                             | 361,1     | 558,3                                           | 572,9                                               | 661,0                                         | 388,3              | 512,2                    |
| Was         | 4              | 5                      | 4                             | Wasser                                                                                                | $m_{\mathrm{W}}$                                        | g                                             | 0,3       | 17,3                                            | 21,4                                                | 31,5                                          | 18,2               | 36,0                     |
|             | 5              | 3                      | 5                             | trockene Probe                                                                                        | $m_{d}$                                                 | g                                             | 168,6     | 280,9                                           | 284,0                                               | 267,6                                         | 144,8              | 251,5                    |
|             | Wa             | ass                    | erg                           | ehalt w = (m <sub>W</sub> /                                                                           | m <sub>d</sub> ) × 100 %                                | %                                             | 0,18      | 6,16                                            | 7,54                                                | 11,77                                         | 12,57              | 14,31                    |
|             | Tro            | ock                    | enc                           | lichte $ ho_a$                                                                                        | $\frac{\rho}{1 + \frac{w}{100}}$                        | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,64      | 1,70                                            | 1,73                                                | 1,79                                          | 1,79               | 1,76                     |
| Ann         | nerk           |                        | a)<br>b)                      | eilenfolge<br>bei Trocknen von Teilprobei<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenn | n<br>e der Gesam                                        | •                                             | e am Ende | des Gesam                                       | tversuches                                          |                                               |                    |                          |
| Überkorn    |                | rrigi<br>ass           | ert                           |                                                                                                       |                                                         | %                                             |           |                                                 |                                                     |                                               |                    |                          |
| Über        |                | rrigi                  |                               | e lichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0$                            | $0,9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{\text{sû}}$ | t/m³                                          |           |                                                 |                                                     |                                               |                    |                          |
| Bemo        |                | ıng                    |                               | Probe 6: lufttrockene Probe                                                                           | aus dem Ein                                             | ner                                           |           |                                                 |                                                     | Datum:<br>Laborant:                           | 20.3.08<br>Wesche, | Dominik<br><b>®bex</b> ( |

| Ab          | teilu          | ıng            | für            | WILHEL<br>MÜNST<br>ologie und Paläontologie<br>Angewandte Geologie                                     | ÄLISCHE<br>.MS-UNIVER<br>ER                      | SITÄT                                         |           |                                  |              | Anlage:<br>zu:                     |                   |           |
|-------------|----------------|----------------|----------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------|----------------------------------|--------------|------------------------------------|-------------------|-----------|
|             |                |                | V              | ersuch nach DIN 1                                                                                      | 8127                                             |                                               |           | Entnahmes<br>Tiefe:<br>Bodenart: | stelle:      | Gelände d<br>k.A.<br>mS, fs, gs    | er Firma          | Stratiebo |
| Proje       | Lt N           | dr ·           | ۲              | Pflastermörtel  Auftraggeber: Sta                                                                      | rke Dhillin                                      |                                               |           | Art der Ent<br>Entn. am: 1       |              | Haufwerks                          | probe<br>durch:   | Starke, P |
| ТОЈС        | KL I           | NΙ             |                | Autraggeber. Gta                                                                                       | ike, i iiiiip                                    |                                               |           |                                  |              |                                    | <b>u</b> a. o     | otanto, i |
|             |                | Ve             | rsu            | chszylinder                                                                                            |                                                  |                                               |           | Anzahl der                       | Schichten:   |                                    |                   | 3         |
|             | Du             | ırch           | me             | esser d <sub>1</sub> :                                                                                 | 100                                              | mm                                            |           | Anzahl der                       | Schläge pr   | o Schicht:                         |                   | 25        |
|             | Ηö             | he             | h <sub>1</sub> |                                                                                                        | 120                                              | mm                                            |           | zulässiges                       | Größtkorn    | in mm:                             |                   | 2         |
|             | Vo             | lun            | nen            | Versuchszylinder $V_z$ :                                                                               | 942,48                                           | cm <sup>3</sup>                               |           | Anteil des l                     | Überkornes   | <i>ü</i> in %:                     |                   | -         |
|             |                | Fa             | llge           | ewicht                                                                                                 |                                                  |                                               |           | Korndichte                       | / Überkorn   | $ ho_{\mathrm{s\ddot{u}}}$ in g/cm | 3.                | -         |
|             | Ma             | ass            | e:             |                                                                                                        | 2,5                                              | kg                                            |           | Wassergeh                        | nalt / Überk | orn $w_{\ddot{\mathrm{u}}}$ in %   | :                 | -         |
|             | Fa             | llhċ           | he             | :                                                                                                      | 300                                              | mm                                            |           | Probe Nr.:                       |              |                                    |                   | -         |
|             | _              | ersu           | _              | Nr.                                                                                                    |                                                  |                                               | 7         | 8                                | 9            |                                    |                   |           |
| e)          | H              | lind           |                |                                                                                                        | m <sub>Z</sub>                                   | g                                             | 6480      | 6480                             | 6480         |                                    |                   |           |
| Dichte      | -              |                |                | Probe + Zylinder                                                                                       | $m_1 + m_Z$                                      | g                                             | 8373      | 8373                             | 8373         |                                    |                   |           |
| _           | feι            | uch            | e F            | Probe                                                                                                  | m <sub>f</sub>                                   | g                                             | 1893      | 1893                             | 1893         |                                    |                   |           |
|             | Did            | chte           | )              |                                                                                                        | $\rho = m_{\rm f}/V_{\rm Z}$                     | g/cm <sup>3</sup>                             | 2,01      | 2,01                             | 2,01         |                                    |                   |           |
|             | a <sup>*</sup> | b <sup>*</sup> | c*             |                                                                                                        |                                                  |                                               |           |                                  |              |                                    |                   |           |
|             | 1              | 4              | 1              | Behälter                                                                                               | $m_{B}$                                          | g                                             | 229,2     | 314,3                            | 164,8        |                                    |                   |           |
| əhalt       | 2              | 2              | 3              | trockene Probe + Behälter                                                                              | $m_{\rm d}$ + $m_{\rm B}$                        | g                                             | 446,4     | 534,7                            | 363,6        |                                    |                   |           |
| assergehalt | 3              | 1              | 2              | Behälter + feuchte Probe                                                                               | $m_{\rm B}$ + $m_{\rm f}$                        | g                                             | 478,6     | 572,5                            | 400,4        |                                    |                   |           |
| Was         | 4              | 5              | 4              | Wasser                                                                                                 | m <sub>W</sub>                                   | g                                             | 32,2      | 37,8                             | 36,8         |                                    |                   |           |
|             | 5              | 3              | 5              | trockene Probe                                                                                         | $m_{d}$                                          | g                                             | 217,2     | 220,4                            | 198,8        |                                    |                   |           |
|             | Wa             | ass            | erg            | ehalt w = (m <sub>W</sub> /                                                                            | m <sub>d</sub> ) × 100 %                         | %                                             | 14,83     | 17,15                            | 18,51        |                                    |                   |           |
|             | Tro            | ock            | end            | dichte $ ho_d$                                                                                         | $=\frac{\rho}{1+\frac{w}{100}}$                  | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,75      | 1,71                             | 1,69         |                                    |                   |           |
| Ann         | nerk           | kun            | a)<br>b)       | Teilenfolge<br>bei Trocknen von Teilprober<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenm | n<br>e der Gesam                                 | •                                             | e am Ende | des Gesam                        | tversuches   |                                    |                   |           |
| Überkorn    |                | rrig<br>ass    |                | er ehalt $w = w \cdot \left(1 - \frac{\ddot{u}}{100}\right)$                                           | $+\frac{w_{0}\cdot\ddot{u}}{100}$                | %                                             |           |                                  |              |                                    |                   |           |
| Über        |                | rrig<br>ock    |                | e dichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0$                             | $0,9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{s0}$ | t/m³                                          |           |                                  |              |                                    |                   |           |
| Bem         |                | ung            |                |                                                                                                        |                                                  |                                               |           |                                  |              | Datum:<br>Laborant:                | 20.3.08<br>Wesche |           |

| Inc         | tit | 6::-                          | r Go             |                                                                                                       | ÄLISCHE<br>LMS-UNIVER<br>FER                            | SITÄT                                         |           |              |               | Anlage:<br>zu:                    |              |                |
|-------------|-----|-------------------------------|------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|-----------|--------------|---------------|-----------------------------------|--------------|----------------|
| Ab          | tei | ilung                         | für              | eologie und Palaontologie<br>Angewandte Geologie<br>a Göbel                                           |                                                         |                                               |           |              |               |                                   |              |                |
|             |     |                               |                  |                                                                                                       |                                                         |                                               |           | Entnahmes    | stelle:       | Gelände de                        | er Firma Str | atiebo         |
| Pro         | OC  | cto                           | rve              | ersuch nach DIN 1                                                                                     | 18127                                                   |                                               |           | Tiefe:       |               | k.A.                              | ,            |                |
|             |     |                               | $\boldsymbol{c}$ | Blasasche                                                                                             |                                                         |                                               |           | Bodenart:    |               | gS, fg, ms`                       | _            |                |
|             |     |                               |                  |                                                                                                       |                                                         |                                               |           | Art der Ent  |               | Haufwerks                         |              | les D          |
| roje        | ekt | t Nr.:                        |                  | Auftraggeber: Sta                                                                                     | arke, Phillip                                           |                                               |           | Entn. am: 1  | 14.01.2006    |                                   | durch: Star  | ке, Р.         |
|             |     | Ve                            | ersu             | ıchszylinder                                                                                          |                                                         |                                               |           | Anzahl der   | Schichten:    |                                   |              | 3              |
|             | С   | Durcl                         | nme              | esser d <sub>1</sub> :                                                                                | 100                                                     | mm                                            |           | Anzahl der   | Schläge pr    | o Schicht:                        |              | 25             |
|             | H   | Höhe                          | h 1              | :                                                                                                     | 120                                                     | mm                                            |           | zulässiges   | Größtkorn i   | in mm:                            |              | -              |
|             | ٧   | /olur                         | nen              | Versuchszylinder Vz:                                                                                  | 942,48                                                  | cm <sup>3</sup>                               |           | Anteil des l | Überkornes    | <i>ü</i> in %:                    |              | -              |
|             |     | Fa                            | allge            | ewicht                                                                                                |                                                         |                                               |           | Korndichte   | / Überkorn    | $ ho_{	ext{sü}}$ in g/cm $^\circ$ | 3:           | -              |
|             | ٨   | Mass                          | e:               |                                                                                                       | 2,5                                                     | kg                                            |           | Wassergeh    | nalt / Überko | orn w <sub>ü</sub> in %:          |              | -              |
|             | F   | allh                          | öhe              | :                                                                                                     | 300                                                     | mm                                            |           | Probe Nr.:   |               |                                   |              | -              |
|             | ٧   | /ersı                         | uch              | Nr.                                                                                                   | •                                                       |                                               | 1         | 2            | 3             | 4                                 | 5            |                |
| 4.          | Z   | Zylino                        | der              |                                                                                                       | m <sub>Z</sub>                                          | g                                             | 6480      | 6480         | 6480          | 6480                              | 6480         |                |
| Dichte      | fe  | euch                          | ite F            | Probe + Zylinder                                                                                      | $m_1 + m_Z$                                             | g                                             | 7988      | 7999         | 8006          | 8046                              | 8103         |                |
|             | fe  | euch                          | ite F            | Probe                                                                                                 | $m_{f}$                                                 | g                                             | 1508      | 1519         | 1526          | 1566                              | 1623         |                |
|             |     | Dicht                         | е                |                                                                                                       | $\rho = m_f / V_Z$                                      | g/cm <sup>3</sup>                             | 1,600     | 1,612        | 1,619         | 1,662                             | 1,722        |                |
|             | á   | a <sup>*</sup> b <sup>*</sup> | c                |                                                                                                       |                                                         |                                               |           |              |               |                                   |              |                |
|             | ŀ   | 1 4                           | 1                | Behälter                                                                                              | m <sub>B</sub>                                          | g                                             | 192,4     | 262,3        | 236,8         | 364,7                             | 362,1        |                |
| halt        | 2   | 2 2                           | 3                | trockene Probe + Behälter                                                                             | $m_{\rm d} + m_{\rm B}$                                 | g                                             | 318,7     | 426,9        | 451,6         | 609,1                             | 623,6        |                |
| assergehalt | Ţ   | 3 1                           | 2                | Behälter + feuchte Probe                                                                              | $m_{\rm B}$ + $m_{\rm f}$                               | g                                             | 321,4     | 432          | 460,2         | 625,2                             | 647,2        |                |
| Wass        | 4   | 4 5                           | 4                | Wasser                                                                                                | $m_{\mathrm{W}}$                                        | g                                             | 2,7       | 5,1          | 8,6           | 16,1                              | 23,6         |                |
| _           | ļ   | 5 3                           | 5                | trockene Probe                                                                                        | $m_{d}$                                                 | g                                             | 126,3     | 164,6        | 214,8         | 244,4                             | 261,5        |                |
|             | ٧   | Vass                          | serg             | yehalt w = (m <sub>w</sub> /                                                                          | m <sub>d</sub> ) × 100 %                                | %                                             | 2,14      | 3,10         | 4,00          | 6,59                              | 9,02         |                |
|             | T   | Γrock                         | cenc             | dichte $\rho_{c}$                                                                                     | $t_d = \frac{\rho}{1 + \frac{w}{100}}$                  | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,58      | 1,57         | 1,60          | 1,62                              | 1,58         |                |
| Anm         | ne  | rkun                          | a)<br>b)         | Zeilenfolge<br>bei Trocknen von Teilprobe<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenn | n<br>se der Gesam                                       | •                                             | e am Ende | des Gesam    | tversuches    |                                   |              |                |
| Überkorn    |     | orrig<br>Vass                 |                  | $w' = w \cdot \left(1 - \frac{\ddot{u}}{100}\right)$                                                  | $ +\frac{w_{\ddot{u}}\cdot\ddot{u}}{100}$               | %                                             |           |              |               |                                   |              |                |
| Übe         |     | corrig<br>Frock               |                  | dichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) +$                                | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{\text{sú}}$ | t/m³                                          |           |              |               |                                   |              |                |
| eme         | erl | kung                          | j:               |                                                                                                       |                                                         |                                               |           |              |               | Datum:                            | 20.03.08     |                |
|             |     |                               |                  |                                                                                                       |                                                         |                                               |           |              |               | Laborant:                         | Wesche, D    | <u>omi</u> nik |



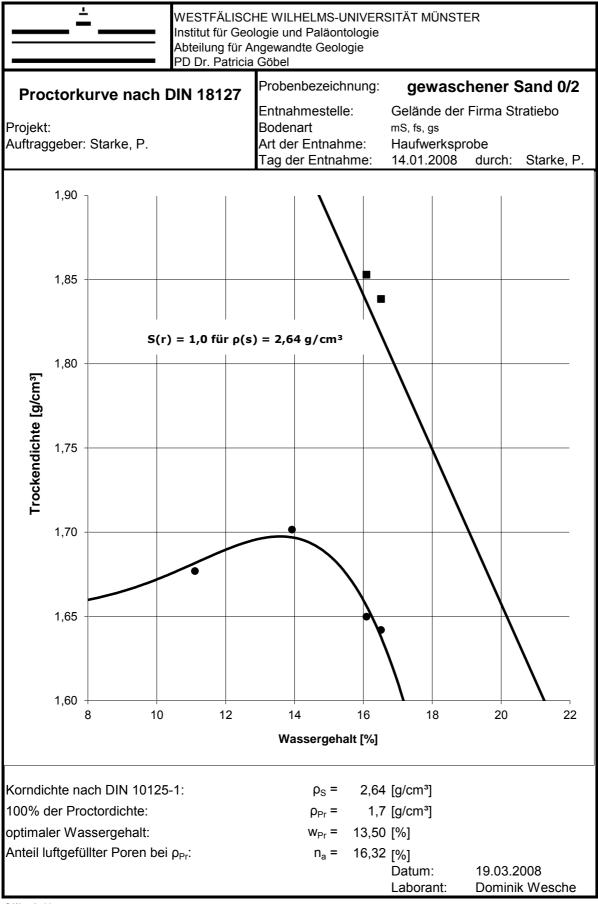

| =            |            |                | _                |                                                                                                       | ÄLISCHE<br>.MS-UNIVER:                                 | SITÄT                                         |           |              |               | Anlage:                          |          |            |
|--------------|------------|----------------|------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|-----------|--------------|---------------|----------------------------------|----------|------------|
| _            |            |                |                  | Münst                                                                                                 |                                                        | JIIA.                                         |           |              |               | zu:                              |          |            |
| Abt          | eilu       | ng             | für              | ologie und Paläontologie<br>Angewandte Geologie                                                       |                                                        |                                               |           |              |               |                                  |          |            |
| PD           | Dr.        | Pat            | rici             | a Göbel                                                                                               |                                                        |                                               |           | Entnahmes    | stelle:       | Gelände d                        | er Firma | Stratiebo  |
| Pro          | ct         | or             | ve               | ersuch nach DIN 1                                                                                     | 8127                                                   |                                               |           | Tiefe:       |               | k.A.                             |          |            |
|              |            |                |                  |                                                                                                       |                                                        |                                               |           | Bodenart:    |               | S, fg                            |          |            |
|              |            |                | (-               | Blasasche-San                                                                                         | d                                                      |                                               |           | Art der Ent  | n.:           | Haufwerks                        | probe    |            |
| Proje        | kt N       | lr.:           |                  | Auftraggeber: Sta                                                                                     | rke, Phillip                                           |                                               |           | Entn. am: 1  | 14.01.2008    |                                  | durch:   | Starke, P. |
|              |            | Ve             | rsu              | chszylinder                                                                                           |                                                        |                                               |           | Anzahl der   | Schichten:    |                                  |          | 3          |
|              | Du         | rch            | me               | sser d <sub>1</sub> :                                                                                 | 100                                                    | mm                                            |           | Anzahl der   | Schläge pr    | o Schicht:                       |          | 25         |
|              | Hö         | he             | h <sub>1</sub> : |                                                                                                       | 120                                                    | mm                                            |           | zulässiges   | Größtkorn i   | n mm:                            |          | -          |
|              | Vo         | lum            | en               | Versuchszylinder V <sub>z</sub> :                                                                     | 942,48                                                 | cm³                                           |           | Anteil des l | Überkornes    | <i>ü</i> in %:                   |          | -          |
|              |            | Fa             | llge             | wicht                                                                                                 |                                                        |                                               |           | Korndichte   | / Überkorn    | $ ho_{	ext{s\"{u}}}$ in g/cm     | 3.       | -          |
|              | Ma         | ISS            | e:               |                                                                                                       | 2,5                                                    | kg                                            |           | Wassergeh    | nalt / Überko | orn $w_{\ddot{\mathrm{u}}}$ in % | :        | -          |
|              | Fa         | llhö           | he:              |                                                                                                       | 300                                                    | mm                                            |           | Probe Nr.:   |               |                                  |          | -          |
|              | Ve         | rsu            | ch               | Nr.                                                                                                   |                                                        |                                               | 1         | 2            | 3             | 4                                | 5        | 6          |
| 4)           | Zy         | ind            | er               |                                                                                                       | m <sub>Z</sub>                                         | g                                             | 6480      | 6480         | 6480          | 6480                             | 6480     | 6480       |
| Dichte       | feι        | icht           | e F              | Probe + Zylinder                                                                                      | $m_1 + m_Z$                                            | g                                             | 8245      | 8220         | 8301          | 8331                             | 8432     | 8478       |
|              | feι        | icht           | e F              | Probe                                                                                                 | $m_{\mathrm{f}}$                                       | g                                             | 1765      | 1740         | 1821          | 1851                             | 1952     | 1998       |
|              | Dio        | chte           | )                |                                                                                                       | $\rho = m_{\rm f}/V_{\rm Z}$                           | g/cm <sup>3</sup>                             | 1,87      | 1,85         | 1,93          | 1,96                             | 2,07     | 2,12       |
|              | a          | b <sup>*</sup> | c <sub>*</sub>   |                                                                                                       |                                                        |                                               |           |              |               |                                  |          |            |
|              | 1          | 4              | 1                | Behälter                                                                                              | m <sub>B</sub>                                         | g                                             | 306,0     | 365,8        | 488,5         | 445,4                            | 314,2    | 225,2      |
| shalt        | 2          | 2              | 3                | trockene Probe + Behälter                                                                             | $m_{\rm d} + m_{\rm B}$                                | g                                             | 507,1     | 612,6        | 802,2         | 864,9                            | 657,7    | 505,2      |
| Wassergehalt | 3          | 1              | 2                | Behälter + feuchte Probe                                                                              | $m_{\rm B}$ + $m_{\rm f}$                              | g                                             | 507,6     | 618,2        | 820,9         | 897,9                            | 696,6    | 552,0      |
| Was          | 4          | 5              | 4                | Wasser                                                                                                | $m_{W}$                                                | g                                             | 0,5       | 5,6          | 18,7          | 33                               | 38,9     | 46,8       |
|              | 5          | 3              | 5                | trockene Probe                                                                                        | $m_{\rm d}$                                            | g                                             | 201,1     | 246,8        | 313,7         | 419,5                            | 343,5    | 280        |
|              | Wa         | ass            | erg              | ehalt w = (m <sub>W</sub> /                                                                           | m <sub>d</sub> ) × 100 %                               | %                                             | 0,25      | 2,27         | 5,96          | 7,87                             | 11,32    | 16,71      |
|              | Tro        | ock            | enc              | lichte $ ho_d$                                                                                        | $r_{d} = \frac{\rho}{1 + \frac{w}{100}}$               | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,84      | 1,89         | 1,85          | 1,92                             | 1,86     | 1,82       |
| * Anm        | erk        |                | a)<br>b)         | eilenfolge<br>bei Trocknen von Teilprober<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenm | n<br>e der Gesami                                      | •                                             | e am Ende | des Gesam    | itversuches   |                                  |          |            |
| Überkorn     |            | rigi           |                  | er ehalt $w' = w \cdot \left(1 - \frac{\ddot{u}}{100}\right)$                                         | $\frac{1}{100}$                                        | %                                             |           |              |               |                                  |          |            |
| Über         | koi<br>Tro | rigi           | ert              | e lichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0$                            | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{s\dot{u}}$ | t/m³                                          |           |              |               |                                  |          |            |
| Beme         | erku       | ing:           |                  |                                                                                                       |                                                        |                                               |           |              |               | Datum:                           | 02.04.08 |            |
|              |            |                |                  |                                                                                                       |                                                        |                                               |           |              |               | Laborant:                        | Wesche,  | Dominik    |




© Wesche08

|                |                       |                     |                                       |                                                                                                               | ÄLISCHE<br>.MS-UNIVER<br>ER                                                                     | SITÄT                 |                                                 |                                                                                               |                                                    | Anlage:<br>zu:                                                             |                                                   |                                                   |
|----------------|-----------------------|---------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
|                | ct                    | tor                 | ve                                    | ersuch nach DIN 1 asaltsplitt 1/3 Auftraggeber: Sta                                                           |                                                                                                 |                       |                                                 | Entnahmes<br>Tiefe:<br>Bodenart:<br>Art der Ent<br>Entn. am: 2                                | n.:                                                | Fa. Kloste<br>k.A.<br>gS, fg<br>Haufwerks                                  |                                                   | Starke, P.                                        |
|                | Hö<br>Vo<br>Ma        | urch<br>öhe<br>olum | me<br>h <sub>1</sub> :<br>nen<br>llge | Versuchszylinder $V_z$ :                                                                                      | 120<br>942,478<br>2,5                                                                           |                       |                                                 | Anzahl der<br>Anzahl der<br>zulässiges<br>Anteil des<br>Korndichte<br>Wassergeh<br>Probe Nr.: | Schläge p<br>Größtkorn<br>Überkornes<br>/ Überkorn | ro Schicht:<br>in mm:<br>s $\ddot{u}$ in %:<br>a $ ho_{s\ddot{u}}$ in g/cr |                                                   | 3<br>25<br>3<br>-<br>-<br>-                       |
| Dichte         | Zy<br>feu             |                     | er<br>te F                            | Nr.<br>Probe + Zylinder<br>Probe                                                                              | $m_{Z}$ $m_{1} + m_{Z}$ $m_{f}$ $\rho = m_{f} / V_{Z}$                                          | g<br>g<br>g           | 1<br>6481<br>8043<br>1562<br>1,66               | 2<br>6481<br>8006<br>1525<br>1,62                                                             | 3<br>6481<br>8033<br>1552<br>1,65                  | 4<br>6481<br>8071<br>1590<br>1,69                                          | 5<br>6481<br>8117<br>1636<br>1,74                 | 6<br>6481<br>8162<br>1681<br>1,78                 |
| Wassergehalt   | 1<br>2<br>3<br>4<br>5 | 2<br>1<br>5<br>3    | 2<br>4<br>5                           | Behälter trockene Probe + Behälter Behälter + feuchte Probe Wasser trockene Probe ehalt w = (m <sub>W</sub> / | $m_{\rm B}$ $m_{\rm d} + m_{\rm B}$ $m_{\rm B} + m_{\rm f}$ $m_{\rm W}$ $m_{\rm d}$ $m_{\rm d}$ | g<br>g<br>g<br>g<br>g | 305,8<br>460,6<br>463,4<br>2,8<br>154,8<br>1,81 | 314,3<br>565,6<br>572,7<br>7,1<br>251,3<br>2,83                                               | 445,3<br>755,5<br>770,8<br>15,3<br>310,2<br>4,93   | 262,3<br>513,3<br>533,4<br>20,1<br>251,0<br>8,01                           | 364,8<br>660,0<br>692,6<br>32,6<br>295,2<br>11,04 | 192,4<br>584,8<br>654,7<br>69,9<br>392,4<br>17,81 |
| * Ann          |                       |                     | g: Z<br>a)<br>b)                      | lichte $ ho_d$ Teilenfolge bei Trocknen von Teilprober bei bekannter Trockenmass bei Ermittlung der Trockenm  | e der Gesam                                                                                     | •                     | 1,63<br>e am Ende                               | 1,57<br>des Gesam                                                                             | 1,57                                               | 1,56                                                                       | 1,56                                              | 1,51                                              |
| me<br>Überkorn | ko<br>Tre             | rrig<br>ock         | erg<br>iert<br>end                    | ehalt $W = W \cdot \left(1 - \frac{100}{100}\right)$                                                          |                                                                                                 |                       |                                                 |                                                                                               |                                                    | Datum:                                                                     | 14.04.08                                          | 3                                                 |
|                |                       |                     |                                       |                                                                                                               |                                                                                                 |                       |                                                 |                                                                                               |                                                    |                                                                            | Wesche,                                           |                                                   |

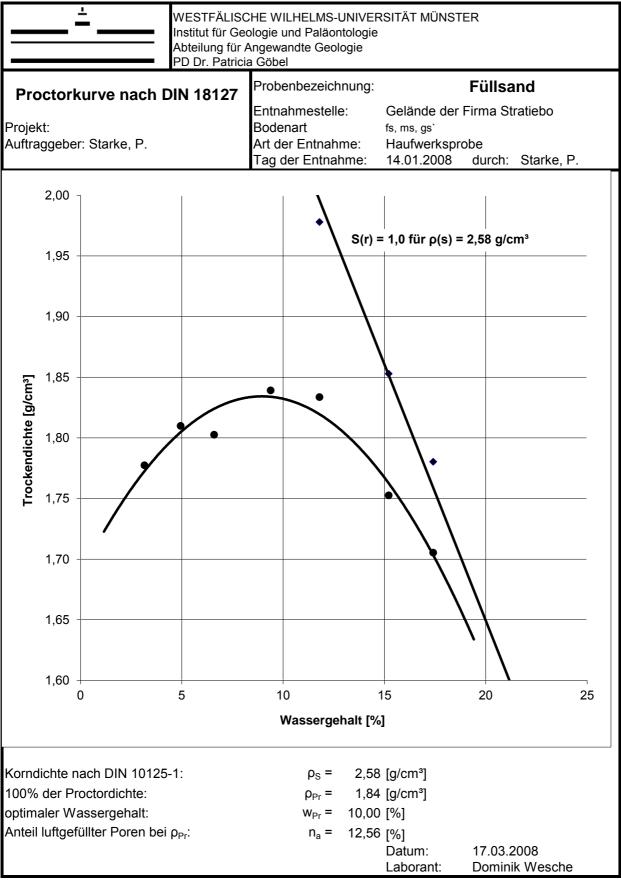



| Ab           | teil    | ung            | für            |                                                                                                                    | ÄLISCHE<br>LMS-UNIVER<br>'ER                              | SITÄT                                         |          |            |             | Anlage:<br>zu:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |          |       |
|--------------|---------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|----------|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|-------|
|              |         |                |                |                                                                                                                    |                                                           |                                               |          | Entnahme   | stelle:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |       |
| Pro          | C       | toı            | rve            | ersuch nach DIN 1                                                                                                  | 18127                                                     |                                               |          | Tiefe:     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |       |
|              |         |                | _              | Santa a a Sana a da a da a                                                                                         | - 4                                                       |                                               |          | Bodenart:  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |       |
|              |         |                | E              | Extensivsubstra                                                                                                    | at                                                        |                                               |          | Art der En | tn.:        | Haufwerks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sprobe            |          |       |
| Proje        | kt      | Nr.:           |                | Auftraggeber:                                                                                                      |                                                           |                                               |          | Entn. am:  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | durch: Sta        | arke, P. |       |
|              |         | Ve             | ersu           | chszylinder                                                                                                        |                                                           |                                               |          | Anzahl de  | r Schichter | า:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 3        |       |
|              | D       | urch           | nme            | esser d <sub>1</sub> :                                                                                             | 100                                                       | mm                                            |          | Anzahl de  | r Schläge լ | oro Schich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t:                | 25       |       |
|              | Н       | öhe            | h <sub>1</sub> | :                                                                                                                  | 120                                                       | mm                                            |          | zulässiges | Größtkorr   | n in mm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | -        |       |
|              | ٧       | olun           | nen            | Versuchszylinder $V_z$ :                                                                                           | 942,48                                                    | cm³                                           |          | Anteil des | Überkorne   | es <i>ü</i> in %:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | -        |       |
|              |         | Fa             | llge           | ewicht                                                                                                             |                                                           |                                               |          | Korndichte | e / Überkor | n $ ho_{	extstyle 	extsty$ | cm <sup>3</sup> : | -        |       |
|              | Μ       | ass            | e:             |                                                                                                                    | 2,5                                                       | kg                                            |          | Wasserge   | halt / Über | korn w <sub>ü</sub> in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %:                | -        |       |
|              | F       | allhċ          | ihe            | :                                                                                                                  | 300                                                       | mm                                            |          | Probe Nr.: |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -        |       |
|              | ٧       | ersı           | ıch            | Nr.                                                                                                                |                                                           |                                               | 1        | 2          | 3           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                 | 6        | 7     |
|              | Z       | ylind          | ler            |                                                                                                                    | m <sub>Z</sub>                                            | g                                             | 6480     | 6480       | 6480        | 6480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6480              | 6480     | 6480  |
| Dichte       | fe      | uch            | te F           | Probe + Zylinder                                                                                                   | $m_1 + m_Z$                                               | g                                             | 7845     | 7900       | 7922        | 7966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8016              | 8092     | 8119  |
|              | fe      | uch            | te F           | Probe                                                                                                              | $m_{\mathrm{f}}$                                          | g                                             | 1365     | 1420       | 1442        | 1486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1536              | 1612     | 1639  |
|              | D       | icht           | е              |                                                                                                                    | $\rho = m_{\rm f}/V_{\rm Z}$                              | g/cm <sup>3</sup>                             | 1,448    | 1,507      | 1,530       | 1,577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,630             | 1,710    | 1,739 |
|              | а       | b <sup>*</sup> | c*             |                                                                                                                    |                                                           |                                               |          |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |       |
|              | 1       | 4              | 1              | Behälter                                                                                                           | m <sub>B</sub>                                            | g                                             | 1000,0   | 1000,0     | 1000,0      | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000,0            | 1000     | 1000  |
| ehalt        | 2       | 2              | 3              | trockene Probe + Behälter                                                                                          | $m_{\rm d} + m_{\rm B}$                                   | g                                             | 0        | 1354,7     | 1368,9      | 1413,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1467,8            | 1426,4   | 1436  |
| serge        | 3       | 1              | 2              | Behälter + feuchte Probe                                                                                           | $m_{\rm B}$ + $m_{\rm f}$                                 | g                                             | 0,0      | 1364,8     | 1389,8      | 1448,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1523,0            | 1497,3   | 1530  |
| Wassergehalt | 4       | 5              | 4              | Wasser                                                                                                             | $m_{\mathrm{W}}$                                          | g                                             | 0        | 10,1       | 20,9        | 34,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55,2              | 70,9     | 94,1  |
|              | 5       | 3              | 5              | trockene Probe                                                                                                     | m <sub>d</sub>                                            | g                                             | -1000    | 354,7      | 368,9       | 413,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 467,8             | 426,4    | 435,7 |
|              | W       | /ass           | erg            | ehalt w = (m <sub>W</sub> /                                                                                        | m <sub>d</sub> ) × 100 %                                  | %                                             | 0,00     | 2,85       | 5,67        | 8,34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11,80             | 16,63    | 21,60 |
|              | Т       | rock           | end            | dichte $ ho_c$                                                                                                     | $t = \frac{\rho}{1 + \frac{w}{100}}$                      | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,51     | 1,49       | 1,49        | 1,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,46              | 1,47     | 1,43  |
| * Anm        | ner     | kun            | a)<br>b)       | <sup>T</sup> eilenfolge<br>bei Trocknen von Teilprobei<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenn | n<br>e der Gesam                                          |                                               | e am Enc | le des Ges | amtversuci  | hes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |          |       |
| Überkorn     | k(      | orrig<br>/ass  | iert<br>erg    | er ehalt $w' = w \cdot \left(1 - \frac{\ddot{u}}{100}\right)$                                                      | $ +$ $\frac{\overline{w_{\ddot{u}} \cdot \ddot{u}}}{100}$ | %                                             |          |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |       |
| Übe          | ko<br>T | orrig<br>rock  | iert           | e dichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) +$                                           | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{\text{sû}}$   | t/m³                                          |          |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |       |
| Beme         | erk     | ung            | :              |                                                                                                                    |                                                           |                                               |          |            |             | Datum:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.06.08          |          |       |
| <u> </u>     |         |                |                |                                                                                                                    |                                                           |                                               |          |            |             | Laborant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Starke            |          |       |
| bm1          | 1       | _              |                |                                                                                                                    |                                                           |                                               |          |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ®bex07   |       |



| Abt          | teilu          | ıng            | für            | •           | WILHEL MÜNST und Paläontologie andte Geologie                                 | ÄLISCHE<br>.MS-UNIVER<br>ER                                       | SITÄT                                         |           |                                  |               | Anlage:<br>zu:                   |                   |            |
|--------------|----------------|----------------|----------------|-------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------|-----------|----------------------------------|---------------|----------------------------------|-------------------|------------|
|              |                |                |                |             | ch nach DIN 1                                                                 | 8127                                                              |                                               |           | Entnahmes<br>Tiefe:<br>Bodenart: | stelle:       | Gelände de<br>k.A.<br>mS, fs, gs | er Firma S        | Stratiebo  |
|              |                |                | g              | ewa         | aschener S                                                                    | and 0/                                                            | 2                                             |           | Art der Ent                      | n.:           | Haufwerks                        | probe             |            |
| Proje        | kt N           | ۱r.:           |                |             | Auftraggeber: Sta                                                             | rke, Phillip                                                      |                                               |           | Entn. am: 1                      | 14.01.2008    |                                  | durch:            | Starke, P. |
|              |                | Ve             | rsu            | ıchszyli    | nder                                                                          |                                                                   |                                               |           | Anzahl der                       | Schichten:    |                                  |                   | 3          |
|              | Dυ             | ırch           | me             | esser d     | 1:                                                                            | 100                                                               | mm                                            |           | Anzahl der                       | Schläge pr    | o Schicht:                       |                   | 25         |
|              | Ηö             | he             | h <sub>1</sub> | :           |                                                                               | 120                                                               | mm                                            |           | zulässiges                       | Größtkorn i   | n mm:                            |                   | 2          |
|              | Vo             | lun            | nen            | Versu       | chszylinder $V_z$ :                                                           | 942,48                                                            | cm³                                           |           | Anteil des l                     | Überkornes    | ü in %:                          |                   | -          |
|              |                | Fa             | llge           | wicht       |                                                                               |                                                                   |                                               |           | Korndichte                       | / Überkorn    | $ ho_{	ext{sü}}$ in g/cm         | 3.                | -          |
|              | Ma             | ass            | e:             |             |                                                                               | 2,5                                                               | kg                                            |           | Wassergeh                        | nalt / Überko | orn w <sub>ü</sub> in %          |                   | -          |
|              | Fa             | llhċ           | he             | :           |                                                                               | 300                                                               | mm                                            |           | Probe Nr.:                       |               |                                  |                   | -          |
|              | Ve             | ersu           | ch             | Nr.         |                                                                               |                                                                   |                                               | 1         | 2                                | 3             | 4                                | 5                 | 6          |
| a)           | Zy             | linc           | ler            |             |                                                                               | m <sub>Z</sub>                                                    | g                                             | 6481      | 6481                             | 6481          | 6481                             | 6481              | 6481       |
| Dichte       | feι            | uch            | te F           | Probe +     | Zylinder                                                                      | $m_1 + m_Z$                                                       | g                                             | 8073      | 8096                             | 8126          | 8171                             | 8237              | 8308       |
|              | feι            | uch            | te F           | Probe       |                                                                               | $m_{f}$                                                           | g                                             | 1592      | 1615                             | 1645          | 1690                             | 1756              | 1827       |
|              | Die            | chte           | Э              |             |                                                                               | $ ho = m_{\rm f}/V_{\rm Z}$                                       | g/cm <sup>3</sup>                             | 1,689     | 1,714                            | 1,745         | 1,793                            | 1,863             | 1,939      |
|              | a <sup>*</sup> | b <sup>*</sup> | c              |             |                                                                               |                                                                   |                                               |           |                                  |               |                                  |                   |            |
|              | 1              | 4              | 1              | Behäl       | ter                                                                           | $m_{B}$                                                           | g                                             | 102,0     | 165,0                            | 126,0         | 262,2                            | 361,8             | 362,2      |
| ehalt        | 2              | 2              | 3              | trocke      | ne Probe + Behälter                                                           | $m_{\rm d} + m_{\rm B}$                                           | g                                             | 298,8     | 438,4                            | 377,6         | 512,0                            | 673,2             | 692,4      |
| Wassergehalt | 3              | 1              | 2              | Behält      | er + feuchte Probe                                                            | $m_{\rm B}$ + $m_{\rm f}$                                         | g                                             | 301,3     | 448,7                            | 392,5         | 531,2                            | 707,8             | 738,4      |
| Was          | 4              | 5              | 4              | Wasse       | er                                                                            | $m_{\mathrm{W}}$                                                  | g                                             | 2,5       | 10,3                             | 14,9          | 19,2                             | 34,6              | 46         |
|              | 5              | 3              | 5              | trocke      | ne Probe                                                                      | $m_{\mathrm{d}}$                                                  | g                                             | 196,8     | 273,4                            | 251,6         | 249,8                            | 311,4             | 330,2      |
|              | W              | ass            | erg            | ehalt       | $w = (m_W /$                                                                  | m <sub>d</sub> ) × 100 %                                          | %                                             | 1,27      | 3,77                             | 5,92          | 7,69                             | 11,11             | 13,93      |
|              | Tro            | ock            | end            | dichte      | $ ho_{\scriptscriptstyle d}$                                                  | $=\frac{\rho}{1+\frac{w}{100}}$                                   | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,668     | 1,651                            | 1,648         | 1,665                            | 1,677             | 1,701      |
| * Anm        | nerk           | ĸunţ           | a)<br>b)       | bei bel     |                                                                               | n<br>e der Gesam                                                  | •                                             | e am Ende | des Gesam                        | tversuches    |                                  |                   |            |
| Überkorn     |                | rrig<br>ass    | iert           |             | $w' = w \cdot \left(1 - \frac{\ddot{u}}{100}\right)$                          |                                                                   |                                               | _         |                                  | _             |                                  |                   |            |
| Über         | ko<br>Tro      | rrig<br>ock    | iert<br>end    | e<br>dichte | $\rho_{\rm d} = \rho_{\rm d} \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0$ | $0,9 \cdot \frac{\overline{\ddot{u}}}{100} \cdot \rho_{s\dot{u}}$ | t/m³                                          |           |                                  |               |                                  |                   |            |
| Beme         | erku           | ung            | :              | m(Wa        | nne) = 611,6g ; m(Ein                                                         | waage ohne                                                        | Wanne) =                                      | = 4428,2g |                                  |               | Datum:<br>Laborant:              | 19.3.08<br>Wesche |            |

| Ins         | stit | tut fü                        | r Ge           | eologie       |                                                                       | ÄLISCHE<br>.MS-UNIVER<br>ER                      | SITÄT                                         |           |             |              | Anlage:<br>zu:             |           |                         |
|-------------|------|-------------------------------|----------------|---------------|-----------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------|-------------|--------------|----------------------------|-----------|-------------------------|
| Ab          | te   | ilung                         | für            |               | andte Geologie                                                        |                                                  |                                               |           | Entnahmes   | stelle:      | Gelände o                  | der Firma | Stratiebo               |
| Pro         | 0    | cto                           | rv             | ersu          | ch nach DIN 1                                                         | 8127                                             |                                               |           | Tiefe:      |              | k.A.                       |           |                         |
|             |      |                               |                |               |                                                                       |                                                  |                                               |           | Bodenart:   |              | mS, fs, gs                 | 3         |                         |
|             |      |                               | Q              | ewa           | aschener S                                                            | and 0/                                           | 2                                             |           | Art der Ent | n.:          | Haufwerk                   | sprobe    |                         |
| Proje       | ekt  | t Nr.:                        | _              |               | Auftraggeber: Sta                                                     |                                                  |                                               |           | Entn. am:   | 14.01.2008   |                            | durch:    | Starke, P.              |
|             |      | Ve                            | ersi           | ıchszyli      | inder                                                                 |                                                  |                                               |           | Anzahl der  | Schichten:   |                            |           | 3                       |
|             | [    | Durcl                         | nme            | esser d       | 1:                                                                    | 100                                              | mm                                            |           | Anzahl der  | Schläge pr   | o Schicht:                 |           | 25                      |
|             | H    | Höhe                          | h <sub>1</sub> | :             |                                                                       | 120                                              | mm                                            |           | zulässiges  | Größtkorn    | in mm:                     |           | 2                       |
|             | ١    | √olur                         | ner            | n Versu       | chszylinder V <sub>z</sub> :                                          | 942,48                                           | cm³                                           |           | Anteil des  | Überkornes   | <i>ü</i> in %:             |           | -                       |
|             |      | Fa                            | allge          | ewicht        |                                                                       |                                                  |                                               |           | Korndichte  | / Überkorn   | $ ho_{	extst{sü}}$ in g/cn | n³:       | -                       |
|             | N    | Mass                          | e:             |               |                                                                       | 2,5                                              | kg                                            |           | Wassergel   | nalt / Überk | orn w <sub>ü</sub> in %    | 6:        | -                       |
|             | F    | allh                          | öhe            | :             |                                                                       | 300                                              | mm                                            |           | Probe Nr.:  |              |                            |           | -                       |
|             | ١    | /ersi                         | uch            | Nr.           |                                                                       |                                                  |                                               | 7         | 8           |              |                            |           |                         |
|             | Z    | Zylin                         | der            |               |                                                                       | $m_Z$                                            | g                                             | 6481      | 6481        |              |                            |           |                         |
| Dichte      | f    | euch                          | ite l          | Probe +       | - Zylinder                                                            | $m_1 + m_Z$                                      | g                                             | 8286      | 8284        |              |                            |           |                         |
|             | f    | euch                          | ite I          | Probe         |                                                                       | m <sub>f</sub>                                   | g                                             | 1805      | 1803        |              |                            |           |                         |
|             |      | Dicht                         | е              |               |                                                                       | $\rho = m_{\rm f}/V_{\rm Z}$                     | g/cm <sup>3</sup>                             | 1,915     | 1,913       |              |                            |           |                         |
|             | į    | a <sup>*</sup> b <sup>*</sup> | c <sup>*</sup> |               |                                                                       |                                                  |                                               |           |             |              |                            |           |                         |
|             | ľ    | 1 4                           | 1              | Behäl         | ter                                                                   | $m_{B}$                                          | g                                             | 305,7     | 365,8       |              |                            |           |                         |
| halt        |      | 2 2                           | 3              | trocke        | ne Probe + Behälter                                                   | $m_{\rm d}$ + $m_{\rm B}$                        | g                                             | 615,2     | 674,6       |              |                            |           |                         |
| assergehalt |      | 3 1                           | 2              | Behält        | er + feuchte Probe                                                    | m <sub>B</sub> + m <sub>f</sub>                  | g                                             | 665,0     | 725,6       |              |                            |           |                         |
| Wass        | ľ    | 4 5                           | 4              | Wasse         | er                                                                    | m <sub>W</sub>                                   | g                                             | 49,8      | 51          |              |                            |           |                         |
| >           |      | 5 3                           | 5              | trocke        | ne Probe                                                              | $m_{d}$                                          | g                                             | 309,5     | 308,8       |              |                            |           |                         |
|             | ١    | Nass                          | serç           | gehalt        | w = (m <sub>W</sub> /                                                 | m <sub>d</sub> ) × 100 %                         | %                                             | 16,09     | 16,52       |              |                            |           |                         |
|             | 7    | Frock                         | cen            | dichte        | $ ho_{\scriptscriptstyle d}$                                          | $=\frac{\rho}{1+\frac{w}{100}}$                  | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,650     | 1,642       |              |                            |           |                         |
| Anm         | ne   | erkun                         | a)<br>b)       | bei bel       |                                                                       | n<br>e der Gesam                                 | •                                             | e am Ende | des Gesan   | ntversuches  |                            |           |                         |
| Überkorn    |      | korriç<br>Mass                |                | ter<br>gehalt | $w'=w\cdot\left(1-\frac{\ddot{u}}{100}\right)$                        | $+\frac{w_{\ddot{u}}\cdot\ddot{u}}{100}$         | %                                             |           |             |              |                            |           |                         |
| Übe         |      | korrig<br>Frock               |                | te<br>dichte  | $\rho_{d} = \rho_{d} \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0$ | $0,9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{s0}$ | t/m³                                          |           |             |              |                            |           |                         |
| Beme        | er   | kunç                          | J:             |               |                                                                       |                                                  |                                               |           |             |              | Datum:                     | 19.03.0   | 8                       |
| bm1°        |      |                               | m              | (Wanne        | e) = 611,6g ; m(Einwa                                                 | age ohne Wa                                      | nne) = 4                                      | 428,2g    |             |              | Laborant:                  | Wesche,   | Dominik<br><b>®bex0</b> |


Seite A141



| Abt          | eilu           | ng             | für              |                                                                                                       | ÄLISCHE<br>.MS-UNIVER<br>ER                            | SITÄT                                         |           |             |              | Anlage:<br>zu:                            |                  |            |
|--------------|----------------|----------------|------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|-----------|-------------|--------------|-------------------------------------------|------------------|------------|
|              | <b>D</b>       |                |                  | a 00501                                                                                               |                                                        |                                               |           | Entnahmes   | stelle:      | Gelände d                                 | er Firma S       | stratiebo  |
| Pro          | ct             | or             | ve               | ersuch nach DIN 1                                                                                     | 8127                                                   |                                               |           | Tiefe:      |              | k.A.                                      |                  |            |
|              |                |                |                  |                                                                                                       |                                                        |                                               |           | Bodenart:   |              | fs, ms, gs`                               |                  |            |
|              |                |                |                  | Füllsand                                                                                              |                                                        |                                               |           | Art der Ent | n.:          | Haufwerks                                 | probe            |            |
| Proje        | kt N           | ۱r.:           |                  | Auftraggeber: Sta                                                                                     | ırke, Phillip                                          |                                               |           | Entn. am: 1 | 14.01.2008   |                                           | durch:           | Starke, P. |
|              |                | Ve             | rsu              | chszylinder                                                                                           |                                                        |                                               |           | Anzahl der  | Schichten:   |                                           |                  | 3          |
|              | Du             | rch            | me               | sser d <sub>1</sub> :                                                                                 | 100                                                    | mm                                            |           | Anzahl der  | Schläge p    | ro Schicht:                               |                  | 25         |
|              | Hö             | he             | h <sub>1</sub> : |                                                                                                       | 120                                                    | mm                                            |           | zulässiges  | Größtkorn    | in mm:                                    |                  | 1          |
|              | Vo             | lun            | nen              | Versuchszylinder V <sub>z</sub> :                                                                     | 942,48                                                 | cm³                                           |           | Anteil des  | Überkornes   | s <i>ü</i> in %:                          |                  | -          |
|              |                | Fa             | llge             | wicht                                                                                                 |                                                        |                                               |           | Korndichte  | / Überkorn   | $ ho_{	extst{s}\ddot{	extst{u}}}$ in g/cm | 1 <sup>3</sup> : | -          |
|              | Ma             | isse           | e:               |                                                                                                       | 2,5                                                    | kg                                            |           | Wassergel   | nalt / Überk | orn $w_{\ddot{\mathrm{u}}}$ in %          | ó:               | -          |
|              | Fa             | llhö           | he               |                                                                                                       | 300                                                    | mm                                            |           | Probe Nr.:  |              |                                           |                  | -          |
|              | Ve             | rsu            | ch               | Nr.                                                                                                   | ī                                                      |                                               | 1         | 2           | 3            | 4                                         | 5                | 6          |
| o)           | Zy             | lind           | er               |                                                                                                       | m <sub>Z</sub>                                         | g                                             | 7260      | 7260        | 7260         | 7260                                      | 7260             | 7260       |
| Dichte       | feι            | ıch            | e F              | Probe + Zylinder                                                                                      | $m_1 + m_Z$                                            | g                                             | 8910      | 8930        | 8988         | 9050                                      | 9071             | 9156       |
|              | feι            | ıch            | e F              | Probe                                                                                                 | $m_{\mathrm{f}}$                                       | g                                             | 1650      | 1670        | 1728         | 1790                                      | 1811             | 1896       |
|              | Dio            | chte           | )                |                                                                                                       | $\rho = m_{\rm f}/V_{\rm Z}$                           | g/cm <sup>3</sup>                             | 1,751     | 1,772       | 1,833        | 1,899                                     | 1,922            | 2,012      |
|              | a <sup>*</sup> | b <sup>*</sup> | c <sup>*</sup>   |                                                                                                       |                                                        |                                               |           |             |              |                                           |                  |            |
|              | 1              | 4              | 1                | Behälter                                                                                              | m <sub>B</sub>                                         | g                                             |           |             | 93,1         | 97,5                                      | 90,2             | 89,9       |
| halt         | 2              | 2              | 3                | trockene Probe + Behälter                                                                             | $m_{\rm d} + m_{\rm B}$                                | g                                             |           |             | 197,6        | 224,9                                     | 191,7            | 182,6      |
| Wassergehalt | 3              | 1              | 2                | Behälter + feuchte Probe                                                                              | $m_{\rm B}$ + $m_{\rm f}$                              | g                                             |           |             | 200,9        | 231,2                                     | 198,4            | 191,3      |
| Was          | 4              | 5              | 4                | Wasser                                                                                                | $m_{\mathrm{W}}$                                       | g                                             |           |             | 3,3          | 6,3                                       | 6,7              | 8,7        |
|              | 5              | 3              | 5                | trockene Probe                                                                                        | $m_{d}$                                                | g                                             |           |             | 104,5        | 127,4                                     | 101,5            | 92,7       |
|              | Wa             | ass            | erg              | ehalt w = (m <sub>W</sub> /                                                                           | m <sub>d</sub> ) × 100 %                               | %                                             |           |             | 3,16         | 4,95                                      | 6,60             | 9,39       |
|              | Tro            | ock            | enc              | lichte $ ho_a$                                                                                        | $\frac{\rho}{1 + \frac{w}{100}}$                       | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> |           |             | 1,78         | 1,81                                      | 1,80             | 1,84       |
| * Anm        | nerk           | rung           | a)<br>b)         | eilenfolge<br>bei Trocknen von Teilprobei<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenm | e der Gesam                                            |                                               | e am Ende | des Gesam   | tversuches   |                                           |                  |            |
| Überkorn     | koi<br>Wa      | rrig<br>ass    | iert<br>erg      | er ehalt $w = w \cdot \left(1 - \frac{\ddot{u}}{100}\right)$                                          | $+\frac{w_{\ddot{u}}\cdot\ddot{u}}{100}$               | %                                             |           |             |              |                                           |                  |            |
| Über         | koi<br>Tro     | rrig<br>ock    | iert<br>enc      | e lichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0$                            | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{s\dot{u}}$ | t/m³                                          |           |             |              |                                           |                  |            |
| Beme         | erku           | ıng            | m                | <sub>d</sub> = 3000g                                                                                  |                                                        |                                               |           |             |              | Datum:                                    | 17.03.08         | }          |
|              |                |                | Ve               | rsuch 1 mit trockenem Bode                                                                            | en                                                     |                                               |           |             |              | Laborant:                                 | Wesche,          | Dominik    |

| Abt          | teil     | ung            | für              |                                                                                                        | ÄLISCHE<br>.MS-UNIVER<br>ER                             | SITÄT                                         |           |                                  |             | Anlage:<br>zu:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                        |
|--------------|----------|----------------|------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|-----------|----------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|
|              |          |                |                  | ersuch nach DIN 1                                                                                      | 8127                                                    |                                               |           | Entnahme:<br>Tiefe:<br>Bodenart: | stelle:     | Gelände d<br>k.A.<br>fs, ms, gs`                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ler Firma S | STRATIEBO              |
|              |          |                |                  | Füllsand                                                                                               |                                                         |                                               |           | Art der Ent                      | n.:         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | probe       |                        |
| Proje        | kt       | Nr.:           |                  | Auftraggeber: Sta                                                                                      | rke, Phillip                                            |                                               |           | Entn. am:                        | 14.01.200   | ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | durch:      | Starke, P.             |
|              |          | Ve             | rsu              | chszylinder                                                                                            |                                                         |                                               |           | Anzahl der                       | Schichter   | n:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 3                      |
|              | D        | urch           | me               | esser d <sub>1</sub> :                                                                                 | 100                                                     | mm                                            |           | Anzahl der                       | Schläge     | pro Schicht:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 25                     |
|              | Н        | öhe            | h <sub>1</sub> : |                                                                                                        | 120                                                     | mm                                            |           | zulässiges                       | Größtkori   | n in mm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 1                      |
|              | ٧        | olun           | nen              | Versuchszylinder V <sub>z</sub> :                                                                      | 942,48                                                  | cm³                                           |           | Anteil des                       | Überkorne   | es <i>ü</i> in %:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | -                      |
|              |          | Fa             | llge             | ewicht                                                                                                 |                                                         |                                               |           | Korndichte                       | / Überkor   | n $ ho_{	extstyle 	extsty$ | m³:         | -                      |
|              | М        | lass           | e:               |                                                                                                        | 2,5                                                     | kg                                            |           | Wasserge                         | nalt / Über | korn w <sub>ü</sub> in <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %:          | -                      |
|              | Fa       | allhċ          | he               | :                                                                                                      | 300                                                     | mm                                            |           | Probe Nr.:                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | -                      |
|              | ٧        | ersu           | ch               | Nr.                                                                                                    |                                                         |                                               | 7         | 8                                | 9           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |
|              | Ζ        | ylind          | er               |                                                                                                        | $m_Z$                                                   | g                                             | 7260      | 7260                             | 7260        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |
| Dichte       | fe       | uch            | te F             | Probe + Zylinder                                                                                       | $m_1 + m_Z$                                             | g                                             | 9195      | 9166                             | 9150        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |
| О            | fe       | uch            | te F             | Probe                                                                                                  | $m_{\mathrm{f}}$                                        | g                                             | 1932      | 1903                             | 1887        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |
|              | D        | ichte          | )                |                                                                                                        | $\rho = m_{\rm f} / V_{\rm Z}$                          | g/cm <sup>3</sup>                             | 2,050     | 2,019                            | 2,002       | fs, ms, gs' Haufwerksprobe 2008 durch: Star  Inten: Inten: Ige pro Schicht: Ige pro Ige pro Schicht: Ige pro  |             |                        |
|              | a        | b <sup>*</sup> | c                |                                                                                                        |                                                         |                                               |           |                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |
|              | 1        | 4              | 1                | Behälter                                                                                               | $m_{B}$                                                 | g                                             | 89,8      | 192,3                            | 261,3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |
| halt         | 2        | 2              | 3                | trockene Probe + Behälter                                                                              | $m_{\rm d}$ + $m_{\rm B}$                               | g                                             | 214,4     | 331,0                            | 496,2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |
| Wassergehalt | 3        | 1              | 2                | Behälter + feuchte Probe                                                                               | m <sub>B</sub> + m <sub>f</sub>                         | g                                             | 229,1     | 352,1                            | 537,1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |
| Vass         | 4        | 5              | 4                | Wasser                                                                                                 | m <sub>W</sub>                                          | g                                             | 14,7      | 21,1                             | 40,9        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |
| >            | 5        | 3              | 5                | trockene Probe                                                                                         | $m_{\rm d}$                                             | g                                             | 124,6     | 138,7                            | 234,9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |
|              | W        | /ass           | erg              | ehalt w = (m <sub>W</sub> /                                                                            | m <sub>d</sub> ) × 100 %                                | %                                             | 11,80     | 15,21                            | 17,41       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |
|              | Tı       | rock           | enc              | dichte $ ho_d$                                                                                         | $=\frac{\rho}{1+\frac{w}{100}}$                         | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,83      | 1,75                             | 1,71        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |
| * Anm        | ner      | kun            | a)<br>b)         | Teilenfolge<br>bei Trocknen von Teilprober<br>bei bekannter Trockenmass<br>bei Ermittlung der Trockenm | e der Gesam                                             | •                                             | e am Ende | e des Gesan                      | ntversuche  | 9S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                        |
| korn         |          | orrig<br>/ass  | iert             |                                                                                                        |                                                         |                                               |           |                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |
| Überkorn     | ko<br>Ti | orrig<br>rock  | iert<br>end      | e dichte $\rho_d = \rho_d \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0$                             | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{\text{sû}}$ | t/m³                                          |           |                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |
| Beme         | erk      | ung            | : m              | <sub>d</sub> = 3000g                                                                                   |                                                         |                                               |           |                                  |             | Datum:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.03.0     | 8                      |
|              |          |                | Ve               | rsuch 1 mit trockenem Bode                                                                             | n                                                       |                                               |           |                                  |             | Laborant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wesche,     | Dominik                |
| bm11         | -        |                | Ve               | rsuch 1 mit trockenem Bode                                                                             | en                                                      |                                               |           |                                  |             | Laborant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wesche,     | Dominik<br><b>®b</b> e |

Seite A144



® Wesche08

|                       |                                                                        |                                          |                 |             | Anlage:                                                                  |                                             |                      |                     |  |  |
|-----------------------|------------------------------------------------------------------------|------------------------------------------|-----------------|-------------|--------------------------------------------------------------------------|---------------------------------------------|----------------------|---------------------|--|--|
|                       |                                                                        | Westfäi Wilhelm Münste                   | ns-Univ         | ERSITÄT     | į                                                                        | zu:                                         |                      |                     |  |  |
| Abteilu               | t für Geologie und Paläor<br>ung für Angewandte Geol<br>Patricia Göbel | _                                        |                 |             |                                                                          |                                             |                      |                     |  |  |
| Ermit                 | ttlung der Durc                                                        | hlässigke                                | it an           |             |                                                                          |                                             |                      |                     |  |  |
| Hauf                  | werksmateriali                                                         | en mit <u>sta</u>                        | <u>tionär</u>   | <u>em</u>   |                                                                          | L                                           | KC U/3               | 2                   |  |  |
| hydra                 | aulischen Gefä                                                         | lle nach D                               | IN 181          | 130-1       |                                                                          | HKS 0/32                                    |                      |                     |  |  |
| Projekt I             | Nr.: Auftraggeber                                                      | r:                                       |                 |             |                                                                          |                                             |                      |                     |  |  |
| Probe                 |                                                                        | Н                                        | KS 0/32         | 2           | Zeit t je Ei                                                             | inzelversuch                                | Wasservol            | umen V <sub>w</sub> |  |  |
| Durchlau              | uf                                                                     |                                          |                 | 1           |                                                                          | achbestim-                                  | im Messb             |                     |  |  |
| Probend               | lurchmesser                                                            | d                                        | cm              | 15,0        | mung in s                                                                |                                             | cm³                  |                     |  |  |
| durchflo              | ssene Probenlänge                                                      | 1                                        | cm              | 12,5        | t <sub>1</sub> =                                                         | 26                                          | V <sub>w1</sub> =    | 100                 |  |  |
| eingeba               | ute Filter                                                             |                                          | kein            |             | t <sub>2</sub> =                                                         | 27                                          | V <sub>w2</sub> =    | 100                 |  |  |
| Tempera               | atur                                                                   | θ                                        | °C              | 19,3        | t <sub>3</sub> =                                                         | 26                                          | V <sub>w3</sub> =    | 100                 |  |  |
| hydraulis             | sche Druckhöhe                                                         | h                                        | cm              | 3,0         | t <sub>4</sub> =                                                         |                                             | V <sub>w4</sub> =    |                     |  |  |
| durchstr              | ömte Fläche der                                                        | $A = \frac{\pi * d^2}{4}$                | cm <sup>2</sup> | 176 71      | t <sub>5</sub> =                                                         |                                             | V <sub>w5</sub> =    |                     |  |  |
| Probe (F              | Fließquerschnitt)                                                      | $A = {4}$                                | CIII            | 176,71      | t <sub>6</sub> =                                                         |                                             | V <sub>w6</sub> =    |                     |  |  |
| Durchläs<br>Gefälle i | ssikeit mit konst. hydr.<br>n m/s                                      | Infiltrationsrate in I/(s*ha)            | mit h=          | cm Überstau |                                                                          |                                             |                      |                     |  |  |
| $k_f$ =               | $=\frac{V_{W}\cdot l}{A\cdot h\cdot \Delta t}$                         | $V_{i} = \frac{V_{w}}{A \cdot \Delta t}$ |                 |             | $k_f = \frac{V_W \cdot l}{Acm^2 \cdot 1cm \cdot \Delta t} \cdot 10^{-2}$ |                                             |                      |                     |  |  |
|                       |                                                                        | Einbau                                   |                 |             | Nem · lem · Zu                                                           |                                             |                      |                     |  |  |
| k <sub>f1</sub> =     | 0,00091                                                                | <i>V</i> <sub>1</sub> =                  | 2               | 176,48      |                                                                          |                                             |                      |                     |  |  |
| k <sub>f2</sub> =     | 0,00087                                                                | V <sub>2</sub> =                         |                 | 095,87      | $\dot{V_i} =$                                                            | $\frac{V_w \cdot 10^{-4}}{A \cdot 10^{-4}}$ | $\frac{3dm^3}{2}$ .  | $10^4 ha$           |  |  |
| k <sub>f3</sub> =     | 0,00091                                                                | V <sub>3</sub> =                         | 2               | 176,48      |                                                                          | $A \cdot 10$                                | $m^2 \cdot \Delta t$ |                     |  |  |
| . 1                   | Fließrichtungs                                                         | swechsel                                 |                 |             | -                                                                        |                                             |                      |                     |  |  |
| k <sub>f4</sub> =     |                                                                        | V <sub>4</sub> =                         |                 |             |                                                                          |                                             |                      |                     |  |  |
| k <sub>f5</sub> =     |                                                                        | $V_5$ =                                  |                 |             |                                                                          |                                             |                      |                     |  |  |
| k <sub>f6</sub> =     |                                                                        | $V_6$ =                                  |                 |             |                                                                          |                                             |                      |                     |  |  |
| , l                   | ,                                                                      | Ausbau                                   |                 |             | 1                                                                        |                                             |                      |                     |  |  |
|                       |                                                                        |                                          |                 |             |                                                                          |                                             |                      |                     |  |  |
|                       |                                                                        |                                          |                 |             | 1                                                                        |                                             |                      |                     |  |  |
|                       |                                                                        |                                          |                 |             | ł                                                                        |                                             |                      |                     |  |  |
|                       |                                                                        |                                          |                 |             |                                                                          |                                             |                      |                     |  |  |
|                       |                                                                        |                                          |                 |             |                                                                          |                                             |                      |                     |  |  |
| Bemerki<br>Verdicht   | ungen:<br>ung erfolgte mit lufttroc                                    | kenem Boden                              |                 |             |                                                                          |                                             |                      |                     |  |  |
|                       |                                                                        |                                          |                 |             |                                                                          |                                             |                      |                     |  |  |
| Ströung               | ngsrichtung unten> ob<br>srichtung oben> unte                          |                                          |                 |             | Wesche, D                                                                | Oominik                                     |                      |                     |  |  |
| Schlauv               | erlängerung:                                                           | Ja                                       | <u>Nein</u>     |             | Datum:                                                                   | 17.04.08                                    |                      |                     |  |  |

|                           | ±                          |                              |                           |                                     |                                        |                           | Anlage:                   |                |        |
|---------------------------|----------------------------|------------------------------|---------------------------|-------------------------------------|----------------------------------------|---------------------------|---------------------------|----------------|--------|
| Abteilun                  | ür Geologie<br>g für Angev | vandte Geo                   | MÜNSTER<br>ntologie       | s-Univers                           | SITÄT                                  |                           | zu:                       |                |        |
| Ermittl                   | ung der<br>erksmat         | Durchl                       | _                         | it an                               | durchström<br>der Probe<br>(Fließguers |                           | $A = \frac{\pi * d^2}{4}$ | cm²            | 176,71 |
|                           |                            |                              | chen G                    | chen Gefälle hydraulische Druckhöhe |                                        |                           | h                         | cm             | 3,0    |
| nacn D                    | IN 1813                    | <b>U-</b> 1                  |                           |                                     | Temperatui                             | ſ                         | θ                         | °C             | 19,3   |
| Projekt Nr.:              |                            | Auftraggebe                  | er:                       |                                     | eingebaute                             | Filter                    |                           | kein           |        |
| Probe Nr.                 |                            |                              | HKS 0/32                  |                                     | Strömungsı                             | richtung                  | ι                         | ınten> obe     | en     |
| Durchlauf                 |                            |                              |                           |                                     | Probendu                               | rchmesser                 | d                         | cm             | 15,0   |
| Probendure                | chmesser                   | d                            | cm                        | 15,0                                | Probenläng                             | е                         | 1                         | cm             | 12,5   |
|                           |                            |                              |                           |                                     |                                        |                           |                           |                |        |
| durchfließe<br>vährend de | nde Menge<br>er Zeit       | Zeitdiffere nz               | durchfließe<br>während de | _                                   | Zeitdiffere nz                         | durchfließe<br>während de | •                         | Zeitdiffere nz |        |
| Vw                        | t                          | $\Delta t$                   | Vw                        | t                                   | $\Delta t$                             | Vw                        | t                         | $\Delta t$     |        |
| cm³                       | min:s                      | S                            | cm³                       | min:s                               | S                                      | cm³                       | min:s                     | S              |        |
| 100                       | 00:29                      |                              | 100                       | 00:26                               |                                        | 100                       | 00:26                     |                |        |
| 200                       | 00:53                      | 00:24                        | 200                       | 00:52                               | 00:26                                  | 200                       | 00:52                     | 00:26          |        |
| 300                       | 01:18                      | 00:25                        | 300                       | 01:19                               | 00:27                                  | 300                       | 01:18                     | 00:26          |        |
| 400                       | 01:43                      | 00:25                        | 400                       | 01:46                               | 00:27                                  | 400                       | 01:45                     | 00:27          |        |
| 500                       | 02:09                      | 00:26                        | 500                       | 02:14                               | 00:28                                  | 500                       | 02:11                     | 00:26          |        |
| 600                       | 02:35                      | 00:26                        | 600                       | 02:40                               | 00:26                                  | 600                       | 02:37                     | 00:26          |        |
| 700                       | 03:01                      | 00:26                        | 700                       | 03:08                               | 00:28                                  | 700                       | 03:04                     | 00:27          |        |
| 800                       | 03:26                      | 00:25                        | 800                       | 03:34                               | 00:26                                  | 800                       | 03:31                     | 00:27          |        |
| 900                       | 03:52                      | 00:26                        | 900                       | 04:01                               | 00:27                                  | 900                       | 03:57                     | 00:26          |        |
| 1000                      | 04:18                      | 00:26                        | 1000                      | 04:28                               | 00:27                                  | 1000                      | 04:23                     | 00:26          |        |
|                           |                            |                              |                           |                                     |                                        |                           |                           |                |        |
|                           |                            |                              |                           |                                     |                                        |                           |                           |                |        |
|                           |                            |                              |                           |                                     |                                        |                           |                           |                |        |
|                           |                            |                              |                           |                                     |                                        |                           |                           |                |        |
| Bemerkung                 | Verdichtung                | g erfolgte mi<br>hgang zeigt |                           |                                     |                                        |                           | Wesche, Doi: 17.04.08     | ominik         |        |

|                                                                                                      |                                   |                                |              | Anlage:          |                                               |                                    |                 |  |
|------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|--------------|------------------|-----------------------------------------------|------------------------------------|-----------------|--|
| Institut für Geologie und Pa<br>Abteilung für Angewandte                                             | _                                 | ns-Univ                        | ERSITÄT      |                  | zu:                                           |                                    |                 |  |
| PD Dr. Patricia Göbel                                                                                |                                   |                                |              | I                |                                               |                                    |                 |  |
| Ermittlung der Di                                                                                    | _                                 |                                |              |                  |                                               |                                    |                 |  |
| Haufwerksmateri<br>hydraulischen Go<br>Projekt Nr.: Auftragg                                         | efälle nach D                     |                                |              | Tragschicht NL   |                                               |                                    |                 |  |
| Probe Nr.                                                                                            | Trag                              | schich                         | t NL         | Zeit t ie E      | inzelversuch                                  | Wasservo                           | lumen V         |  |
| Durchlauf                                                                                            |                                   |                                |              |                  | fachbestim-                                   | im Messb                           |                 |  |
| Probendurchmesser                                                                                    | d                                 | cm                             | 15,0         | mu               | mung in s                                     |                                    | 1 <sup>3</sup>  |  |
| durchflossene Probenlänge                                                                            | : 1                               | cm                             | 12,5         | t <sub>1</sub> = | -                                             | V <sub>w1</sub> =                  | -               |  |
| eingebaute Filter                                                                                    |                                   | kein                           |              | t <sub>2</sub> = | -                                             | V <sub>w2</sub> =                  | -               |  |
| Temperatur                                                                                           | θ                                 | °C                             | 19,2         | t <sub>3</sub> = | -                                             | V <sub>w3</sub> =                  | -               |  |
| hydraulische Druckhöhe                                                                               | h                                 | cm                             | 2,0          | t <sub>4</sub> = |                                               | V <sub>w4</sub> =                  |                 |  |
| durchströmte Fläche der                                                                              | $\pi * d^2$                       |                                |              | t <sub>5</sub> = |                                               | V <sub>w5</sub> =                  |                 |  |
| Probe (Fließquerschnitt)                                                                             | $A = \frac{\pi * d^2}{4}$         | cm <sup>2</sup>                | 176,71       | t <sub>6</sub> = |                                               | V <sub>w6</sub> =                  |                 |  |
| Durchlässikeit mit konst. hy Gefälle in m/s $k_{f} = \frac{V_{W} \cdot l}{A \cdot h \cdot \Delta t}$ | in I/(s*ha)                       | $\frac{V_{w}}{A \cdot \Delta}$ |              | $k_f$            | $=\frac{V_{\text{N}}}{Acm^2}$                 | $\frac{l}{1cm \cdot \Delta t}$     | $\cdot 10^{-2}$ |  |
|                                                                                                      | Einbau                            |                                |              | 1                |                                               |                                    |                 |  |
| k <sub>f1</sub> = -                                                                                  | V <sub>1</sub> =                  |                                | -            |                  | IZ 10-                                        | -3 1 2                             |                 |  |
| k <sub>f2</sub> = -                                                                                  | V <sub>2</sub> = V <sub>2</sub> = |                                |              | $V_i =$          | $= \frac{V_w \cdot 10^{-4}}{A \cdot 10^{-4}}$ | $\frac{am^3}{m^2 \cdot \Lambda t}$ | $10^4 ha$       |  |
|                                                                                                      | ngswechsel                        |                                |              | ł                | 71 10                                         |                                    |                 |  |
| k <sub>f4</sub> =                                                                                    |                                   |                                |              | 1                |                                               |                                    |                 |  |
| K <sub>f5</sub> =                                                                                    | $V_4 = V_5 = V_5$                 |                                |              | l                |                                               |                                    |                 |  |
| k <sub>f6</sub> =                                                                                    | $V_6$ =                           |                                |              | 1                |                                               |                                    |                 |  |
| 10                                                                                                   | Ausbau                            |                                |              | ł                |                                               |                                    |                 |  |
|                                                                                                      |                                   |                                |              | 1                |                                               |                                    |                 |  |
|                                                                                                      |                                   |                                |              | ł                |                                               |                                    |                 |  |
|                                                                                                      |                                   |                                |              | l                |                                               |                                    |                 |  |
|                                                                                                      |                                   |                                |              | I                |                                               |                                    |                 |  |
|                                                                                                      |                                   |                                |              |                  |                                               |                                    |                 |  |
| Bemerkungen:<br>Kein Wasseraustritt nach 1                                                           | 5 Minuten                         |                                |              |                  |                                               |                                    |                 |  |
| ebenso nach Versuchsdurd                                                                             |                                   | nt und grö                     | ßerem hydrau | I. Druckhöl      | ne                                            |                                    |                 |  |
|                                                                                                      |                                   |                                |              |                  |                                               |                                    | Dominik<br>B    |  |
| odinauvenangerung.                                                                                   | Ja                                | IACIII                         |              | Dataili.         | 09.10.2008                                    | _                                  | ® hex07         |  |

|                        | <u> </u>       |                           |                    |              |                                        |                 | Anlage:                   |             |        |
|------------------------|----------------|---------------------------|--------------------|--------------|----------------------------------------|-----------------|---------------------------|-------------|--------|
| Abteilun               |                | e und Paläo<br>vandte Geo | MÜNSTE<br>ntologie | IS-UNIVER    | SITÄT                                  |                 | zu:                       |             |        |
| Ermittl                | ung der        | Durchla<br>erialien       | _                  | it an        | durchström<br>der Probe<br>(Fließquers |                 | $A = \frac{\pi * d^2}{4}$ | cm²         | 176,71 |
| station                | <u>ärem</u> hy | /draulis                  |                    | efälle       | hydraulisch<br>Druckhöhe               |                 | h                         | cm          | 2,0    |
| nacn บ                 | IN 1813        | 0-1                       |                    |              | Temperatu                              | r               | θ                         | °C          | 19,2   |
| Projekt Nr.:           |                | Auftraggeb                | er:                |              | eingebaute                             | Filter          |                           | kein        |        |
| Probe Nr.              |                | Tı                        | ragschicht l       | NL           | Strömungs                              | richtung        | ι                         | ınten> obe  | en     |
| Durchlauf              |                |                           |                    |              | Probendu                               | rchmesser       | d                         | cm          | 15,0   |
| Probenduro             | hmesser        | d                         | cm                 | 15,0         | Probenläng                             | je              | 1                         | cm          | 12,5   |
|                        | nde Menge      | Zeitdiffere               | durchfließe        |              | Zeitdiffere                            |                 | nde Menge                 | Zeitdiffere |        |
| während de             |                | nz                        | während de         |              | nz                                     | während de      | T                         | nz<br>Δt    |        |
| Vw<br>om³              | t<br>min:o     | $\Delta t$                | Vw<br>om³          | t<br>min:o   | $\Delta t$                             | Vw<br>om³       | t<br>min:o                |             |        |
| cm³<br>50              | min:s          | S -                       | cm <sup>3</sup>    | min:s        | S                                      | cm <sup>3</sup> | min:s                     |             |        |
| 100                    |                | _                         |                    |              |                                        |                 |                           |             |        |
| 150                    | _              | _                         |                    |              |                                        |                 |                           |             |        |
| 200                    | _              | _                         |                    |              |                                        |                 |                           |             |        |
| 250                    | -              | _                         |                    |              |                                        |                 |                           |             |        |
| 300                    | -              | -                         |                    |              |                                        |                 |                           |             |        |
| 350                    | -              | -                         |                    |              |                                        |                 |                           |             |        |
| 400                    | -              | -                         |                    |              |                                        |                 |                           |             |        |
| 450                    | -              | -                         |                    |              |                                        |                 |                           |             |        |
| 500                    | -              | -                         |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              |                                        |                 |                           |             |        |
|                        |                |                           |                    |              | -                                      |                 |                           |             |        |
| 2omorkuna              | ion:           |                           |                    |              |                                        | Laboranti       | Wesche, D                 | ominik      |        |
| Bemerkung<br>Cein Wass |                | ch 15 Minute              | an an              |              |                                        |                 | 09.10.2008                |             |        |
|                        |                | durchführun               |                    | t und aräßei | rem hvdraul                            |                 |                           |             |        |
|                        | erlängerung:   |                           | Ja                 | Nein         | i Siir riyaradi.                       | . Di GOMITOITE  |                           |             |        |

|                        | <u>.</u>                                                              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Anlage:                 |                                                                          |                       |                |         |  |
|------------------------|-----------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|--------------------------------------------------------------------------|-----------------------|----------------|---------|--|
| Abteilu                | t für Geologie und Paläoi<br>ing für Angewandte Geo<br>Patricia Göbel | •                                        | 15-Univ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ERSITÄT     |                         | zu:                                                                      |                       |                |         |  |
|                        | tlung der Durc                                                        | chlässigke                               | it an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                         |                                                                          |                       |                |         |  |
|                        | werksmateriali                                                        | _                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | em          |                         |                                                                          |                       |                |         |  |
|                        | aulischen Gefä                                                        | ille nach D                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         | Dränsand NL                                                              |                       |                |         |  |
| Probe                  |                                                                       |                                          | nsand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NI          | <b>-</b>                |                                                                          |                       | .,             |         |  |
| Durchlau               |                                                                       | Dia                                      | IISanu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INL         |                         | inzelversuch fachbestim-                                                 | Wasservol<br>im Messb |                |         |  |
| Probend                | urchmesser                                                            | d                                        | cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,0        |                         | mung in s                                                                |                       | 1 <sup>3</sup> |         |  |
| durchflos              | ssene Probenlänge                                                     | 1                                        | cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12,0        | <i>t</i> .=             | 94                                                                       | V <sub>w1</sub> =     | 25             |         |  |
| eingebau               |                                                                       | . =, •                                   | $t_1 = t_2 = t_2 = t_3 = t_4 $ | 54          | V <sub>w2</sub> =       | 25                                                                       |                       |                |         |  |
| Tempera                |                                                                       | θ                                        | kein<br>°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19,2        | t <sub>2</sub> -        |                                                                          | V <sub>w3</sub> =     | -              |         |  |
|                        | sche Druckhöhe                                                        | h                                        | cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | variabel    | t <sub>3</sub> -        |                                                                          | V <sub>w4</sub> =     |                |         |  |
| -                      | ömte Fläche der                                                       | $\pi * d^2$                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | t <sub>4</sub> -        |                                                                          | V <sub>w5</sub> =     |                |         |  |
|                        | ließquerschnitt)                                                      | $A = \frac{\pi * d^2}{4}$                | cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78,54       | t <sub>6</sub> =        |                                                                          | V <sub>w6</sub> =     |                |         |  |
| Durchläs<br>Gefälle i  | ssikeit mit konst. hydr.<br>n m/s                                     | Infiltrationsrate in I/(s*ha)            | mit h=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cm Überstau |                         |                                                                          |                       | <u> </u>       |         |  |
| k <sub>f</sub> =       | $= \frac{V_W \cdot l}{A \cdot h \cdot \Delta t}$                      | $V_{i} = \frac{V_{w}}{A \cdot \Delta t}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | $k_{f}$                 | $k_f = \frac{V_W \cdot l}{Acm^2 \cdot 1cm \cdot \Delta t} \cdot 10^{-2}$ |                       |                |         |  |
|                        |                                                                       | Einbau                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]           |                         |                                                                          |                       |                |         |  |
| k <sub>f1</sub> =      | 0,000041                                                              | <i>V</i> <sub>1</sub> =                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38,63       |                         | T7 10-                                                                   | -3 1 2                |                |         |  |
| k <sub>f2</sub> =      | 0,000047                                                              | V <sub>2</sub> =                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89,46       | $\dot{V_i} =$           | $=\frac{V_w \cdot 10^{-4}}{4 \cdot 10^{-4}}$                             | $\frac{dm^3}{2}$ .    | $10^4 ha$      |         |  |
| k <sub>f3</sub> =      | -                                                                     | V <sub>3</sub> =                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           | ļ                       | $A \cdot 10^{-6}$                                                        | $m^2 \cdot \Delta t$  |                |         |  |
|                        | Fließrichtung                                                         | swechsel                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |                                                                          |                       |                |         |  |
| k <sub>f4</sub> =      |                                                                       | V <sub>4</sub> =                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |                                                                          |                       |                |         |  |
| k <sub>f5</sub> =      |                                                                       | $V_5$ =                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |                                                                          |                       |                |         |  |
| k <sub>f6</sub> =      |                                                                       | $V_6$ =                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |                                                                          |                       |                |         |  |
|                        |                                                                       | Ausbau                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |                                                                          |                       |                |         |  |
|                        |                                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |                                                                          |                       |                |         |  |
|                        |                                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |                                                                          |                       |                |         |  |
| $\vdash$               |                                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |                                                                          |                       |                |         |  |
| $\vdash \vdash \vdash$ |                                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ł                       |                                                                          |                       |                |         |  |
|                        |                                                                       | , , , , , , , ,                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |                                                                          |                       |                |         |  |
| Bemerku                | -                                                                     | keitszelle bei Ver<br>nicht mehr abge    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |                                                                          |                       |                |         |  |
|                        | gsrichtung unten> o                                                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |                                                                          |                       |                |         |  |
| _                      | srichtung oben> unte<br>erlängerung:                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Wesche, D<br>09.10.2008 |                                                                          |                       |                |         |  |
|                        |                                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |                                                                          |                       |                | ® bex07 |  |

|                           | <u> </u>                        |                |                           |                |                                        |                           | Anlage:                   |             |          |
|---------------------------|---------------------------------|----------------|---------------------------|----------------|----------------------------------------|---------------------------|---------------------------|-------------|----------|
|                           | ür Geologie                     |                | Münste<br>intologie       | IS-UNIVER      | SITÄT                                  |                           | zu:                       |             |          |
|                           | g für Angev<br>atricia Göb      |                | logie                     |                |                                        |                           |                           |             |          |
|                           | ung der<br>erksmat              |                | _                         | it an          | durchström<br>der Probe<br>(Fließquers |                           | $A = \frac{\pi * d^2}{4}$ | cm²         | 78,54    |
|                           | ärem hy                         |                | chen G                    | efälle         | hydraulisch<br>Druckhöhe               |                           | h                         | cm          | variabel |
| nach D                    | IN 1813                         | 0-1            |                           |                | Temperatui                             | ſ                         | θ                         | °C          | 19,2     |
| Projekt Nr.:              |                                 | Auftraggeb     | er:                       |                | eingebaute                             | Filter                    |                           | kein        |          |
| Probe Nr.                 |                                 |                | Dränsand N                | L              | Strömungsı                             |                           | ι                         | ınten> obe  | en       |
| Durchlauf                 |                                 |                | _                         | •              |                                        | rchmesser                 | d                         | cm          | 10,0     |
| Probenduro                | chmesser                        | d              | cm                        | 10,0           | Probenläng                             | е                         | 1                         | cm          | 12,0     |
|                           | h = 10 cm                       |                | I                         | h = 15 cm      |                                        |                           |                           |             |          |
|                           |                                 | Zaitdiffara    |                           |                | Zeitdiffere                            |                           |                           | Zeitdiffere |          |
| durchfließe<br>während de | nde Menge<br>er Zeit            | nz             | durchfließe<br>während de |                | nz                                     | durchfließe<br>während de | •                         | nz          |          |
| Vw                        | t                               | $\Delta t$     | Vw                        | t              | $\Delta t$                             | Vw                        | t                         | $\Delta t$  |          |
| cm³                       | min:s                           | S              | cm <sup>3</sup>           | min:s          | S                                      | cm³                       | min:s                     | S           |          |
| 25                        | 01:15                           | 04.40          | 25                        | 01:01          | 00.55                                  | 25                        | -                         |             |          |
| 50                        | 02:58                           | 01:43          | 50                        | 01:58          | 00:57                                  | 50                        | -                         | -           |          |
| 75                        | 04:31                           | 01:33          | 75                        | 02:55          | 00:57                                  | 75                        | -                         | -           |          |
| 100                       | 06:01                           | 01:30          | 100                       | 03:53          | 00:58                                  | 100                       | -                         | -           |          |
| 125                       | 07:36                           | 01:35          | 125                       | 04:46          | 00:53                                  | 125                       | -                         | -           |          |
| 150                       | 09:10                           | 01:34          | 150                       | 05:35          | 00:49                                  | 150                       | -                         | -           |          |
| 175                       | 10:46                           | 01:36          | 175                       | 06:26          | 00:51                                  | 175                       | -                         | -           |          |
| 200                       | 12:22                           | 01:36          | 200                       | 07:19          | 00:53                                  | 200                       | -                         | -           |          |
| 225<br>250                | 13:54<br>15:28                  | 01:32<br>01:34 | 225<br>250                | 08:16<br>09:09 | 00:57<br>00:53                         | 225<br>250                | -                         | -           |          |
|                           |                                 | 01:34          |                           |                | 00:55                                  |                           | -                         | -           |          |
| 275<br>300                | 17:01<br>18:29                  | 01:33          | 275<br>300                | 10:04<br>10:58 | 00:55                                  | 275<br>300                | -                         | -           |          |
| 300                       | 10.29                           | 01.20          | 000                       | 10.00          | 00.04                                  | 300                       |                           |             |          |
|                           |                                 |                |                           |                |                                        |                           |                           |             |          |
|                           |                                 |                |                           |                |                                        |                           |                           |             |          |
|                           |                                 |                |                           |                |                                        |                           |                           |             |          |
|                           |                                 |                |                           |                |                                        |                           |                           |             |          |
|                           |                                 |                |                           |                |                                        |                           |                           |             |          |
|                           |                                 |                |                           |                |                                        |                           |                           |             |          |
|                           |                                 |                |                           |                |                                        |                           |                           |             |          |
|                           |                                 |                |                           |                |                                        |                           |                           |             |          |
|                           |                                 |                |                           |                |                                        |                           |                           |             |          |
| Bemerkung                 |                                 | <u>I</u>       |                           | 1              |                                        |                           | Wesche, D                 | ominik      |          |
| -                         | gkeitszelle be<br>icht dicht zu |                |                           | t              |                                        | Datum:                    | 09.10.08                  |             |          |
|                           | erlängerung:                    |                | Ja                        | Nein           |                                        |                           |                           |             |          |

|                       |                                                                        |                               |                                          |             |                              | Anlage:                                                                  |                               |           |   |  |
|-----------------------|------------------------------------------------------------------------|-------------------------------|------------------------------------------|-------------|------------------------------|--------------------------------------------------------------------------|-------------------------------|-----------|---|--|
|                       |                                                                        | WESTFÄI WILHELM MÜNSTE        | ns-Univ                                  | ERSITÄT     |                              | zu:                                                                      |                               |           |   |  |
| Abteilu               | t für Geologie und Paläoi<br>ung für Angewandte Geol<br>Patricia Göbel | _                             |                                          |             |                              |                                                                          |                               |           |   |  |
| Ermit                 | ttlung der Durc                                                        | chlässigke                    | it an                                    |             |                              |                                                                          |                               |           |   |  |
|                       | werksmateriali                                                         |                               |                                          |             |                              | unterer E                                                                | Rereich '                     | TI - Sol  | R |  |
| hydra                 | aulischen Gefä                                                         | ille nach D                   | IN 181                                   | 130-1       |                              | 41110101                                                                 | 20101011                      |           |   |  |
| Projekt I             |                                                                        | 1                             |                                          |             |                              |                                                                          |                               |           |   |  |
| Probe                 |                                                                        | unterer E                     | Bereich T                                | L - SoB     | ,                            | inzelversuch                                                             |                               |           |   |  |
| Durchla               | -                                                                      | , ,                           |                                          | 45.0        | bei Mehrfachbestim mung in s |                                                                          | im Messb<br>cm                |           |   |  |
|                       | lurchmesser                                                            | d                             | cm                                       | 15,0        |                              | .5                                                                       |                               |           |   |  |
|                       | ssene Probenlänge                                                      | 1                             | cm                                       | 12,5        | t <sub>1</sub> =             | 75                                                                       | V <sub>w1</sub> =             | 50        |   |  |
| _                     | ute Filter                                                             | ļ                             | kein                                     | <u> </u>    | t <sub>2</sub> =             | 61                                                                       | V <sub>w2</sub> =             | 50        |   |  |
| Tempera               |                                                                        | θ                             | °C                                       | 19,9        | t <sub>3</sub> =             | 55                                                                       | V <sub>w3</sub> =             | 50        |   |  |
| hydrauli              | sche Druckhöhe                                                         | h                             | cm                                       | variabel    | t <sub>4</sub> =             |                                                                          | V <sub>w4</sub> =             |           |   |  |
|                       | ömte Fläche der                                                        | $A = \frac{\pi * d^2}{4}$     | cm²                                      | 176,71      | t <sub>5</sub> =             |                                                                          | V <sub>w5</sub> =             |           |   |  |
|                       | Fließquerschnitt)                                                      | 4                             |                                          | ·           | t <sub>6</sub> =             |                                                                          | V <sub>w6</sub> =             |           |   |  |
| Durchläs<br>Gefälle i | ssikeit mit konst. hydr.<br>n m/s                                      | Infiltrationsrate in I/(s*ha) | mit h=                                   | cm Überstau |                              |                                                                          |                               |           |   |  |
| $k_f$ =               | $=\frac{V_{W}\cdot l}{A\cdot h\cdot \Delta t}$                         | $\dot{V_i} =$                 | $V_{i} = \frac{V_{w}}{A \cdot \Delta t}$ |             |                              | $k_f = \frac{V_W \cdot l}{Acm^2 \cdot 1cm \cdot \Delta t} \cdot 10^{-2}$ |                               |           |   |  |
|                       |                                                                        | Einbau                        |                                          |             | 1                            | 110111                                                                   | тет Д                         |           |   |  |
| k <sub>f1</sub> =     | 0,000059                                                               | <i>V</i> <sub>1</sub> =       | 3                                        | 77,26       |                              |                                                                          | 2                             |           |   |  |
| k <sub>f2</sub> =     | 0,000058                                                               | <i>V</i> , =                  | 4                                        | 63,84       | $\dot{V_i} =$                | $\frac{V_w \cdot 10^{-4}}{A \cdot 10^{-4}}$                              | $\frac{1}{2}$ $\frac{1}{2}$ . | $10^4 ha$ |   |  |
| k <sub>f3</sub> =     | 0,000054                                                               | $V_3 =$                       | 5                                        | 14,44       |                              | $A \cdot 10^{-4}$                                                        | $m^2 \cdot \Delta t$          |           |   |  |
|                       | Fließrichtung                                                          | swechsel                      |                                          |             | l                            |                                                                          |                               |           |   |  |
| k <sub>f4</sub> =     |                                                                        | V <sub>4</sub> =              |                                          |             |                              |                                                                          |                               |           |   |  |
| k <sub>f5</sub> =     |                                                                        | $V_5$ =                       |                                          |             |                              |                                                                          |                               |           |   |  |
| k <sub>f6</sub> =     |                                                                        | $V_6$ =                       |                                          |             |                              |                                                                          |                               |           |   |  |
|                       |                                                                        | Ausbau                        |                                          |             | 1                            |                                                                          |                               |           |   |  |
|                       |                                                                        |                               |                                          |             |                              |                                                                          |                               |           |   |  |
|                       |                                                                        |                               |                                          |             | ĺ                            |                                                                          |                               |           |   |  |
| $\vdash$              |                                                                        |                               |                                          |             | ł                            |                                                                          |                               |           |   |  |
|                       |                                                                        |                               |                                          |             | l                            |                                                                          |                               |           |   |  |
|                       |                                                                        |                               |                                          |             |                              |                                                                          |                               |           |   |  |
| Bemerk                | ungen: Größtkorn d                                                     | > 22,4 mm nach                | ı V. Kaul                                |             |                              |                                                                          |                               |           |   |  |
|                       | ngsrichtung unten> ol<br>srichtung oben> unte                          |                               |                                          |             |                              | Laborant:                                                                | Wesche, D                     | Jominik   |   |  |
| _                     | snchtung oben> unte<br>erlängerung:                                    |                               |                                          |             | 08.10.2008                   |                                                                          |                               |           |   |  |
|                       | - ····································                                 | Ja                            | <u>Nein</u>                              |             |                              |                                                                          |                               |           |   |  |

|                           | _ = -       |                              | WESTFÄL<br>WILHEL <i>N</i><br>Münstei | IS-UNIVER   | SITÄT                                  |                 | Anlage:<br>zu:                                   |             |         |
|---------------------------|-------------|------------------------------|---------------------------------------|-------------|----------------------------------------|-----------------|--------------------------------------------------|-------------|---------|
| Abteilung                 | -           | d Paläontolo<br>dte Geologie | -                                     |             |                                        |                 |                                                  |             |         |
|                           | _           | Durchla<br>erialien          | ässigke<br>mit                        | it an       | durchström<br>der Probe<br>(Fließquers |                 | $A = \frac{\pi * d^2}{4}$                        | cm²         | 176,71  |
| station                   | ärem hy     | /draulis                     | chen G                                | efälle      | hydraulisch                            | е               | h                                                | cm          | variabe |
|                           | IN 1813     |                              |                                       |             | Druckhöhe                              | _               |                                                  | °C          |         |
|                           |             |                              | or:                                   |             | Temperatur                             |                 | θ                                                | kein        | 19,9    |
| Projekt Nr.:<br>Probe Nr. |             | Auftraggebe                  | er:<br>r Bereich Ti                   | - SoB       | eingebaute<br>Strömungsi               |                 | <del>                                     </del> | ınten> obe  | en en   |
| Durchlauf                 |             | untere                       | i bereich i                           | L - 30B     |                                        | rchmesser       | d                                                | cm          | 15,0    |
| Probendurc                | hmesser     | d                            | cm                                    | 15,0        | Probenläng                             |                 | 1                                                | cm          | 12,5    |
| robonadio                 |             | u                            | CITI                                  | 10,0        | riobornang                             |                 | ,                                                | OIII        | 12,0    |
|                           | h = 8 cm    |                              |                                       | h = 10 cm   |                                        |                 | h = 12 cm                                        |             |         |
| durchfließer              |             | Zeitdiffere                  | durchfließe                           | nde Menge   | Zeitdiffere                            | durchfließe     | nde Menge                                        | Zeitdiffere |         |
| während de                | •           | nz                           | während de                            |             | nz                                     | während de      | -                                                | nz          |         |
| Vw                        | t           | $\Delta t$                   | Vw                                    | t           | $\Delta t$                             | Vw              | t                                                | $\Delta t$  |         |
| cm <sup>3</sup>           | min:s       | S                            | cm <sup>3</sup>                       | min:s       | s                                      | cm <sup>3</sup> | min:s                                            |             |         |
| 50                        | 01:11       |                              | 50                                    | 00:57       |                                        | 50              | 01:00                                            |             |         |
| 100                       | 02:26       | 01:15                        | 100                                   | 01:59       | 01:02                                  | 100             | 01:54                                            | 00:54       |         |
| 150                       | 03:41       | 01:15                        | 150                                   | 03:01       | 01:02                                  | 150             | 02:48                                            | 00:54       |         |
| 200                       | 04:55       | 01:14                        | 200                                   | 04:02       | 01:01                                  | 200             | 03:43                                            | 00:55       |         |
| 250                       | 06:11       | 01:16                        | 250                                   | 05:02       | 01:00                                  | 250             | 04:36                                            | 00:53       |         |
| 300                       | 07:27       | 01:16                        | 300                                   | 06:04       | 01:02                                  | 300             | 05:31                                            | 00:55       |         |
| 350                       | 08:41       | 01:14                        | 350                                   | 07:07       | 01:03                                  | 350             | 06:26                                            | 00:55       |         |
| 400                       | 09:37       | 00:56                        | 400                                   | 08:08       | 01:01                                  | 400             | 07:20                                            | 00:54       |         |
| 450                       | 11:12       | 01:35                        | 450                                   | 09:09       | 01:01                                  | 450             | 08:15                                            | 00:55       |         |
| 500                       | 12:27       | 01:15                        | 500                                   | 10:10       | 01:01                                  | 500             | 09:10                                            | 00:55       |         |
|                           |             |                              |                                       |             |                                        |                 |                                                  |             |         |
|                           |             |                              |                                       |             |                                        |                 |                                                  |             |         |
|                           |             |                              |                                       |             |                                        |                 |                                                  |             |         |
|                           |             |                              |                                       |             |                                        |                 |                                                  |             |         |
|                           |             |                              |                                       |             |                                        |                 |                                                  |             |         |
|                           |             |                              |                                       |             |                                        |                 |                                                  |             |         |
|                           |             |                              |                                       |             |                                        |                 |                                                  |             |         |
|                           |             |                              |                                       |             |                                        |                 |                                                  |             |         |
| Bemerkung<br>Größtkorn c  |             | nach V. Ka                   | ul                                    |             |                                        |                 | Wesche, De 08.10.08                              | ominik      | 1       |
|                           | rlängerung: |                              | Ja                                    | <u>Nein</u> |                                        |                 |                                                  |             |         |

|                        |                                                 |                                                  |                                  |              | Anlage:                                                                    |                                                                          |                             |           |         |  |
|------------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------|--------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------|-----------|---------|--|
|                        | für Geologie und Paläo                          | _                                                | ns-Univ                          | ERSITÄT      |                                                                            | zu:                                                                      |                             |           |         |  |
|                        | ing für Angewandte Geo<br>Patricia Göbel        | logie                                            |                                  |              |                                                                            |                                                                          |                             |           |         |  |
| <b>Ermit</b>           | tlung der Durc                                  | chlässigke                                       | it an                            |              |                                                                            |                                                                          |                             |           |         |  |
| Haufv                  | werksmateriali                                  | en mit sta                                       | tionär                           | em           |                                                                            | _                                                                        |                             |           |         |  |
|                        | ulischen Gefä                                   | ille nach D                                      |                                  |              | oberer Bereich TL - SoB                                                    |                                                                          |                             |           |         |  |
| Probe                  |                                                 |                                                  | Bereich T                        | I - SoB      |                                                                            |                                                                          | 1                           | 1         |         |  |
| Durchlau               |                                                 | 0,00,0,12                                        |                                  |              | Zeit <i>t</i> je Einzelversuch Wasservolum bei Mehrfachbestim- im Messbech |                                                                          |                             |           |         |  |
|                        | urchmesser                                      | d                                                | cm                               | 15,0         | mung in s                                                                  |                                                                          | cm                          |           |         |  |
|                        | ssene Probenlänge                               | 1                                                | -                                |              |                                                                            |                                                                          | V <sub>w1</sub> =           | 25        |         |  |
|                        |                                                 | '                                                | cm                               | 12,5         | t <sub>1</sub> =                                                           | 44                                                                       |                             | 25<br>25  |         |  |
| eingebau               |                                                 |                                                  | kein                             | 00.0         | t <sub>2</sub> =                                                           | 34                                                                       | V <sub>w2</sub> =           |           |         |  |
| Tempera                |                                                 | θ                                                | °C                               | 20,2         | t <sub>3</sub> =                                                           | 35                                                                       | V <sub>w3</sub> =           | 25        |         |  |
| hydraulis              | sche Druckhöhe                                  | h                                                | cm                               | variabel     | t <sub>4</sub> =                                                           |                                                                          | V <sub>w4</sub> =           |           |         |  |
|                        | ömte Fläche der                                 | $A = \frac{\pi * d^2}{4}$                        | cm <sup>2</sup>                  | 176,71       | t <sub>5</sub> =                                                           |                                                                          | V <sub>w5</sub> =           |           |         |  |
| `                      | ließquerschnitt)                                | '                                                |                                  |              | t <sub>6</sub> =                                                           |                                                                          | V <sub>w6</sub> =           |           |         |  |
| Durchläs<br>Gefälle ir | ssikeit mit konst. hydr.<br>n m/s               | Infiltrationsrate in I/(s*ha)                    | mit h=                           | cm Uberstau  |                                                                            |                                                                          |                             |           |         |  |
| $k_f$ =                | $=\frac{V_w \cdot l}{A \cdot h \cdot \Delta t}$ | $\dot{V}_{i} =$                                  | $\frac{V_{w}}{A \cdot \Delta a}$ | <del>-</del> | $k_f$                                                                      | $k_f = \frac{V_W \cdot l}{Acm^2 \cdot 1cm \cdot \Delta t} \cdot 10^{-2}$ |                             |           |         |  |
|                        |                                                 | Einbau                                           |                                  |              |                                                                            | 110                                                                      | 10                          |           |         |  |
| k <sub>f1</sub> =      | 0,000040                                        | $V_1 =$                                          | 3                                | 21,53        |                                                                            |                                                                          |                             |           |         |  |
| k <sub>f2</sub> =      | 0,000043                                        | $V_2 = V_3 = V_3$                                |                                  | 16,09        | $V_i =$                                                                    | $\frac{V_w \cdot 10^{-4}}{A \cdot 10^{-4}}$                              | $\frac{^{3}dm^{3}}{^{3}}$ . | $10^4 ha$ |         |  |
| k <sub>f3</sub> =      | 0,000042                                        | J                                                | 4                                | 04,20        | ļ                                                                          | $A \cdot 10$                                                             | $m^2 \cdot \Delta l$        |           |         |  |
| . 1                    | Fließrichtung                                   |                                                  |                                  |              |                                                                            |                                                                          |                             |           |         |  |
| k <sub>f4</sub> =      |                                                 | V <sub>4</sub> =                                 |                                  |              |                                                                            |                                                                          |                             |           |         |  |
| k <sub>f5</sub> =      |                                                 | $V_5$ =                                          |                                  |              |                                                                            |                                                                          |                             |           |         |  |
| k <sub>f6</sub> =      |                                                 | $V_6$ =                                          |                                  |              |                                                                            |                                                                          |                             |           |         |  |
|                        |                                                 | Ausbau                                           |                                  |              | 1                                                                          |                                                                          |                             |           |         |  |
|                        |                                                 |                                                  |                                  |              |                                                                            |                                                                          |                             |           |         |  |
|                        |                                                 | <del>                                     </del> |                                  |              | 1                                                                          |                                                                          |                             |           |         |  |
| <b></b>                |                                                 |                                                  |                                  |              | 1                                                                          |                                                                          |                             |           |         |  |
|                        |                                                 |                                                  |                                  |              |                                                                            |                                                                          |                             |           |         |  |
|                        |                                                 |                                                  |                                  |              |                                                                            |                                                                          |                             |           |         |  |
| Bemerku                | ıngen: Größtkorn d                              | > 22,4 mm nach                                   | ı V. Kaul                        |              |                                                                            |                                                                          |                             |           |         |  |
|                        |                                                 |                                                  |                                  |              |                                                                            |                                                                          |                             |           |         |  |
|                        |                                                 |                                                  |                                  |              |                                                                            |                                                                          |                             |           |         |  |
| Qträm                  | gerichtung unten in a                           | hon                                              |                                  |              |                                                                            |                                                                          |                             |           |         |  |
|                        | gsrichtung unten> ol<br>srichtung oben> unte    |                                                  |                                  |              |                                                                            | Laborant.                                                                | Wesche, D                   | Oominik   |         |  |
|                        | erlängerung:                                    |                                                  | <u>Nein</u>                      |              |                                                                            |                                                                          | 08.10.2008                  |           |         |  |
|                        |                                                 |                                                  |                                  |              |                                                                            |                                                                          |                             |           | ® hex07 |  |

|                           |                              |                | WESTFÄL                   |                | CITŸ-                    |                           | Anlage:                     |                |        |
|---------------------------|------------------------------|----------------|---------------------------|----------------|--------------------------|---------------------------|-----------------------------|----------------|--------|
|                           | r Geologie un<br>für Angewan |                | MÜNSTEI<br>gie            | is-Univer<br>R | SIIAT                    |                           | zu:                         |                |        |
| PD Dr. Pa                 | tricia Göbel                 |                |                           | it on          | durchström               | te Fläche                 | . π * d ²                   |                |        |
| Haufwe                    | ung der<br>erksmat           | erialien       | mit                       |                | der Probe<br>(Fließquers | -                         | $A = \frac{\pi \cdot a}{4}$ | cm²            | 176,71 |
|                           | <u>ärem</u> hy<br>IN 1813    |                | chen G                    | efälle         | hydraulisch<br>Druckhöhe |                           | h                           | variabel       |        |
|                           |                              |                |                           |                | Temperatui               |                           | θ                           | °C             | 20,2   |
| Projekt Nr.:              |                              | Auftraggeb     |                           | 0.5            | eingebaute               |                           |                             | kein           |        |
| Probe Nr.                 | ı                            | oberei         | Bereich TL                | SoB            | Strömungs                |                           |                             | ınten> obe     |        |
| Durchlauf                 |                              |                | Ī                         | I              |                          | rchmesser                 | d                           | cm             | 15,0   |
| Probenduro                | nmesser                      | d              | cm                        | 15,0           | Probenläng               | е                         | 1                           | cm             | 12,5   |
|                           | h = 10 cm                    |                | l                         | h = 12 cm      |                          | l                         | h = 12 cm                   | i              |        |
|                           |                              | Zoitdiffors    |                           |                | Zeitdiffere              |                           |                             | Zeitdiffere    |        |
| durchfließe<br>während de | ı                            | nz             | durchfließe<br>während de | r Zeit         | nz                       | durchfließe<br>während de | er Zeit                     | $\Delta t$     |        |
| Vw                        | t ·                          | $\Delta t$     | Vw                        | t .            | $\Delta t$               | Vw                        | t                           |                |        |
| cm³                       | min:s                        | S              | cm³                       | min:s          | S                        | cm³                       | min:s                       | S              |        |
| 25                        |                              |                | 25                        | 00:46          | 00.00                    | 25                        | 00:43                       | 00.05          |        |
| 50                        | 01:25                        | 00.40          | 50                        | 01:19          | 00:33                    | 50                        | 01:18                       | 00:35          |        |
| 75                        | 02:14                        | 00:49          | 75                        | 01:56          | 00:37                    | 75                        | 01:54                       | 00:36          |        |
| 100                       | 02:56                        | 00:42          | 100                       | 02:30          | 00:34                    | 100                       | 02:29                       | 00:35          |        |
| 125                       | 03:42                        | 00:46          | 125                       | 03:03          | 00:33                    | 125                       | 03:04                       | 00:35          |        |
| 150                       | 04:22                        | 00:40          | 150                       | 03:36          | 00:33                    | 150                       | 03:37                       | 00:33          |        |
| 175                       | 05:06                        | 00:44          | 175                       | 04:11          | 00:35                    | 175                       | 04:11                       | 00:34<br>00:35 |        |
| 200                       | 05:50                        | 00:44<br>00:43 | 200                       | 04:46          | 00:35                    | 200                       | 04:46                       |                |        |
| 225<br>250                | 06:33<br>07:16               | 00:43          | 225<br>250                | 05:19<br>05:53 | 00:33<br>00:34           | 225<br>250                | 05:21<br>05:55              | 00:35<br>00:34 |        |
|                           |                              | 00:45          |                           | 06:28          | 00:35                    | 275                       | 06:30                       | 00:35          |        |
| 275<br>300                | 08:01<br>08:45               | 00:43          | 275<br>300                | 07:01          | 00:33                    | 300                       | 07:05                       | 00:35          |        |
| 325                       | 09:29                        | 00:44          | 325                       | 07:36          | 00:35                    | 300                       | 07.00                       | 00.00          |        |
| JZJ                       | 09.28                        | JU.74          | 350                       | 07.30          | 00:35                    |                           |                             |                |        |
|                           |                              |                | 000                       | 20             | 30.30                    |                           |                             |                |        |
|                           |                              |                |                           |                |                          |                           |                             |                |        |
|                           |                              |                |                           |                |                          |                           |                             |                |        |
|                           |                              |                |                           |                |                          |                           |                             |                |        |
|                           |                              |                |                           |                |                          |                           |                             |                |        |
|                           |                              |                |                           |                |                          |                           |                             |                |        |
|                           |                              |                |                           |                |                          |                           |                             |                |        |
| Bemerkung<br>Größtkorn o  | jen:<br>d > 22,4 mm          | nach V. Ka     | ul                        |                |                          |                           | Wesche, Do                  | ominik         | 1      |
| 2-1-1                     | erlängerung:                 |                | Ja                        | Nein           |                          |                           |                             |                |        |

| Institut für Geologie und Paläo<br>Abteilung für Angewandte Geo<br>PD Dr. Patricia Göbel    | _                                           | ns-Univ                                  | ERSITÄT    |                                                                                                        | Anlage:<br>zu:                                                           |                      |                                 |  |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------|---------------------------------|--|--|--|
| Ermittlung der Durc<br>Haufwerksmateriali<br>hydraulischen Gefä<br>Projekt Nr.: Auftraggebe | ien mit <u>sta</u><br>ille nach D           | tionär                                   |            | RC 0/45                                                                                                |                                                                          |                      |                                 |  |  |  |
| Probe Nr.                                                                                   |                                             | RC 0/45                                  |            |                                                                                                        | nzelversuch                                                              | l                    |                                 |  |  |  |
| Durchlauf                                                                                   | 110 0, 10                                   |                                          |            |                                                                                                        |                                                                          |                      | umen V <sub>w</sub><br>echer in |  |  |  |
| Probendurchmesser                                                                           | d                                           | cm                                       | 15,0       | mun                                                                                                    | ig in s                                                                  | cm                   |                                 |  |  |  |
| durchflossene Probenlänge                                                                   | 1                                           | cm                                       | 12,5       | t 1=                                                                                                   | 40                                                                       | V <sub>w1</sub> =    | 100                             |  |  |  |
| eingebaute Filter                                                                           |                                             | kein                                     | · · · ·    | t <sub>2</sub> =                                                                                       | 24                                                                       | V <sub>w2</sub> =    | 100                             |  |  |  |
| Temperatur                                                                                  | θ                                           | °C                                       | 19,5       | t <sub>3</sub> =                                                                                       | 25                                                                       | V <sub>w3</sub> =    | 100                             |  |  |  |
| hydraulische Druckhöhe                                                                      | h                                           | cm                                       | s. Seite 2 | t <sub>4</sub> =                                                                                       |                                                                          | V <sub>w4</sub> =    |                                 |  |  |  |
| durchströmte Fläche der                                                                     | $A = \frac{\pi * d^2}{}$                    |                                          | 4=0=4      | t <sub>5</sub> =                                                                                       |                                                                          | V <sub>w5</sub> =    |                                 |  |  |  |
| Probe (Fließquerschnitt)                                                                    | $A = \frac{\pi}{4}$                         | cm <sup>2</sup>                          | 176,71     | t <sub>6</sub> =                                                                                       |                                                                          | V <sub>w6</sub> =    |                                 |  |  |  |
| Durchlässikeit mit konst. hydr. Gefälle in m/s $V_W \cdot l$                                | Infiltrationsrate in I/(s*ha)  V =          |                                          |            | 1_                                                                                                     |                                                                          |                      |                                 |  |  |  |
| $k_f = \frac{V_W \cdot l}{A \cdot h \cdot \Delta t}$                                        | , i –                                       | $V_{i} = \frac{V_{w}}{A \cdot \Delta t}$ |            |                                                                                                        | $k_f = \frac{V_W \cdot l}{Acm^2 \cdot 1cm \cdot \Delta t} \cdot 10^{-2}$ |                      |                                 |  |  |  |
|                                                                                             | Einbau                                      |                                          |            |                                                                                                        |                                                                          |                      |                                 |  |  |  |
| k <sub>f1</sub> = 0,00177                                                                   | $V_1 =$                                     | 14                                       | 414,71     |                                                                                                        |                                                                          | 2                    |                                 |  |  |  |
| k <sub>f2</sub> = 0,00059                                                                   | <u>V</u> , =                                |                                          | 357,85     | $\dot{V}_{i} = \frac{V_{w} \cdot 10^{-3} dm^{3}}{A \cdot 10^{-4} m^{2} \cdot \Delta t} \cdot 10^{4} h$ |                                                                          |                      |                                 |  |  |  |
| k <sub>f3</sub> = 0,00057                                                                   | V <sub>3</sub> =                            | 2:                                       | 263,54     |                                                                                                        | $A \cdot 10^{-1}$                                                        | $m^2 \cdot \Delta t$ |                                 |  |  |  |
| Fließrichtung                                                                               | swechsel                                    |                                          |            |                                                                                                        |                                                                          |                      |                                 |  |  |  |
| k <sub>f4</sub> =                                                                           | V <sub>4</sub> =                            |                                          |            |                                                                                                        |                                                                          |                      |                                 |  |  |  |
| κ <sub>f5</sub> =                                                                           | V <sub>5</sub> =                            |                                          |            |                                                                                                        |                                                                          |                      |                                 |  |  |  |
| k <sub>f6</sub> =                                                                           | $V_6$ =                                     |                                          |            |                                                                                                        |                                                                          |                      |                                 |  |  |  |
|                                                                                             | Ausbau                                      |                                          |            |                                                                                                        |                                                                          |                      |                                 |  |  |  |
|                                                                                             |                                             |                                          |            |                                                                                                        |                                                                          |                      |                                 |  |  |  |
|                                                                                             |                                             |                                          |            |                                                                                                        |                                                                          |                      |                                 |  |  |  |
|                                                                                             |                                             |                                          |            |                                                                                                        |                                                                          |                      |                                 |  |  |  |
|                                                                                             |                                             |                                          |            |                                                                                                        |                                                                          |                      |                                 |  |  |  |
| Pomorkungon:                                                                                |                                             |                                          |            |                                                                                                        |                                                                          |                      |                                 |  |  |  |
| Bemerkungen:<br>Verdichtung erfolgte mit lufttrod                                           | erdichtung erfolgte mit lufttrockenem Boden |                                          |            |                                                                                                        |                                                                          |                      |                                 |  |  |  |
| Strömungsrichtung unten> o<br>Ströungsrichtung oben> unte<br>Schlauverlängerung:            |                                             |                                          |            |                                                                                                        | Wesche, D<br>17.04.08                                                    | Oominik              |                                 |  |  |  |

|               | ±                                            |               |                                              |                                                 |                          |                         | Anlage:   |             |        |  |
|---------------|----------------------------------------------|---------------|----------------------------------------------|-------------------------------------------------|--------------------------|-------------------------|-----------|-------------|--------|--|
| Abteilung     | r Geologie ur<br>für Angewan<br>tricia Göbel |               | WILHELM<br>MÜNSTEI<br>gie                    | Vestfälische<br>Vilhelms-Universität<br>∧ünster |                          |                         |           | zu:         |        |  |
| Ermittl       |                                              |               | durchströmt<br>der Probe<br>mit (Fließquerso |                                                 |                          | $A = \frac{\pi * a}{4}$ |           | cm²         | 176,71 |  |
|               |                                              |               | chen G                                       | efälle                                          | hydraulisch<br>Druckhöhe | ne                      | h         | cm          | s.u.   |  |
| nach D        | ach DIN 18130-1                              |               |                                              |                                                 | Temperatu                | r                       | θ         | °C          | 19,5   |  |
| Projekt Nr.:  |                                              | Auftraggeb    |                                              |                                                 | eingebaute               | Filter                  |           | kein        |        |  |
| Probe Nr.     | •                                            |               | RC 0/45                                      |                                                 | Strömungs                |                         | ι         | ınten> obe  | en     |  |
| Durchlauf     |                                              |               |                                              |                                                 |                          | rchmesser               | d         | cm          | 15,0   |  |
| Probenduro    | chmesser                                     | d             | cm                                           | 15,0                                            | Probenläng               | je                      | 1         | cm          | 12,5   |  |
|               |                                              | 1             |                                              |                                                 | 1                        | •                       |           |             |        |  |
| durchfließe   | urchfließende Menge Zeitdiffere              |               |                                              | durchfließende Menge                            |                          |                         |           | Zeitdiffere |        |  |
| während de    | end der Zeit nz während der Zeit             |               | r Zeit                                       | nz                                              | während de               | er Zeit                 | nz        |             |        |  |
| Vw            | t                                            | $\Delta t$    | Vw                                           | t                                               | $\Delta t$               | Vw                      | t         | $\Delta t$  |        |  |
| cm³           | min:s                                        | S             | cm³                                          | min:s                                           | S                        | cm <sup>3</sup>         | min:s     | S           |        |  |
| 100           | 01:45                                        |               | 100                                          | 00:26                                           |                          | 100                     | 00:24     |             |        |  |
| 200           | 02:27                                        | 00:42         | 200                                          | 00:57                                           | 00:31                    | 200                     | 00:49     | 00:25       |        |  |
| 300           | 03:05                                        | 00:38         | 300                                          | 01:23                                           | 00:26                    | 300                     | 01:14     | 00:25       |        |  |
| 400           | 03:45                                        | 00:40         | 400                                          | 01:45                                           | 00:22                    | 400                     | 01:39     | 00:25       |        |  |
| 500           | 04:25                                        | 00:40         | 500                                          | 02:06                                           | 00:21                    | 500                     | 02:05     | 00:26       |        |  |
| 600           | 05:04                                        | 00:39         | 600                                          | 02:31                                           | 00:25                    | 600                     | 02:30     | 00:25       |        |  |
| 700           | 05:45                                        | 00:41         | 700                                          | 02:55                                           | 00:24                    |                         |           |             |        |  |
| 800           | 06:25                                        | 00:40         | 800                                          | 03:19                                           | 00:24                    |                         |           |             |        |  |
|               |                                              |               | 900                                          | 03:43                                           | 00:24                    |                         |           |             |        |  |
|               |                                              |               | 1000                                         | 04:08                                           | 00:25                    |                         |           |             |        |  |
|               |                                              |               |                                              |                                                 |                          |                         |           |             |        |  |
|               | h = 1 cm                                     |               |                                              | h = 5 cm                                        |                          |                         | h = 5 cm  |             |        |  |
|               |                                              |               |                                              |                                                 |                          |                         |           |             |        |  |
|               | <u> </u>                                     |               |                                              |                                                 |                          | l l                     |           |             |        |  |
|               | 1                                            |               |                                              |                                                 |                          |                         |           |             |        |  |
|               |                                              |               |                                              |                                                 |                          |                         |           |             |        |  |
|               |                                              |               |                                              |                                                 |                          |                         |           |             |        |  |
|               |                                              |               |                                              |                                                 |                          |                         |           |             |        |  |
|               |                                              |               |                                              |                                                 |                          |                         |           |             |        |  |
|               |                                              |               |                                              |                                                 |                          |                         |           |             |        |  |
|               |                                              |               |                                              |                                                 |                          |                         |           |             |        |  |
|               | <u> </u>                                     |               |                                              |                                                 |                          |                         |           |             |        |  |
|               |                                              |               |                                              |                                                 |                          |                         |           |             |        |  |
|               |                                              |               |                                              |                                                 |                          |                         |           |             |        |  |
|               |                                              |               |                                              |                                                 |                          |                         |           |             |        |  |
| Bemerkung     | len.                                         | <u> </u>      |                                              |                                                 | <u> </u>                 | l aborant:              | Wesche, D | ominik      |        |  |
| Jenner Kuri ( |                                              | g erfolgte mi | t luftfeuchter                               | Probe                                           |                          |                         | 17.04.08  | OHIIIIK     |        |  |
|               |                                              |               |                                              |                                                 |                          |                         |           |             |        |  |
| schlauchve    | erlängerung:                                 |               | Ja                                           | <u>Nein</u>                                     |                          |                         |           |             |        |  |

| Institut für Geologie und Paläo<br>Abteilung für Angewandte Geo<br>PD Dr. Patricia Göbel    | logie                             | ns-Univ<br>R    |          | Anlage:<br>zu:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          |                         |           |  |
|---------------------------------------------------------------------------------------------|-----------------------------------|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------|-----------|--|
| Ermittlung der Durch<br>Haufwerksmaterial<br>hydraulischen Gefä<br>Projekt Nr.: Auftraggebe | ien mit <u>sta</u><br>älle nach D |                 | НК       | (S 0/45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>(I)</b>                                                               |                         |           |  |
| Probe Nr.                                                                                   | НК                                | S 0/45          | (I)      | Zoit t io E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inzelversuch                                                             | Wasservol               | umen V    |  |
| Durchlauf                                                                                   | -                                 | fachbestim-     | im Messb |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                         |           |  |
| Probendurchmesser                                                                           | d cm 15,0                         |                 |          | mur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ng in s                                                                  | cm                      | 13        |  |
| durchflossene Probenlänge                                                                   | 1                                 |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                       | V <sub>w1</sub> =       | 100       |  |
| eingebaute Filter                                                                           |                                   | kein            |          | $t_1 = t_2 = t_2 = t_3 = t_4 = t_4 = t_5 $ | 5                                                                        | V <sub>w2</sub> =       | 100       |  |
| Temperatur                                                                                  | θ                                 | °C              | 20,0     | $t_3$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                       | V <sub>w3</sub> =       | 100       |  |
| hydraulische Druckhöhe                                                                      | h                                 | cm              | 1,0      | t <sub>4</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | V <sub>w4</sub> =       |           |  |
| durchströmte Fläche der                                                                     | $\pi * d2$                        |                 |          | t <sub>5</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | V <sub>w5</sub> =       |           |  |
| Probe (Fließquerschnitt)                                                                    | $A = \frac{\pi * d^2}{4}$         | cm <sup>2</sup> | 176,71   | t <sub>6</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | V <sub>w6</sub> =       |           |  |
| Gefälle in m/s $k_{f}  = \frac{V_W  \cdot l}{A \cdot h \cdot \Delta t}$                     |                                   |                 |          | $k_f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $k_f = \frac{V_W \cdot l}{Acm^2 \cdot 1cm \cdot \Delta t} \cdot 10^{-2}$ |                         |           |  |
| 0.00707                                                                                     | Einbau                            | -               | 050.04   | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                         |           |  |
| k <sub>f1</sub> = 0,00707                                                                   | $V_1 =$                           | 50              | 658,84   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                       | 3                       |           |  |
| k <sub>f2</sub> = 0,01415                                                                   | <i>V</i> <sub>2</sub> =           | 11              | 317,68   | $\dot{V}_{\cdot} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{V_w \cdot 10^{-4}}{A \cdot 10^{-4}}$                              | $\frac{^{3}dm^{3}}{}$ . | $10^4 ha$ |  |
| k <sub>f3</sub> = 0,00707                                                                   | $V_3 =$                           | 50              | 658,84   | ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $A \cdot 10^{-4}$                                                        | $m^2 \cdot \Delta t$    |           |  |
| Fließrichtung                                                                               | swechsel                          |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                         |           |  |
| k <sub>f4</sub> =                                                                           | Ϋ́, =                             |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                         |           |  |
| k <sub>f5</sub> =                                                                           | $V_5$ =                           |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                         |           |  |
| k <sub>f6</sub> =                                                                           | $V_6$ =                           |                 |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                         |           |  |
|                                                                                             | Ausbau                            |                 |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                         |           |  |
|                                                                                             |                                   |                 |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                         |           |  |
|                                                                                             |                                   |                 |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                         |           |  |
|                                                                                             |                                   |                 |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                         |           |  |
|                                                                                             |                                   |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                         |           |  |
|                                                                                             |                                   |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                         |           |  |
| Bemerkungen: Strömungsrichtung unten> c Ströungsrichtung oben> unte                         |                                   |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laborant:                                                                | Wesche, D               | Dominik   |  |
| Schlauverlängerung:                                                                         |                                   |                 | 03.04.08 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                         |           |  |

|                                                                                                                                         |                                              |                |                           |          |                                        |                           | Anlage:                   |                |        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------|---------------------------|----------|----------------------------------------|---------------------------|---------------------------|----------------|--------|--|
| Abteilung                                                                                                                               | r Geologie un<br>für Angewan<br>tricia Göbel |                | Münstei<br>gie            | S-UNIVER | SITÄT                                  |                           | zu:                       |                |        |  |
| Ermittl                                                                                                                                 | ung der<br>erksmat                           |                | _                         | it an    | durchström<br>der Probe<br>(Fließguers |                           | $A = \frac{\pi * d^2}{4}$ | cm²            | 176,71 |  |
| station                                                                                                                                 | <u>ärem</u> hy                               | /draulis       |                           | efälle   | hydraulisch<br>Druckhöhe               |                           | h                         | cm             | 1,0    |  |
| nach D                                                                                                                                  | IN 1813                                      | U- I           |                           |          | Temperatui                             | ſ                         | θ                         | °C             | 20,0   |  |
| Projekt Nr.:                                                                                                                            |                                              | Auftraggebe    | er:                       |          | eingebaute                             | Filter                    |                           | kein           |        |  |
| Probe Nr.                                                                                                                               |                                              |                | HKS 0/45 (I)              | )        | Strömungsı                             | richtung                  | ι                         | ınten> obe     | en     |  |
| Durchlauf                                                                                                                               |                                              |                |                           |          |                                        | rchmesser                 | d                         | cm             | 15,0   |  |
| Probendure                                                                                                                              | hmesser                                      | d              | cm                        | 15,0     | Probenläng                             | е                         | I                         | cm             | 12,5   |  |
|                                                                                                                                         |                                              |                |                           |          |                                        |                           |                           |                |        |  |
| durchfließe<br>während de                                                                                                               | nde Menge<br>er Zeit                         | Zeitdiffere nz | durchfließe<br>während de | -        | Zeitdiffere<br>nz                      | durchfließe<br>während de | _                         | Zeitdiffere nz |        |  |
| Vw                                                                                                                                      | t                                            | $\Delta t$     | Vw                        | t        | $\Delta t$                             | Vw                        | t                         | $\Delta t$     |        |  |
| cm³                                                                                                                                     | min:s                                        | S              | cm³                       | min:s    | s                                      | cm³                       | min:s                     | S              |        |  |
| 100                                                                                                                                     | 00:14                                        |                | 100                       | 00:12    |                                        | 100                       | 00:14                     |                |        |  |
| 200                                                                                                                                     | 00:24                                        | 00:09          | 200                       | 00:22    | 00:10                                  | 200                       | 00:24                     | 00:10          |        |  |
| 300                                                                                                                                     | 00:34                                        | 80:00          | 300                       | 00:30    | 80:00                                  | 300                       | 00:34                     | 00:10          |        |  |
| 400                                                                                                                                     | 00:43                                        | 00:09          | 400                       | 00:37    | 00:07                                  | 400                       | 00:43                     | 00:09          |        |  |
| 500                                                                                                                                     | 00:53                                        | 00:09          | 500                       | 00:43    | 00:06                                  | 500                       | 00:53                     | 00:10          |        |  |
| 600                                                                                                                                     | 01:03                                        | 80:00          | 600                       | 00:48    | 00:05                                  | 600                       | 01:03                     | 00:10          |        |  |
| 700                                                                                                                                     | 01:13                                        | 80:00          | 700                       | 00:52    | 00:04                                  | 700                       | 01:13                     | 00:10          |        |  |
| 800                                                                                                                                     | 01:23                                        | 80:00          | 800                       | 00:58    | 00:06                                  | 800                       | 01:23                     | 00:10          |        |  |
| 900                                                                                                                                     | 01:33                                        | 80:00          | 900                       | 01:03    | 00:05                                  | 900                       | 01:33                     | 00:10          |        |  |
| 1000                                                                                                                                    | 01:43                                        | 00:09          | 1000                      | 01:08    | 00:05                                  | 1000                      | 01:43                     | 00:10          |        |  |
|                                                                                                                                         |                                              |                |                           |          |                                        |                           |                           |                |        |  |
|                                                                                                                                         |                                              |                |                           |          |                                        |                           |                           |                |        |  |
|                                                                                                                                         |                                              |                |                           |          |                                        |                           |                           |                |        |  |
| Bemerkungen: Laborant: Wesche, Dominik alle Durchgänge an derselben Probe Datum: 03.04.08 der erste Durchgang zeigt eine starke Trübung |                                              |                |                           |          |                                        |                           |                           |                |        |  |

| Institut für Geologie und Paläc Abteilung für Angewandte Geo                                                                                                                      | _                                  | as-Univ                     |                       | Anlage:<br>zu:                                                             |                                             |                               |                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|-----------------------|----------------------------------------------------------------------------|---------------------------------------------|-------------------------------|----------------|--|
| Ermittlung der Dur<br>Haufwerksmaterial<br>hydraulischen Gefa<br>Projekt Nr.: Auftraggebe                                                                                         | lien mit <u>sta</u><br>älle nach D | HKS 0/45 (I+II+III)         |                       |                                                                            |                                             |                               |                |  |
| Probe Nr.                                                                                                                                                                         | II+III)                            | <i>7</i> eit <i>t</i> ie Fi | nzelversuch           | Wasservolumen V <sub>w</sub>                                               |                                             |                               |                |  |
| Durchlauf                                                                                                                                                                         |                                    |                             |                       | bei Mehrf                                                                  | achbestim-                                  | im Messb                      | echer in       |  |
| Probendurchmesser                                                                                                                                                                 | d                                  | cm                          | 15,0                  | mun                                                                        | g in s                                      | cm                            | 1 <sup>3</sup> |  |
| durchflossene Probenlänge                                                                                                                                                         | 1                                  | cm                          | 12,5                  | t <sub>1</sub> =                                                           | 10                                          | V <sub>w1</sub> =             | 100            |  |
| eingebaute Filter                                                                                                                                                                 |                                    | kein                        |                       | t <sub>2</sub> =                                                           | 10                                          | V <sub>w2</sub> =             | 100            |  |
| Temperatur                                                                                                                                                                        | θ                                  | °C                          | 20,0                  | t <sub>3</sub> =                                                           | 8                                           | V <sub>w3</sub> =             | 100            |  |
| hydraulische Druckhöhe                                                                                                                                                            | h                                  | cm                          | 1,0                   | t <sub>4</sub> =                                                           |                                             | V <sub>w4</sub> =             |                |  |
| durchströmte Fläche der                                                                                                                                                           | $A = \frac{\pi * d^2}{}$           | . cm²                       | 176 71                | t <sub>5</sub> =                                                           |                                             | V <sub>w5</sub> =             |                |  |
| Probe (Fließquerschnitt)                                                                                                                                                          | $A = \frac{}{4}$                   | CIII-                       | 176,71                | t <sub>6</sub> =                                                           |                                             | V <sub>w6</sub> =             |                |  |
| Ourchlässikeit mit konst. hydr. Infiltrationsrate mit $h=$ cm Überst in $l/(s^*ha)$ $ V_i = \frac{V_W \cdot l}{A \cdot h \cdot \Delta t} $ $ V_i = \frac{V_w}{A \cdot \Delta t} $ |                                    |                             |                       | $k_f = \frac{V_W \cdot l}{A cm^2 \cdot 1 cm \cdot \Delta t} \cdot 10^{-2}$ |                                             |                               |                |  |
| $A \cdot n \cdot \Delta t$                                                                                                                                                        | Einbau                             |                             |                       | 1                                                                          | Acm <sup>e</sup> ·                          | $1cm \cdot \Delta t$          |                |  |
| k <sub>f1</sub> = 0,00707                                                                                                                                                         | V <sub>1</sub> =                   | 56                          | 658,84                | 1                                                                          |                                             |                               |                |  |
| k <sub>f2</sub> = 0,00707                                                                                                                                                         | $\dot{V}_2$ =                      | 56                          | 658,84                | V –                                                                        | $\frac{V_w \cdot 10^{-4}}{A \cdot 10^{-4}}$ | <sup>-3</sup> dm <sup>3</sup> | $10^4 ha$      |  |
| k <sub>f3</sub> = 0,00884                                                                                                                                                         | V <sub>3</sub> =                   | 70                          | 073,55                | $\mathbf{v}_i$ —                                                           | $A \cdot 10^{-4}$                           | $m^2 \cdot \Delta t$          | 10 na          |  |
| Fließrichtung                                                                                                                                                                     | swechsel                           |                             |                       | 1                                                                          |                                             |                               |                |  |
| k <sub>f4</sub> =                                                                                                                                                                 | <i>V</i> <sub>4</sub> =            |                             |                       |                                                                            |                                             |                               |                |  |
| k <sub>f5</sub> =                                                                                                                                                                 | $V_5$ =                            |                             |                       | 1                                                                          |                                             |                               |                |  |
| k <sub>f6</sub> =                                                                                                                                                                 | V <sub>6</sub> =                   |                             |                       | 1                                                                          |                                             |                               |                |  |
|                                                                                                                                                                                   | Ausbau                             |                             |                       | 1                                                                          |                                             |                               |                |  |
|                                                                                                                                                                                   |                                    |                             |                       |                                                                            |                                             |                               |                |  |
|                                                                                                                                                                                   |                                    |                             |                       | 1                                                                          |                                             |                               |                |  |
|                                                                                                                                                                                   |                                    |                             |                       | 1                                                                          |                                             |                               |                |  |
|                                                                                                                                                                                   |                                    |                             |                       | -                                                                          |                                             |                               |                |  |
|                                                                                                                                                                                   |                                    |                             |                       |                                                                            |                                             |                               |                |  |
| Bemerkungen:<br>Dieser Versuch setzt sich aus<br>Die Daten der Einzelversuch f                                                                                                    |                                    | -                           |                       |                                                                            | cusammen                                    |                               |                |  |
| Strömungsrichtung unten> o<br>Ströungsrichtung oben> unt<br>Schlauverlängerung:                                                                                                   |                                    |                             | Wesche, D<br>03.04.08 | Oominik                                                                    |                                             |                               |                |  |

|                           | <u> </u>                     |                |                           |             |                                        |                           | Anlage:   |                   |      |
|---------------------------|------------------------------|----------------|---------------------------|-------------|----------------------------------------|---------------------------|-----------|-------------------|------|
|                           | r Geologie un<br>für Angewan |                | MÜNSTE<br>gie             | s-Univer    | SITÄT                                  |                           | zu:       |                   |      |
| _                         | tricia Göbel                 |                |                           |             |                                        |                           |           |                   |      |
|                           | ung der<br>erksmat           |                | _                         | it an       | durchström<br>der Probe<br>(Fließquers | $A = \frac{\pi * d^2}{4}$ | cm²       | 176,7             |      |
|                           | <u>ärem</u> hy<br>IN 1813    |                | chen G                    | efälle      | hydraulisch<br>Druckhöhe               | е                         | h         | cm                | 1,0  |
| ilacii D                  | 114 1013                     | U- I           |                           |             | Temperatu                              | r <u> </u>                | θ         | °C                | 19,7 |
| Projekt Nr.:              |                              | Auftraggeb     | er:                       |             | eingebaute                             | Filter                    |           | kein              |      |
| Probe Nr.                 | •                            | HK             | S 0/45 (I+II              | +III)       | Strömungs                              | richtung                  | ι         | ınten> obe        | en   |
| Durchlauf                 |                              |                |                           |             | Probendu                               | rchmesser                 | d         | cm                | 15,0 |
| Probendur                 | chmesser                     | d              | cm                        | 15          | Probenläng                             | е                         | I         | cm                | 12,5 |
|                           |                              | ·              |                           |             | ·                                      |                           |           |                   |      |
|                           | Probe I                      |                |                           | Probe II    |                                        |                           | Probe III |                   |      |
| lurchfließe<br>vährend de | ende Menge<br>er Zeit        | Zeitdiffere nz | durchfließe<br>während de | _           | Zeitdiffere nz                         | durchfließe<br>während de | •         | Zeitdiffere<br>nz |      |
| Vw                        | t                            | $\Delta t$     | Vw                        | t           | $\Delta t$                             | Vw                        | t         | $\Delta t$        |      |
| cm <sup>3</sup>           | min:s                        | S              | cm <sup>3</sup>           | min:s       | S                                      | cm <sup>3</sup>           | min:s     | S                 |      |
| 100                       | 00:14                        |                | 100                       | 00:15       |                                        | 100                       | 00:15     |                   |      |
| 200                       | 00:24                        | 00:09          | 200                       | 00:25       | 00:10                                  | 200                       | 00:24     | 00:09             |      |
| 300                       | 00:34                        | 00:08          | 300                       | 00:36       | 00:11                                  | 300                       | 00:32     | 00:08             |      |
| 400                       | 00:43                        | 00:09          | 400                       | 00:50       | 00:14                                  | 400                       | 00:41     | 00:09             |      |
| 500                       | 00:53                        | 00:09          | 500                       | 01:00       | 00:10                                  | 500                       | 00:50     | 00:09             |      |
| 600                       | 01:03                        | 00:08          | 600                       | 01:10       | 00:10                                  | 600                       | 00:58     | 00:08             |      |
| 700                       | 01:13                        | 00:08          | 700                       | 01:20       | 00:10                                  | 700                       | 01:06     | 00:08             |      |
| 800                       | 01:23                        | 00:08          | 800                       | 01:29       | 00:09                                  | 800                       | 01:14     | 00:08             |      |
| 900                       | 01:33                        | 00:08          | 900                       | 01:39       | 00:10                                  | 900                       | 01:22     | 00:08             |      |
| 1000                      | 01:43                        | 00:09          | 1000                      | 01:49       | 00:10                                  | 1000                      | 01:31     | 00:09             |      |
|                           |                              |                |                           |             |                                        |                           |           |                   |      |
|                           |                              |                |                           |             |                                        |                           |           |                   |      |
|                           |                              |                |                           |             |                                        |                           |           |                   |      |
|                           |                              |                |                           |             |                                        |                           |           |                   |      |
|                           |                              |                |                           |             |                                        |                           |           |                   |      |
|                           |                              |                |                           |             |                                        |                           |           |                   |      |
|                           |                              |                |                           |             |                                        |                           |           |                   |      |
|                           |                              |                |                           |             |                                        |                           |           |                   |      |
|                           | such setzt si                |                |                           | -           |                                        |                           | sammen    |                   | 1    |
|                           | der Einzelve                 | rsuch finden   | sich in den               |             | genen Form                             | Laborant:                 | Wesche, D | ominik            |      |
| Schlauchve                | erlängerung:                 |                | Ja                        | <u>Nein</u> |                                        | Datum:                    | 03.04.08  |                   |      |

| Abteilu<br>PD Dr. | t für Geologie und Paläo<br>ing für Angewandte Geo<br>Patricia Göbel   | logie                             | ns-Univ<br>R             |                       | Anlage:<br>zu:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |                       |           |  |
|-------------------|------------------------------------------------------------------------|-----------------------------------|--------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------|-----------|--|
| Haufv             | tlung der Durc<br>werksmateriali<br>aulischen Gefä<br>Nr.: Auftraggebe | ien mit <u>sta</u><br>ille nach D |                          | НК                    | S 0/45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (II)                                        |                       |           |  |
| Probe             |                                                                        | ī                                 | S 0/45 (                 | (11)                  | Zoit 4 io E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inzelvereveb                                | Wassanial             | lumon V   |  |
| Durchlau          | ıf                                                                     |                                   | inzelversuch fachbestim- | Wasservol<br>im Messb |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                       |           |  |
| Probend           | urchmesser                                                             | d cm 15,0                         |                          |                       | mur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ng in s                                     | cm                    | 13        |  |
| durchflos         | ssene Probenlänge                                                      | 1                                 |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                           | V <sub>w1</sub> =     | 100       |  |
| eingebau          | ute Filter                                                             |                                   | kein                     | · ·                   | $t_1 = t_2 = t_2 = t_3 = t_4 = t_4 = t_5 $ | 10                                          | V <sub>w2</sub> =     | 100       |  |
| Tempera           | atur                                                                   | θ                                 | °C                       | 19,5                  | $t_3$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                          | V <sub>w3</sub> =     | 100       |  |
|                   | sche Druckhöhe                                                         | h                                 | cm                       | 1,0                   | t <sub>4</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .,                                          | V <sub>w4</sub> =     |           |  |
|                   | ömte Fläche der                                                        | $\pi * d2$                        |                          |                       | t <sub>4</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | V <sub>w5</sub> =     |           |  |
|                   | Fließquerschnitt)                                                      | $A = \frac{\pi * d^2}{4}$         | cm <sup>2</sup>          | 176,71                | t <sub>6</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | V <sub>w6</sub> =     |           |  |
| Gefälle i         | $= \frac{V_W \cdot l}{A \cdot h \cdot \Delta t}$                       | , ,                               |                          |                       | $k_f = \frac{V_W \cdot l}{Acm^2 \cdot 1cm \cdot \Delta t} \cdot 10^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                       |           |  |
| . 1               |                                                                        | Einbau                            |                          |                       | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                       |           |  |
| k <sub>f1</sub> = | 0,01415                                                                | $V_1 =$                           | 11                       | 317,68                | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | 2                     |           |  |
| k <sub>f2</sub> = | 0,00707                                                                | <i>V</i> , =                      | 56                       | 658,84                | $\dot{V}_{\cdot} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{V_w \cdot 10^{-4}}{4 \cdot 10^{-4}}$ | <u>dm³</u> .          | $10^4 ha$ |  |
| k <sub>f3</sub> = | 0,00643                                                                | $V_3 =$                           | 5                        | 144,40                | ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $A \cdot 10^{-4}$                           | $m^2 \cdot \Delta t$  |           |  |
|                   | Fließrichtung                                                          | swechsel                          |                          |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                       |           |  |
| k <sub>f4</sub> = |                                                                        | <u>v</u> =                        |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                       |           |  |
| k <sub>f5</sub> = |                                                                        | $V_5$ =                           |                          |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                       |           |  |
| k <sub>f6</sub> = |                                                                        | $\dot{V}_6$ =                     |                          |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                       |           |  |
| 10                |                                                                        | ' <sup>6</sup> Ausbau             |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                       |           |  |
|                   |                                                                        |                                   |                          |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                       |           |  |
| $\vdash$          |                                                                        |                                   |                          |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                       |           |  |
| $\vdash$          |                                                                        |                                   |                          |                       | ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                       |           |  |
|                   |                                                                        |                                   |                          |                       | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                       |           |  |
|                   |                                                                        |                                   |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                       |           |  |
|                   | gsrichtung unten> o                                                    |                                   |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l aborant:                                  | Wassha D              | Jominik   |  |
| _                 | tröungsrichtung oben> unten<br>chlauverlängerung: Ja <u>Nein</u>       |                                   |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | Wesche, D<br>03.04.08 | ominik    |  |
| - J. 1144 V       | angorang.                                                              |                                   | . 10111                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                       | ® hex0    |  |

|                                                                                                                                           | ·                                            |                |                            |          |                                        |                           | Anlage:                   |                |        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------|----------------------------|----------|----------------------------------------|---------------------------|---------------------------|----------------|--------|--|
| Abteilung                                                                                                                                 | r Geologie un<br>für Angewan<br>tricia Göbel |                | MÜNSTEI<br>gie             | S-UNIVER | SITÄT                                  |                           | zu:                       |                |        |  |
| Ermittl                                                                                                                                   | ung der<br>erksmat                           |                | _                          | it an    | durchström<br>der Probe<br>(Fließguers |                           | $A = \frac{\pi * d^2}{4}$ | cm²            | 176,71 |  |
| station                                                                                                                                   | <u>ärem</u> hy<br>IN 1813                    | /draulis       |                            | efälle   | hydraulisch<br>Druckhöhe               |                           | h                         | cm             | 1,0    |  |
| nach D                                                                                                                                    | IIN IOIS                                     | U- I           |                            |          | Temperatui                             | •                         | θ                         | °C             | 19,5   |  |
| Projekt Nr.:                                                                                                                              |                                              | Auftraggebe    | er:                        |          | eingebaute                             | Filter                    |                           | kein           |        |  |
| Probe Nr.                                                                                                                                 |                                              | ŀ              | HKS 0/45 (II               | 1)       | Strömungsı                             | richtung                  | ι                         | ınten> obe     | n      |  |
| Durchlauf                                                                                                                                 |                                              |                |                            |          | Probendu                               | rchmesser                 | d                         | cm             | 15,0   |  |
| Probendur                                                                                                                                 | chmesser                                     | d              | cm                         | 15,0     | Probenläng                             | е                         | 1                         | cm             | 12,5   |  |
|                                                                                                                                           |                                              |                |                            |          |                                        |                           |                           |                |        |  |
| durchfließe<br>während de                                                                                                                 | nde Menge<br>er Zeit                         | Zeitdiffere nz | durchfließer<br>während de |          | Zeitdiffere nz                         | durchfließe<br>während de | -                         | Zeitdiffere nz |        |  |
| Vw                                                                                                                                        | t                                            | $\Delta t$     | Vw                         | t        | $\Delta t$                             | Vw                        | t                         | $\Delta t$     |        |  |
| cm³                                                                                                                                       | min:s                                        | s              | cm³                        | min:s    | S                                      | cm³                       | min:s                     | S              |        |  |
| 100                                                                                                                                       | 00:18                                        |                | 100                        | 00:15    |                                        | 100                       | 00:16                     |                |        |  |
| 200                                                                                                                                       | 00:26                                        | 80:00          | 200                        | 00:25    | 00:10                                  | 200                       | 00:27                     | 00:11          |        |  |
| 300                                                                                                                                       | 00:34                                        | 80:00          | 300                        | 00:36    | 00:11                                  | 300                       | 00:38                     | 00:11          |        |  |
| 400                                                                                                                                       | 00:40                                        | 00:06          | 400                        | 00:50    | 00:14                                  | 400                       | 00:50                     | 00:12          |        |  |
| 500                                                                                                                                       | 00:45                                        | 00:05          | 500                        | 01:00    | 00:10                                  | 500                       | 01:01                     | 00:11          |        |  |
| 600                                                                                                                                       | 00:50                                        | 00:05          | 600                        | 01:10    | 00:10                                  | 600                       | 01:12                     | 00:11          |        |  |
| 700                                                                                                                                       | 00:54                                        | 00:04          | 700                        | 01:20    | 00:10                                  | 700                       | 01:23                     | 00:11          |        |  |
| 800                                                                                                                                       | 00:58                                        | 00:04          | 800                        | 01:29    | 00:09                                  | 800                       | 01:34                     | 00:11          |        |  |
| 900                                                                                                                                       | 01:03                                        | 00:05          | 900                        | 01:39    | 00:10                                  | 900                       | 01:45                     | 00:11          |        |  |
| 1000                                                                                                                                      | 01:08                                        | 00:05          | 1000                       | 01:49    | 00:10                                  | 1000                      | 01:55                     | 00:10          |        |  |
|                                                                                                                                           |                                              |                |                            |          |                                        |                           |                           |                |        |  |
|                                                                                                                                           |                                              |                |                            |          |                                        |                           |                           |                |        |  |
|                                                                                                                                           |                                              |                |                            |          |                                        |                           |                           |                |        |  |
|                                                                                                                                           |                                              |                |                            |          |                                        |                           |                           |                |        |  |
| Bemerkungen:  alle Durchgänge an derselben Probe der erste Durchgang zeigt eine starke Trübung  Laborant: Wesche, Dominik Datum: 03.04.08 |                                              |                |                            |          |                                        |                           |                           |                |        |  |

| Abteilung für A PD Dr. Patricia             |                                                                                                                                                                                 | logie                                           | ns-Univ<br>R    |                      | Anlage:<br>zu:                                                           |                                             |                       |           |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------|----------------------|--------------------------------------------------------------------------|---------------------------------------------|-----------------------|-----------|--|
| Haufwerk                                    | smateriali                                                                                                                                                                      | chlässigke<br>ien mit <u>sta</u><br>ille nach D |                 | НК                   | S 0/45 (                                                                 | (III)                                       |                       |           |  |
| Probe Nr.                                   | Admaggebe                                                                                                                                                                       |                                                 | S 0/45 (        | III\                 |                                                                          | inzelversuch                                |                       |           |  |
| Durchlauf                                   |                                                                                                                                                                                 |                                                 |                 |                      |                                                                          |                                             | Wasservol<br>im Messb |           |  |
| Probendurchme                               | esser                                                                                                                                                                           | d cm 15,0                                       |                 |                      |                                                                          | fachbestim-<br>ng in s                      | cm                    |           |  |
| durchflossene F                             | Probenlänge                                                                                                                                                                     | / cm 13,0                                       |                 |                      | t <sub>1</sub> =                                                         | 3                                           | V <sub>w1</sub> =     | 100       |  |
| eingebaute Filte                            |                                                                                                                                                                                 |                                                 | kein            | 1,0                  | $t_{1}$ - $t_{2}$ =                                                      | <u>3</u><br>8                               | V <sub>w2</sub> =     | 100       |  |
| Temperatur                                  |                                                                                                                                                                                 | θ                                               | °C              | 19,6                 | $t_{2}$ - $t_{3}$ =                                                      | 8                                           | V <sub>w3</sub> =     | 100       |  |
| hydraulische Dr                             | ruckhöhe                                                                                                                                                                        | h                                               | cm              | 1,0                  | t <sub>4</sub> =                                                         |                                             | V <sub>w4</sub> =     |           |  |
| durchströmte F                              |                                                                                                                                                                                 | $\pi * d2$                                      |                 |                      | t <sub>5</sub> =                                                         |                                             | V <sub>w5</sub> =     |           |  |
| Probe (Fließque                             |                                                                                                                                                                                 | $A = \frac{\pi * d^2}{4}$                       | cm <sup>2</sup> | 176,71               | t <sub>6</sub> =                                                         |                                             | V <sub>w6</sub> =     |           |  |
| Gefälle in m/s                              | prochlässikeit mit konst. hydr. Infiltrationsrate mit $h=$ cm Überstau in $l/(s^*ha)$ $k_f = \frac{V_W \cdot l}{A \cdot h \cdot \Delta t}$ $V_i = \frac{V_w}{A \cdot \Delta t}$ |                                                 |                 |                      | $k_f = \frac{V_W \cdot l}{Acm^2 \cdot 1cm \cdot \Delta t} \cdot 10^{-2}$ |                                             |                       |           |  |
|                                             |                                                                                                                                                                                 | Einbau                                          |                 |                      | 1                                                                        |                                             |                       |           |  |
|                                             | 0,02358                                                                                                                                                                         | <i>V</i> <sub>1</sub> =                         |                 | 862,81               |                                                                          | T7 10-                                      | -3 1 2                |           |  |
|                                             | 0,00884                                                                                                                                                                         | $V_2 = V_3 = V_3$                               |                 | 073,55<br><br>073,55 | $V_i =$                                                                  | $\frac{V_w \cdot 10^{-4}}{A \cdot 10^{-4}}$ | $\frac{dm^3}{m^2}$ .  | $10^4 ha$ |  |
| 10                                          | ließrichtung                                                                                                                                                                    | J                                               | 70              | J7 3,33              | ļ                                                                        | A·10                                        | m- · Δι               |           |  |
| k <sub>f4</sub> =                           | ness icituity.                                                                                                                                                                  |                                                 |                 |                      |                                                                          |                                             |                       |           |  |
| k <sub>f5</sub> =                           |                                                                                                                                                                                 | $V_4 = V_5 =$                                   |                 |                      |                                                                          |                                             |                       |           |  |
| k <sub>f6</sub> =                           |                                                                                                                                                                                 | $V_6 =$                                         |                 |                      |                                                                          |                                             |                       |           |  |
| iv                                          |                                                                                                                                                                                 | ′ <sup>6</sup><br>Ausbau                        |                 |                      |                                                                          |                                             |                       |           |  |
|                                             |                                                                                                                                                                                 |                                                 |                 |                      | 1                                                                        |                                             |                       |           |  |
|                                             |                                                                                                                                                                                 |                                                 |                 |                      | 1                                                                        |                                             |                       |           |  |
|                                             |                                                                                                                                                                                 |                                                 |                 |                      | ł                                                                        |                                             |                       |           |  |
|                                             |                                                                                                                                                                                 |                                                 |                 |                      | 1                                                                        |                                             |                       |           |  |
|                                             |                                                                                                                                                                                 |                                                 |                 |                      |                                                                          |                                             |                       |           |  |
| Bemerkungen: Strömungsricht Ströungsrichtur | ng oben> unte                                                                                                                                                                   | en                                              | <u>Nein</u>     |                      |                                                                          |                                             | Wesche, E             | Oominik   |  |
| Schlauverlänge                              | erung:                                                                                                                                                                          |                                                 | Datum:          | 03.04.08             |                                                                          | ® hex0                                      |                       |           |  |

|                           | Ţ                                            |                            |                            |          |                                        |                           | Anlage:                   |                |        |  |
|---------------------------|----------------------------------------------|----------------------------|----------------------------|----------|----------------------------------------|---------------------------|---------------------------|----------------|--------|--|
| Abteilung                 | r Geologie un<br>für Angewan<br>tricia Göbel |                            | MÜNSTEI<br>gie             | S-UNIVER | SITÄT                                  |                           | zu:                       |                |        |  |
| Ermittle                  | ung der<br>erksmat                           |                            | _                          | it an    | durchström<br>der Probe<br>(Fließguers |                           | $A = \frac{\pi * d^2}{4}$ | cm²            | 176,71 |  |
| station                   | <u>ärem</u> hy                               | /draulis                   |                            | efälle   | hydraulisch<br>Druckhöhe               |                           | h                         | cm             | 1,0    |  |
| nach D                    | IN 1813                                      | U-1                        |                            |          | Temperatui                             | ,                         | θ                         | °C             | 19,6   |  |
| Projekt Nr.:              |                                              | Auftraggebe                | er:                        |          | eingebaute                             | Filter                    |                           | kein           |        |  |
| Probe Nr.                 |                                              | ŀ                          | HKS 0/45 (III              | 1)       | Strömungsı                             | richtung                  | ι                         | ınten> obe     | en     |  |
| Durchlauf                 |                                              |                            |                            |          | Probendu                               | rchmesser                 | d                         | cm             | 15,0   |  |
| Probenduro                | chmesser                                     | d                          | cm                         | 15,0     | Probenläng                             | е                         | I                         | cm             | 12,5   |  |
|                           |                                              |                            |                            |          |                                        |                           |                           |                |        |  |
| durchfließe<br>vährend de | nde Menge<br>er Zeit                         | Zeitdiffere nz             | durchfließer<br>während de |          | Zeitdiffere nz                         | durchfließe<br>während de | -                         | Zeitdiffere nz |        |  |
| Vw                        | t                                            | $\Delta t$                 | Vw                         | t        | $\Delta t$                             | Vw                        | t                         | $\Delta t$     |        |  |
| cm <sup>3</sup>           | min:s                                        | S                          | cm <sup>3</sup>            | min:s    | S                                      | cm <sup>3</sup>           | min:s                     | S              |        |  |
| 100                       | 00:23                                        |                            | 100                        | 00:15    |                                        | 100                       | 00:13                     |                |        |  |
| 200                       | 00:29                                        | 00:06                      | 200                        | 00:24    | 00:09                                  | 200                       | 00:22                     | 00:09          |        |  |
| 300                       | 00:32                                        | 00:03                      | 300                        | 00:32    | 80:00                                  | 300                       | 00:30                     | 80:00          |        |  |
| 400                       | 00:34                                        | 00:02                      | 400                        | 00:41    | 00:09                                  | 400                       | 00:39                     | 00:09          |        |  |
| 500                       | 00:37                                        | 00:03                      | 500                        | 00:50    | 00:09                                  | 500                       | 00:47                     | 80:00          |        |  |
| 600                       | 00:40                                        | 00:03                      | 600                        | 00:58    | 00:08                                  | 600                       | 00:55                     | 80:00          |        |  |
| 700                       | 00:43                                        | 00:03                      | 700                        | 01:06    | 80:00                                  | 700                       | 01:04                     | 00:09          |        |  |
| 800                       | 00:46                                        | 00:03                      | 800                        | 01:14    | 80:00                                  | 800                       | 01:12                     | 00:08          |        |  |
| 900                       | 00:49                                        | 00:03                      | 900                        | 01:22    | 00:08                                  | 900                       | 01:20                     | 00:08          |        |  |
| 1000                      | 00:52                                        | 00:03                      | 1000                       | 01:31    | 00:09                                  | 1000                      | 01:28                     | 00:08          |        |  |
|                           |                                              |                            |                            |          |                                        |                           |                           |                |        |  |
|                           |                                              |                            |                            |          |                                        |                           |                           |                |        |  |
|                           |                                              |                            |                            |          |                                        |                           |                           |                |        |  |
|                           |                                              |                            |                            |          |                                        |                           |                           |                |        |  |
|                           |                                              |                            |                            |          |                                        |                           |                           |                |        |  |
| Bemerkung                 |                                              | änge av di                 | aolhan Diri                |          |                                        |                           | Wesche, D                 | ominik         |        |  |
| Schlauchve                | _                                            | änge an der<br>urchgang ze |                            |          |                                        | Datum:                    | 03.04.08                  |                |        |  |

|                                                                                                             |                                                                   |                           |                                  | Anlage:                 |                                                                          |                                             |                      |           |  |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------|----------------------------------|-------------------------|--------------------------------------------------------------------------|---------------------------------------------|----------------------|-----------|--|
| Abteilu<br>PD Dr.                                                                                           | für Geologie und Paläo<br>ng für Angewandte Geo<br>Patricia Göbel | logie                     | ns-Univ<br>R                     | 2                       | zu:                                                                      |                                             |                      |           |  |
|                                                                                                             | tlung der Durc                                                    | _                         |                                  |                         |                                                                          |                                             |                      |           |  |
|                                                                                                             | werksmateriali<br>Iulischen Gefä<br>Ir.: Auftraggebe              | ille nach D               |                                  | 0/3                     | 2 rot/gr                                                                 | ün                                          |                      |           |  |
| Probe                                                                                                       |                                                                   |                           | 2 rot/gr                         | ün                      | Zoit t io Ei                                                             | nzelversuch                                 | Wasservol            | umen V    |  |
| Durchlau                                                                                                    |                                                                   |                           |                                  |                         | achbestim-                                                               | im Messb                                    | echer in             |           |  |
| Probend                                                                                                     | urchmesser                                                        | d cm 15,0                 |                                  | mun                     | g in s                                                                   | cm                                          | 1 <sup>3</sup>       |           |  |
| durchflos                                                                                                   | ssene Probenlänge                                                 | 1                         | cm                               | 12,5                    | t <sub>1</sub> =                                                         | 68                                          | V <sub>w1</sub> =    | 50        |  |
| eingebau                                                                                                    | ute Filter                                                        |                           | kein                             |                         | t <sub>2</sub> =                                                         | 34                                          | V <sub>w2</sub> =    | 25        |  |
| Tempera                                                                                                     | ntur                                                              | θ                         | °C                               | 19,2                    | t <sub>3</sub> =                                                         | 33                                          | V <sub>w3</sub> =    | 25        |  |
| hydraulis                                                                                                   | sche Druckhöhe                                                    | h                         | cm                               | 10,0                    | t <sub>4</sub> =                                                         |                                             | V <sub>w4</sub> =    |           |  |
| durchströ                                                                                                   | ömte Fläche der                                                   | $A = \frac{\pi * d^2}{4}$ | cm²                              | 176,71                  | t <sub>5</sub> =                                                         |                                             | V <sub>w5</sub> =    |           |  |
| ,                                                                                                           | ließquerschnitt)                                                  | $A - {4}$                 | OIII                             | 170,71                  | t <sub>6</sub> =                                                         |                                             | V <sub>w6</sub> =    |           |  |
| Durchlässikeit mit konst. hydr. Infiltrationsrate mit $h = \text{cm } \emptyset$ Gefälle in m/s in I/(s*ha) |                                                                   |                           |                                  |                         |                                                                          |                                             |                      |           |  |
| k <sub>f</sub> =                                                                                            | $=\frac{V_{W}\cdot l}{A\cdot h\cdot \Delta t}$                    | $\dot{V}_{i} =$           | $\frac{V_{w}}{A \cdot \Delta u}$ | <del>-</del>            | $k_f = \frac{V_W \cdot l}{Acm^2 \cdot 1cm \cdot \Delta t} \cdot 10^{-2}$ |                                             |                      |           |  |
|                                                                                                             |                                                                   | Einbau                    |                                  |                         | 1                                                                        |                                             |                      |           |  |
| k <sub>f1</sub> =                                                                                           | 0,00005                                                           | $V_1 =$                   | 4                                | 16,09                   |                                                                          |                                             | 2                    |           |  |
| k <sub>f2</sub> =                                                                                           | 0,00005                                                           | V <sub>2</sub> =          | 4                                | 16,09                   | $\dot{V}_{i} =$                                                          | $\frac{V_w \cdot 10^{-4}}{A \cdot 10^{-4}}$ | -3 dm³ .             | $10^4 ha$ |  |
| k <sub>f3</sub> =                                                                                           | 0,00005                                                           | $V_3 =$                   | 4                                | 28,70                   | ı                                                                        | $A \cdot 10^{-4}$                           | $m^2 \cdot \Delta t$ |           |  |
|                                                                                                             | Fließrichtung                                                     | swechsel                  |                                  |                         | 1                                                                        |                                             |                      |           |  |
| k <sub>f4</sub> =                                                                                           |                                                                   | ,       =                 |                                  |                         |                                                                          |                                             |                      |           |  |
| k <sub>f5</sub> =                                                                                           |                                                                   | $V_5$ =                   |                                  |                         |                                                                          |                                             |                      |           |  |
| k <sub>f6</sub> =                                                                                           |                                                                   | $V_6$ =                   |                                  |                         |                                                                          |                                             |                      |           |  |
|                                                                                                             | ,                                                                 | Ausbau                    |                                  |                         | 1                                                                        |                                             |                      |           |  |
|                                                                                                             |                                                                   |                           |                                  |                         |                                                                          |                                             |                      |           |  |
|                                                                                                             |                                                                   |                           |                                  |                         |                                                                          |                                             |                      |           |  |
|                                                                                                             |                                                                   |                           |                                  |                         | 1                                                                        |                                             |                      |           |  |
|                                                                                                             |                                                                   |                           |                                  |                         |                                                                          |                                             |                      |           |  |
| D a var = :-1                                                                                               |                                                                   |                           |                                  |                         |                                                                          |                                             |                      |           |  |
| Bemerku<br>Strömun                                                                                          | gsrichtung unten> o                                               | hen                       |                                  |                         |                                                                          |                                             |                      |           |  |
| Ströungs                                                                                                    | gsnentung unten> unte<br>erlängerung:                             |                           |                                  | Wesche, D<br>01.10.2008 |                                                                          |                                             |                      |           |  |
|                                                                                                             |                                                                   |                           | <u>Nein</u>                      |                         |                                                                          |                                             |                      | ® hex07   |  |

|                            |                                         |                              | WESTFÄL<br>WILHELM<br>MÜNSTEI | S-UNIVER | SITÄT                                  |                           | Anlage:<br>zu:            |                |        |  |
|----------------------------|-----------------------------------------|------------------------------|-------------------------------|----------|----------------------------------------|---------------------------|---------------------------|----------------|--------|--|
| Abteilung                  | -                                       | d Paläontolo<br>dte Geologie | -                             |          |                                        |                           |                           |                |        |  |
| Ermittlu                   | ıng der                                 | Durchla<br>erialien          | ässigke<br>mit                | it an    | durchström<br>der Probe<br>(Fließquers |                           | $A = \frac{\pi * d^2}{4}$ | cm²            | 176,71 |  |
|                            | <u>ärem</u> hy<br>IN 1813               |                              | chen Ge                       | efälle   | hydraulisch<br>Druckhöhe               | е                         | h                         | cm             | 10,0   |  |
|                            |                                         |                              |                               |          | Temperatui                             |                           | θ                         | °C             | 19,2   |  |
| Projekt Nr.:               |                                         | Auftraggeb                   |                               |          | eingebaute                             |                           |                           | kein           |        |  |
| Probe Nr.                  | • • • • • • • • • • • • • • • • • • • • |                              |                               |          | Strömungs                              |                           |                           | ınten> obe     |        |  |
| Durchlauf                  | L                                       |                              | 1                             | 4==      |                                        | rchmesser                 | d                         | cm             | 15,0   |  |
| Probendurc                 | nmesser                                 | d                            | cm                            | 15,0     | Probenläng                             | е                         | I                         | cm             | 12,5   |  |
| durchfließer<br>während de |                                         | Zeitdiffere nz               | durchfließe<br>während de     | •        | Zeitdiffere nz                         | durchfließe<br>während de | Ū                         | Zeitdiffere nz |        |  |
| Vw                         | t                                       | $\Delta t$                   | Vw                            | t        | $\Delta t$                             | Vw                        | t                         | $\Delta t$     |        |  |
| cm³                        | min:s                                   | S                            | cm <sup>3</sup>               | min:s    | S                                      | cm³                       | min:s                     | S              |        |  |
| 50                         | 01:04                                   |                              | 25                            | 00:31    |                                        | 25                        | 00:30                     |                |        |  |
| 100                        | 02:12                                   | 01:08                        | 50                            | 01:04    | 00:33                                  | 50                        | 01:02                     | 00:32          |        |  |
| 150                        | 03:18                                   | 01:06                        | 75                            | 01:38    | 00:34                                  | 75                        | 01:35                     | 00:33          |        |  |
| 200                        | 04:26                                   | 01:08                        | 100                           | 02:10    | 00:32                                  | 100                       | 02:08                     | 00:33          |        |  |
| 250                        | 05:34                                   | 01:08                        | 125                           | 02:42    | 00:32                                  | 125                       | 02:42                     | 00:34          |        |  |
| 300                        | 06:41                                   | 01:07                        | 150                           | 03:16    | 00:34                                  | 150                       | 03:14                     | 00:32          |        |  |
| 350                        | 07:49                                   | 01:08                        | 175                           | 03:52    | 00:36                                  | 175                       | 03:47                     | 00:33          |        |  |
| 400                        | 08:57                                   | 01:08                        | 200                           | 04:23    | 00:31                                  | 200                       | 04:20                     | 00:33          |        |  |
|                            |                                         |                              | 225                           | 04:55    | 00:32                                  | 225                       | 04:53                     | 00:33          |        |  |
|                            |                                         |                              | 250                           | 05:27    | 00:32                                  | 250                       | 05:26                     | 00:33          |        |  |
|                            |                                         |                              | 275                           | 06:00    | 00:33                                  |                           |                           |                |        |  |
|                            |                                         |                              | 300                           | 06:33    | 00:33                                  |                           |                           |                |        |  |
|                            |                                         |                              | 325                           | 07:07    | 00:34                                  |                           |                           |                |        |  |
|                            |                                         |                              | 350                           | 07:42    | 00:35                                  |                           |                           |                |        |  |
|                            |                                         |                              | 375                           | 08:15    | 00:33                                  |                           |                           |                |        |  |
|                            |                                         |                              | 400                           | 08:49    | 00:34                                  |                           |                           |                |        |  |
|                            |                                         |                              |                               |          |                                        |                           |                           |                |        |  |
|                            |                                         |                              |                               |          |                                        |                           |                           |                |        |  |
|                            |                                         |                              |                               |          |                                        |                           |                           |                |        |  |
|                            |                                         |                              |                               |          |                                        |                           |                           |                |        |  |
|                            |                                         |                              |                               |          |                                        |                           |                           |                |        |  |
|                            |                                         |                              |                               |          |                                        |                           |                           |                |        |  |
|                            |                                         |                              |                               |          |                                        |                           |                           |                |        |  |
|                            |                                         |                              |                               |          |                                        |                           |                           |                |        |  |
|                            |                                         |                              |                               |          |                                        |                           |                           |                |        |  |
|                            |                                         |                              |                               |          |                                        |                           |                           |                |        |  |
| Bemerkung<br>alle Durchga  |                                         | selben Prob                  | e                             |          |                                        |                           | Wesche, Do                | ominik         | I      |  |
|                            | rlängerung:                             |                              | Ja                            | Nein     |                                        |                           |                           |                |        |  |

| WILHELN                                                                                                                                         | ns-Univ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                  | Anlage:<br>zu:                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ntologie<br>ogie                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| _                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0/32                                                                                                                                                                                                                                                                                                                                             | grün o                                                                                                                                                                                                                                                                                                                                                                                                              | ben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 0/32                                                                                                                                            | grün o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ben                                                                                                                                                                                                                                                                                                                                              | Zeit t ie F                                                                                                                                                                                                                                                                                                                                                                                                         | inzelversuch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Wasservol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | umen V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  | bei Mehr                                                                                                                                                                                                                                                                                                                                                                                                            | fachbestim-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | im Messb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | echer in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| d cm 15,0                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  | mu                                                                                                                                                                                                                                                                                                                                                                                                                  | ng in s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1                                                                                                                                               | cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12,5                                                                                                                                                                                                                                                                                                                                             | t <sub>1</sub> =                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V <sub>w1</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                 | kein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                  | t <sub>2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V <sub>w2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| θ                                                                                                                                               | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17,3                                                                                                                                                                                                                                                                                                                                             | t <sub>3</sub> =                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V <sub>w3</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| h                                                                                                                                               | cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,0                                                                                                                                                                                                                                                                                                                                             | t <sub>4</sub> =                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>w4</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| $\pi * d^2$                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 476.74                                                                                                                                                                                                                                                                                                                                           | t <sub>5</sub> =                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>w5</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Frobe (Fließquerschnitt) $A = \frac{\pi * d^2}{4} \text{ cm}^2$                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>w6</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Infiltrationsrate mit $h=$ cm Überstau in $l/(s^*ha)$ $k_f = \frac{V_W \cdot l}{A \cdot h \cdot \Delta t}$ $V_i = \frac{V_w}{A \cdot \Delta t}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $k_f = \frac{V_W \cdot l}{Acm^2 \cdot 1cm \cdot \Delta t} \cdot 10^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Einbau                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| V <sub>1</sub> =                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                     | V ·10⁻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>-3</sup> dm³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  | $V_i =$                                                                                                                                                                                                                                                                                                                                                                                                             | $=\frac{w}{4.10^{-4}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $10^4 ha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| J                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                     | $A \cdot 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $m_z \cdot \Delta l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  | ł                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| V <sub>4.</sub>                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| $V_6$ =                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Ausbau                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| pen<br>n                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     | Laborant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wesche, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dominik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| röungsrichtung oben> unten<br>hlauverlängerung: Ja <u>Nein</u>                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                 | withelm Münster Münster Münster Münster Minster Minst | minologie orgie chlässigkeit an en mit stationär ille nach DIN 18::  0/32 grün o  d cm  / cm  kein $\theta$ °C $h$ cm $A = \frac{\pi * d^2}{4}$ cm²  Infiltrationsrate mit $h = \frac{\pi * d^2}{4}$ cm²  Einbau $V_1 = \frac{V_w}{A \cdot \Delta}$ Einbau $V_2 = \frac{V_y}{A \cdot \Delta}$ swechsel $V_4 = \frac{V_4}{A \cdot \Delta}$ Ausbau | WILHELMS-UNIVERSITÄT MÜNSTER ntologie ogie  chlässigkeit an en mit stationärem lle nach DIN 18130-1   O/32 grün oben   d cm 15,0  I cm 12,5  kein $\theta$ °C 17,3 $h$ cm 10,0 $A = \frac{\pi * d^2}{4}$ cm² 176,71  Infiltrationsrate mit $h = $ cm Überstau in $l/(s*ha)$ $V_i = \frac{V_w}{A \cdot \Delta t}$ Einbau $V_1 = -\frac{V_w}{A \cdot \Delta t}$ Swechsel $V_4 = -\frac{V_w}{A \cdot \Delta t}$ Ausbau | WILHELMS-UNIVERSITÄT MÜNSTER ntologie ogie Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit stationärem Ille nach DIN 18130-1 Schlässigkeit an en mit statio | The longie ogie or sholding o | wilhelms-Universität Münster | with the Laborant: Wesche, Dominik value only in the laborant was a considered only in the laborant with the laborant was a considered only in the laborant was a considered on the laborant was |  |  |

|                            | _ = -                     |                                | WESTFÄL<br>WILHELN<br>MÜNSTE | IS-UNIVER    | SITÄT                                  |                           | Anlage:<br>zu:            |                |        |
|----------------------------|---------------------------|--------------------------------|------------------------------|--------------|----------------------------------------|---------------------------|---------------------------|----------------|--------|
| Abteilung                  |                           | nd Paläontolo<br>ndte Geologie | gie                          | •            |                                        |                           |                           |                |        |
|                            | _                         | Durchla<br>erialien            | _                            | it an        | durchström<br>der Probe<br>(Fließquers |                           | $A = \frac{\pi * d^2}{4}$ | cm²            | 176,71 |
|                            | <u>ärem</u> hy<br>IN 1813 | /draulis<br>0-1                | chen G                       | efälle       | hydraulisch<br>Druckhöhe               |                           | h                         | cm             | 10,0   |
|                            |                           |                                |                              |              | Temperatui                             |                           | θ                         | °C             | 17,3   |
| Projekt Nr.:               |                           | Auftraggeb                     |                              |              | eingebaute                             |                           |                           | kein           |        |
| Probe Nr.                  |                           | 0/                             | 32 grün ob                   | en           | Strömungs                              |                           |                           | ınten> obe     |        |
| Durchlauf                  | h                         | ,                              | 1                            | 1 4          |                                        | rchmesser                 | d                         | cm             | 15,0   |
| Probendurc                 | nmesser                   | d                              | cm                           | 15,0         | Probenläng                             | je                        | I                         | cm             | 12,5   |
| durchfließer<br>während de | nde Menge<br>r Zeit       | Zeitdiffere nz                 | durchfließe<br>während de    |              | Zeitdiffere nz                         | durchfließe<br>während de | nde Menge<br>er Zeit      | Zeitdiffere nz |        |
| Vw                         | t                         | $\Delta t$                     | Vw                           | t            | $\Delta t$                             | Vw                        | t                         | $\Delta t$     |        |
| cm <sup>3</sup>            | min:s                     | S                              | cm <sup>3</sup>              | min:s        | S                                      | cm <sup>3</sup>           | min:s                     | S              |        |
| 25                         | -                         |                                |                              |              |                                        |                           |                           |                |        |
| 50                         | -                         |                                |                              |              |                                        |                           |                           |                |        |
| 75                         | -                         |                                |                              |              |                                        |                           |                           |                |        |
| 100                        | -                         |                                |                              |              |                                        |                           |                           |                |        |
| 125                        | -                         |                                |                              |              |                                        |                           |                           |                |        |
| 150                        | -                         |                                |                              |              |                                        |                           |                           |                |        |
| 175                        | -                         |                                |                              |              |                                        |                           |                           |                |        |
| 200                        | -                         |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           | -                         |                |        |
|                            |                           |                                |                              |              |                                        |                           | -                         |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           | <del> </del>              |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
|                            |                           |                                |                              |              |                                        |                           |                           |                |        |
| Bemerkung<br>/ersuch wu    |                           | x 10 min bei                   | h = 10 cm ı                  | und h = 20 c | <br>m                                  |                           | Wesche, D<br>02.10.08     | ominik         |        |
| abgebroche                 |                           |                                |                              |              |                                        |                           |                           |                |        |
| _                          | rlängerung:               |                                | Ja                           | Nein         |                                        |                           |                           |                |        |

|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 | Anlage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| WILHELM MÜNSTE ntologie logie                                   | ns-Univ<br>R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ERSITÄT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | zu:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| chlässigke                                                      | it an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| ille nach D                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0/32 rot oben                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| 0/32                                                            | rot un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zeit t ie F                                                     | inzelversuch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wasservol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lumen V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |  |
| Durchlauf                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| d                                                               | cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mur                                                             | ng in s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                    |  |
| 1                                                               | cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t 1=                                                            | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>w1</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                    |  |
|                                                                 | kein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>w2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                    |  |
| θ                                                               | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t <sub>3</sub> =                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>w3</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                    |  |
| h                                                               | cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ĭ                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>w4</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| $\pi * d^2$                                                     | . ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 470.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t <sub>5</sub> =                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>w5</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| $A = \frac{1}{4}$                                               | cm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/6,/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t <sub>6</sub> =                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>w6</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| in l/(s*ha)                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
|                                                                 | $\frac{W}{A \cdot \Delta a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $k_f$                                                           | $k_f = \frac{1}{Acm^2 \cdot 1cm \cdot \Delta t} \cdot 10^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| 1                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ļ                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| <i>V</i> <sub>1</sub> =                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 314,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $V_{\cdot} = \frac{V_{w} \cdot 10^{-3} dm^{3}}{10^{4} ha}$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| <i>V</i> , =                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 332,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| $V_3 =$                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 178,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 | $A \cdot 10^{-4} m^2 \cdot \Delta t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| swechsel                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| Ϋ́ =                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| $V_5$ =                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| V <sub>6</sub> =                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
| <del>                                     </del>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ł                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 | Laborant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wesche, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oominik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |  |
| röungsrichtung oben> unten<br>chlauverlängerung: Ja <u>Nein</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ® hex07                                                                                                            |  |
|                                                                 | wilhelm Münstentologie logie chlässigker ien mit statille nach Dr:  0/32 $d$ $l$ $l$ $\theta$ $h$ $A = \frac{\pi * d^2}{4}$ Infiltrationsrate in $l/(s^*ha)$ $V_i = \frac{V_j}{s} = \frac{V_j}$ | minologie logie logic l | withelms-Universität Münster Intologie logie   Schlässigkeit an | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER  Intologie logie  Chlässigkeit an ien mit stationärem ille nach DIN 18130-1  T:  0/32 rot unten  Zeit $t$ je E bei Mehr  mur $d$ cm 15,0 $t$ cm 12,5 $t$ 1 $t$ kein $d$ cm 12,0 | with the Laborant:  Wilhelms - Universität Münster Mü | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER mologie logie  Chlässigkeit an ien mit stationärem ille nach DIN 18130-1  T:   0/32 rot unten  Zeit $t$ je Einzelversuch bei Mehrfachbestimmung in s $t$ was envo im Messtrom im M | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER notologie logie  Chlässigkeit an in stationärem ille nach DIN 18130-1  C |  |

|                            | _ = _                     |                                | WESTFÄL<br>WILHELM<br>MÜNSTEI | S-UNIVER       | SITÄT                                  |                           | Anlage:<br>zu:            |                     |        |  |
|----------------------------|---------------------------|--------------------------------|-------------------------------|----------------|----------------------------------------|---------------------------|---------------------------|---------------------|--------|--|
| Abteilung                  | -                         | nd Paläontolo<br>ndte Geologie | gie                           |                |                                        |                           |                           |                     |        |  |
|                            | _                         | Durchla<br>erialien            | ässigke<br>mit                | it an          | durchström<br>der Probe<br>(Fließquers |                           | $A = \frac{\pi * d^2}{4}$ | cm²                 | 176,71 |  |
|                            | <u>ärem</u> hy<br>IN 1813 |                                | chen Ge                       | efälle         | hydraulische<br>Druckhöhe              |                           | h                         | cm                  | 12,0   |  |
|                            |                           |                                |                               |                | Temperatur                             |                           | θ                         | °C                  | 18,1   |  |
| Projekt Nr.:               |                           | Auftraggeb                     |                               |                | eingebaute                             |                           |                           | kein<br>Inten> oben |        |  |
| Probe Nr. Durchlauf        |                           | 0                              | /32 rot unte                  | 11             | Strömungsı                             |                           |                           |                     |        |  |
|                            | hmossor                   | لم لم                          | 0.00                          | 15.0           |                                        | rchmesser                 | d                         | cm                  | 15,0   |  |
| Probendurc                 | mnesser                   | d                              | cm                            | 15,0           | Probenläng                             | <del>C</del>              | I                         | cm                  | 12,5   |  |
| durchfließer<br>während de | •                         | Zeitdiffere nz                 | durchfließe<br>während de     | •              | Zeitdiffere nz                         | durchfließe<br>während de | -                         | Zeitdiffere nz      |        |  |
| Vw                         | t                         | $\Delta t$                     | Vw                            | t              | $\Delta t$                             | Vw                        | t                         | $\Delta t$          |        |  |
| cm³                        | min:s                     | S                              | cm <sup>3</sup>               | min:s          | S                                      | cm³                       | min:s                     | S                   |        |  |
| 25                         | 00:46                     |                                | 25                            | 00:11          |                                        | 25                        | 00:10                     |                     |        |  |
| 50                         | 01:33                     | 00:47                          | 50                            | 00:27          | 00:16                                  | 50                        | 00:20                     | 00:10               |        |  |
| 75                         | 02:17                     | 00:44                          | 75                            | 00:43          | 00:16                                  | 75                        | 00:32                     | 00:12               |        |  |
| 100                        | 03:02                     | 00:45                          | 100                           | 01:00          | 00:17                                  | 100                       | 00:44                     | 00:12               |        |  |
| 125                        | 03:45                     | 00:43                          | 125                           | 01:16          | 00:16                                  | 125                       | 00:56                     | 00:12               |        |  |
| 150                        | 04:30                     | 00:45                          | 150                           | 01:31          | 00:15                                  | 150                       | 01:07                     | 00:11               |        |  |
| 175                        | 05:14                     | 00:44                          | 175                           | 01:47          | 00:16                                  | 175                       | 01:19                     | 00:12               |        |  |
| 200                        | 06:00                     | 00:46                          | 200                           | 02:03          | 00:16                                  | 200                       | 01:30                     | 00:11               |        |  |
| 225                        | 06:44                     | 00:44                          | 225                           | 02:19          | 00:16                                  | 225                       | 01:41                     | 00:11               |        |  |
| 250                        | 07:28                     | 00:44                          | 250                           | 02:35          | 00:16                                  | 250                       | 01:53                     | 00:12               |        |  |
| 275                        | 08:14                     | 00:46                          | 275                           | 02:51          | 00:16                                  | 275                       | 02:05                     | 00:12               |        |  |
| 300                        | 09:00                     | 00:46                          | 300                           | 03:06          | 00:15                                  | 300                       | 02:17                     | 00:12               |        |  |
| 325                        | 09:45                     | 00:45                          | 325                           | 03:22          | 00:16                                  | 325                       | 02:28                     | 00:11               |        |  |
|                            |                           |                                | 350                           | 03:40          | 00:18                                  | 350                       | 02:39                     | 00:11               |        |  |
|                            |                           |                                | 375                           | 03:57          | 00:17                                  | 375                       | 02:51                     | 00:12               |        |  |
|                            |                           |                                | 400                           | 04:17          | 00:20                                  |                           |                           |                     |        |  |
|                            |                           |                                | 425<br>450                    | 04:34<br>04:51 | 00:17<br>00:17                         |                           |                           |                     |        |  |
|                            |                           |                                | 475                           | 05:09          | 00:17                                  |                           |                           |                     |        |  |
|                            |                           |                                | 500                           | 05:26          | 00:17                                  |                           |                           |                     |        |  |
|                            |                           |                                |                               |                |                                        |                           |                           |                     |        |  |
|                            |                           |                                |                               |                |                                        |                           |                           |                     |        |  |
|                            |                           |                                |                               |                |                                        |                           |                           |                     |        |  |
|                            |                           |                                |                               |                |                                        |                           |                           |                     |        |  |
|                            |                           |                                |                               |                |                                        |                           |                           |                     |        |  |
|                            |                           |                                |                               |                |                                        |                           |                           |                     |        |  |
|                            |                           |                                |                               |                |                                        |                           |                           |                     |        |  |
| Bemerkung<br>alle Durchg   |                           | selben Prob                    | e                             |                |                                        |                           | Wesche, Do                | ominik              | ı      |  |
| Schlauchve                 | rlängerung:               |                                | Ja                            | Nein           |                                        |                           |                           |                     |        |  |

| Institut für Geologie und Palä<br>Abteilung für Angewandte Ge<br>PD Dr. Patricia Göbel                 | _                                  | ns-Univ                          | ERSITÄT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Anlage:<br>zu:                                                                          |                       |                             |  |  |
|--------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------|-----------------------------|--|--|
| Ermittlung der Dui<br>Haufwerksmateria<br>hydraulischen Gef<br>Projekt Nr.: Auftraggeb                 | lien mit <u>sta</u><br>älle nach D | tionär                           |         | HKS 2/5 Klostermann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                       |                             |  |  |
| Projekt Nr.: Auftraggeb Probe Nr.                                                                      |                                    | KS 2/5                           | ^       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                       |                             |  |  |
| Durchlauf                                                                                              | П                                  | NO 2/0 /                         | Α       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inzelversuch fachbestim-                                                                | Wasservol<br>im Messb |                             |  |  |
| Probendurchmesser                                                                                      | d                                  | cm                               | 10,0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng in s                                                                                 | cm                    |                             |  |  |
| durchflossene Probenlänge                                                                              | 1                                  | cm                               | 12,0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                       | V <sub>w1</sub> =     | 100                         |  |  |
| eingebaute Filter                                                                                      | <u> </u>                           | kein                             | , _     | $t_1 = t_2 = t_2 = t_3 = t_4 = t_4 = t_5 $ | <u>3</u><br>4                                                                           | V <sub>w2</sub> =     | 100                         |  |  |
| Temperatur                                                                                             | θ                                  | °C                               | 20,3    | t <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                       | V <sub>w3</sub> =     | 100                         |  |  |
| hydraulische Druckhöhe                                                                                 | h                                  | cm                               | 1,0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                             | V <sub>w4</sub> =     |                             |  |  |
| durchströmte Fläche der                                                                                | π * d 2                            |                                  |         | t <sub>4</sub> =<br>t <sub>5</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         | V <sub>w5</sub> =     |                             |  |  |
| Probe (Fließquerschnitt)                                                                               | $A = \frac{\pi * d^2}{4}$          | . cm²                            | 78,54   | t <sub>6</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         | V <sub>w6</sub> =     |                             |  |  |
| Durchlässikeit mit konst. hydragefälle in m/s $k_{f} = \frac{V_{W} \cdot l}{A \cdot h \cdot \Delta t}$ | in l/(s*ha)                        | $\frac{V_{w}}{A \cdot \Delta t}$ |         | $k_f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $k_f = \frac{V_W \cdot l}{Acm^2 \cdot 1cm \cdot \Delta t} \cdot 10^{-2}$                |                       |                             |  |  |
|                                                                                                        | Einbau                             |                                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                       |                             |  |  |
| k <sub>f1</sub> = 0,05093                                                                              | $V_1 =$                            | 42                               | 2441,32 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_i = \frac{V_w \cdot 10^{-3} dm^3}{A \cdot 10^{-4} m^2 \cdot \Delta t} \cdot 10^4 ha$ |                       |                             |  |  |
| k <sub>f2</sub> = 0,03820                                                                              | <u>v</u> , =                       | 31                               | 830,99  | V. =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |                       |                             |  |  |
| k <sub>f3</sub> = 0,03820                                                                              | $V_3 =$                            | 31                               | 830,99  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $A \cdot 10^{-4} m^2 \cdot \Delta t$                                                    |                       |                             |  |  |
| Fließrichtun                                                                                           | gswechsel                          |                                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                       |                             |  |  |
| k <sub>f4</sub> =                                                                                      | γ <sub>4</sub> =                   |                                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                       |                             |  |  |
| k <sub>f5</sub> =                                                                                      | $V_5$ =                            |                                  |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                       |                             |  |  |
| k <sub>f6</sub> =                                                                                      | V <sub>6</sub> =                   |                                  |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                       |                             |  |  |
|                                                                                                        | Ausbau                             |                                  |         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                       |                             |  |  |
|                                                                                                        |                                    |                                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                       |                             |  |  |
|                                                                                                        | 1                                  |                                  |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                       |                             |  |  |
|                                                                                                        | +                                  |                                  |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                       |                             |  |  |
|                                                                                                        |                                    |                                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                       |                             |  |  |
|                                                                                                        |                                    |                                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                       |                             |  |  |
| Bemerkungen:  Strömungsrichtung unten> Ströungsrichtung oben> un Schlauverlängerung:                   | ten                                | <u>Nein</u>                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                       | Wesche, Dominik<br>15.04.08 |  |  |

|                           |                                              |                | WESTFÄL<br>WILHELM<br>MÜNSTEI | S-UNIVER | SITÄT                                  |                           | Anlage:<br>zu:                                        |                |         |  |  |
|---------------------------|----------------------------------------------|----------------|-------------------------------|----------|----------------------------------------|---------------------------|-------------------------------------------------------|----------------|---------|--|--|
| Abteilung                 | r Geologie un<br>für Angewan<br>tricia Göbel |                | gie                           | K        |                                        |                           | 24.                                                   |                |         |  |  |
| Ermittl                   | ung der<br>erksmat                           |                | _                             | it an    | durchström<br>der Probe<br>(Fließquers |                           | $A = \frac{\pi * d^2}{4} \qquad \text{cm}^2 \qquad 7$ |                |         |  |  |
|                           | <u>ärem</u> hy<br>IN 1813                    |                | chen G                        | efälle   | hydraulisch<br>Druckhöhe               |                           | h                                                     | cm             | 1,0     |  |  |
|                           |                                              | -              |                               |          | Temperatui                             |                           | θ                                                     | °C             | 20,3    |  |  |
| Projekt Nr.:              |                                              | Auftraggeb     |                               |          | eingebaute                             |                           |                                                       | kein           | _       |  |  |
| Probe Nr.                 | •                                            |                | HKS 2/5 A                     |          | Strömungs                              |                           |                                                       | ınten> obe     |         |  |  |
| Durchlauf                 | hmaa                                         | ,              |                               | 40.0     |                                        | rchmesser                 | d                                                     | cm             | 10,0    |  |  |
| Probendure                | rimesser                                     | d              | cm                            | 10,0     | Probenläng                             | е                         | 1                                                     | cm             | 12,0    |  |  |
| lurchfließe<br>vährend de | nde Menge<br>er Zeit                         | Zeitdiffere nz | durchfließe<br>während de     |          | Zeitdiffere nz                         | durchfließe<br>während de | -                                                     | Zeitdiffere nz |         |  |  |
| Vw                        | t                                            | $\Delta t$     | Vw                            | t        | $\Delta t$                             | Vw                        | t                                                     | $\Delta t$     |         |  |  |
| cm³                       | min:s                                        | s              | cm³                           | min:s    | s                                      | cm³                       | min:s                                                 | S              |         |  |  |
| 100                       | 00:11                                        |                | 100                           | 00:22    |                                        | 100                       | 00:14                                                 |                |         |  |  |
| 200                       | 00:14                                        | 00:03          | 200                           | 00:26    | 00:04                                  | 200                       | 00:18                                                 | 00:04          |         |  |  |
| 300                       | 00:17                                        | 00:03          | 300                           | 00:31    | 00:05                                  | 300                       | 00:22                                                 | 00:04          |         |  |  |
| 400                       | 00:20                                        | 00:03          | 400                           | 00:35    | 00:04                                  | 400                       | 00:26                                                 | 00:04          |         |  |  |
| 500                       | 00:24                                        | 00:04          | 500                           | 00:40    | 00:05                                  | 500                       | 00:29                                                 | 00:03          |         |  |  |
| 600                       | 00:27                                        | 00:03          | 600                           | 00:44    | 00:04                                  | 600                       | 00:33                                                 | 00:04          |         |  |  |
| 700                       | 00:31                                        | 00:04          | 700                           | 00:49    | 00:05                                  | 700                       | 00:37                                                 | 00:04          |         |  |  |
| 800                       | 00:35                                        | 00:04          | 800                           | 00:53    | 00:04                                  | 800                       | 00:42                                                 | 00:05          |         |  |  |
| 900                       | 00:38                                        | 00:03          | 900                           | 00:57    | 00:04                                  | 900                       | 00:46                                                 | 00:04          |         |  |  |
| 1000                      | 00:42                                        | 00:04          | 1000                          | 01:02    | 00:05                                  | 1000                      | 00:50                                                 | 00:04          |         |  |  |
|                           |                                              |                |                               |          |                                        |                           |                                                       |                |         |  |  |
|                           |                                              |                |                               |          |                                        |                           |                                                       |                |         |  |  |
|                           |                                              |                |                               |          |                                        |                           |                                                       |                |         |  |  |
|                           |                                              |                |                               |          |                                        |                           |                                                       |                |         |  |  |
|                           |                                              |                |                               |          |                                        |                           |                                                       |                |         |  |  |
| Bemerkung<br>Versuchsze   | gen:<br>elle leckt; leid                     | cht milchige   | Trübung                       |          |                                        |                           | Laborant:                                             | Wesche, Do     | orninik |  |  |
| Schlauchve                | erlängerung:                                 |                | Ja                            | Nein     |                                        |                           | Datum:                                                | 15.4.2008      |         |  |  |

|                        | =                                                                   | WESTFÄI WILHELM MÜNSTE        | ns-Univi                         | ERSITÄT      |                  | Anlage:<br>zu:                              |                                |                 |  |
|------------------------|---------------------------------------------------------------------|-------------------------------|----------------------------------|--------------|------------------|---------------------------------------------|--------------------------------|-----------------|--|
| Abteilu                | für Geologie und Paläor<br>ng für Angewandte Geol<br>Patricia Göbel | ntologie                      |                                  |              |                  |                                             |                                |                 |  |
| Ermit                  | tlung der Durc                                                      | hlässigke                     | it an                            |              |                  |                                             |                                |                 |  |
| Haufv                  | verksmateriali                                                      | en mit <u>sta</u>             | <u>tionär</u>                    | <u>em</u>    |                  |                                             | KS 2/5                         | B               |  |
| hydra                  | ulischen Gefä                                                       | lle nach D                    | IN 181                           | 130-1        |                  | • • • • • • • • • • • • • • • • • • • •     | NO 2/3                         | _               |  |
| Projekt N              |                                                                     |                               |                                  |              |                  |                                             |                                |                 |  |
| Probe                  |                                                                     | HI                            | KS 2/5 E                         | 3            | •                | inzelversuch                                | Wasservol                      |                 |  |
| Durchlau               |                                                                     | <br>                          |                                  |              |                  | fachbestim-<br>ng in s                      | im Messb<br>cm                 |                 |  |
|                        | urchmesser                                                          | d                             | cm                               | 10,0         | IIIui            | 9 11 3                                      |                                | <u>'</u>        |  |
| durchflos              | sene Probenlänge                                                    | I                             | cm                               | 12,0         | t <sub>1</sub> = | 4                                           | V <sub>w1</sub> =              | 100             |  |
| eingebau               | ite Filter                                                          |                               | kein                             |              | t <sub>2</sub> = | 4                                           | V <sub>w2</sub> =              | 100             |  |
| Tempera                | tur                                                                 | θ                             | °C                               | 19           | t <sub>3</sub> = | 4                                           | V <sub>w3</sub> =              | 100             |  |
| hydraulis              | che Druckhöhe                                                       | h                             | cm                               | 1,0          | t <sub>4</sub> = |                                             | V <sub>w4</sub> =              |                 |  |
|                        | omte Fläche der                                                     | $A = \frac{\pi * d^2}{4}$     | cm²                              | 78,54        | t <sub>5</sub> = |                                             | V <sub>w5</sub> =              |                 |  |
| -                      | ließquerschnitt)                                                    | 4                             | OIII                             | 70,04        | t <sub>6</sub> = |                                             | V <sub>w6</sub> =              |                 |  |
| Durchläs<br>Gefälle ir | sikeit mit konst. hydr.<br>n m/s                                    | Infiltrationsrate in I/(s*ha) | mit <i>h</i> = 0                 | cm Überstau  |                  |                                             |                                |                 |  |
| k <sub>f</sub> =       | $=\frac{V_{W}\cdot l}{A\cdot h\cdot \Delta t}$                      | $\overrightarrow{V}_{i} =$    | $\frac{V_{w}}{A \cdot \Delta t}$ | <del>-</del> | $k_f$            | $=\frac{V_{W}}{Acm^{2}}.$                   | $\frac{1}{1cm \cdot \Delta t}$ | $\cdot 10^{-2}$ |  |
|                        |                                                                     | Einbau                        |                                  |              |                  |                                             |                                |                 |  |
| k <sub>f1</sub> =      | 0,03820                                                             | $V_1 =$                       | 31                               | 830,99       |                  |                                             |                                |                 |  |
| k <sub>f2</sub> =      | 0,03820                                                             | <u>v</u> =                    | 31                               | 830,99       | V =              | $\frac{V_w \cdot 10^{-4}}{A \cdot 10^{-4}}$ | <sup>-3</sup> dm³.             | $10^4 ha$       |  |
| k <sub>f3</sub> =      | 0,03820                                                             | $V_3 =$                       | 31                               | 830,99       | i                | $A \cdot 10^{-4}$                           | $m^2 \cdot \Delta t$           | 10 1101         |  |
|                        | Fließrichtungs                                                      | swechsel                      |                                  |              |                  |                                             |                                |                 |  |
| k <sub>f4</sub> =      |                                                                     | V. =                          |                                  |              |                  |                                             |                                |                 |  |
| k <sub>f5</sub> =      |                                                                     | $V_5$ =                       |                                  |              |                  |                                             |                                |                 |  |
| k <sub>f6</sub> =      |                                                                     | $V_6$ =                       |                                  |              |                  |                                             |                                |                 |  |
|                        |                                                                     | usbau <sup>⁰</sup>            |                                  |              | 1                |                                             |                                |                 |  |
|                        |                                                                     |                               |                                  |              | 1                |                                             |                                |                 |  |
|                        |                                                                     |                               |                                  |              | 1                |                                             |                                |                 |  |
|                        |                                                                     |                               |                                  |              | -                |                                             |                                |                 |  |
|                        |                                                                     |                               |                                  |              |                  |                                             |                                |                 |  |
|                        |                                                                     |                               |                                  |              |                  |                                             |                                |                 |  |
| Bemerku                | ngen:                                                               |                               |                                  |              |                  |                                             |                                |                 |  |
|                        | trolle der Lagerungsdi<br>werte Verdichtung in A                    |                               | _                                |              |                  | uch nach DIN                                | l 18127 keir                   | ne              |  |
| Strömun                | gsrichtung unten> ot                                                | nen                           |                                  |              |                  |                                             |                                |                 |  |
|                        | richtung oben> unte                                                 |                               |                                  |              |                  | Laborant:                                   | Wesche, D                      | Oominik         |  |
|                        | erlängerung:                                                        |                               | <u>Nein</u>                      |              |                  |                                             | 10.04.08                       |                 |  |

|                           | _ =                         |                     | Westfäl                   | ISCHE          |                                        |                           | Anlage:                                                |                |      |  |  |
|---------------------------|-----------------------------|---------------------|---------------------------|----------------|----------------------------------------|---------------------------|--------------------------------------------------------|----------------|------|--|--|
|                           | _                           | d Paläontolo        | MÜNSTEI<br>gie            | IS-UNIVER<br>R | SITÄT                                  |                           | zu:                                                    |                |      |  |  |
| _                         | für Angewan<br>tricia Göbel | dte Geologie        |                           |                |                                        |                           |                                                        |                |      |  |  |
| Ermittl                   | ung der                     | Durchla<br>erialien | ässigke<br>mit            | it an          | durchström<br>der Probe<br>(Fließquers |                           | $A = \frac{\pi * d^2}{4} \qquad \text{cm}^2 \qquad 78$ |                |      |  |  |
|                           | <u>ärem</u> hy<br>IN 1813   |                     | chen Ge                   | efälle         | hydraulisch<br>Druckhöhe               | е                         | h                                                      | cm             | 1,0  |  |  |
| ilacii D                  | 114 1013                    | U- I                |                           |                | Temperatur                             | •                         | θ                                                      | °C             | 19,0 |  |  |
| Projekt Nr.:              |                             | Auftraggebe         |                           |                | eingebaute                             | Filter                    |                                                        | kein           |      |  |  |
| Probe Nr.                 |                             |                     | HKS 2/5 B                 |                | Strömungsı                             |                           | ι                                                      | ınten> obe     | en   |  |  |
| Durchlauf                 |                             |                     | ,                         |                | Probendu                               | rchmesser                 | d                                                      | cm             | 10,0 |  |  |
| Probenduro                | hmesser                     | d                   | cm                        | 10,0           | Probenläng                             | е                         | 1                                                      | cm             | 12,0 |  |  |
|                           |                             |                     |                           |                |                                        |                           |                                                        |                |      |  |  |
| durchfließe<br>während de | nde Menge<br>er Zeit        | Zeitdiffere<br>nz   | durchfließe<br>während de | -              | Zeitdiffere<br>nz                      | durchfließe<br>während de | -                                                      | Zeitdiffere nz |      |  |  |
| Vw                        | t                           | $\Delta t$          | Vw                        | t              | $\Delta t$                             | Vw                        | t                                                      | $\Delta t$     |      |  |  |
| cm <sup>3</sup>           | min:s                       | S                   | cm <sup>3</sup>           | min:s          | S                                      | cm <sup>3</sup>           | min:s                                                  | S              |      |  |  |
| 100                       | 00:09                       |                     | 100                       | 00:10          |                                        | 100                       | 00:18                                                  |                |      |  |  |
| 200                       | 00:13                       | 00:04               | 200                       | 00:14          | 00:04                                  | 200                       | 00:22                                                  | 00:04          |      |  |  |
| 300                       | 00:17                       | 00:04               | 300                       | 00:18          | 00:04                                  | 300                       | 00:25                                                  | 00:03          |      |  |  |
| 400                       | 00:21                       | 00:04               | 400                       | 00:21          | 00:03                                  | 400                       | 00:29                                                  | 00:04          |      |  |  |
| 500                       | 00:25                       | 00:04               | 500                       | 00:25          | 00:04                                  | 500                       | 00:33                                                  | 00:04          |      |  |  |
| 600                       | 00:30                       | 00:05               | 600                       | 00:29          | 00:04                                  | 600                       | 00:37                                                  | 00:04          |      |  |  |
| 700                       | 00:33                       | 00:03               | 700                       | 00:33          | 00:04                                  | 700                       | 00:40                                                  | 00:03          |      |  |  |
| 800                       | 00:38                       | 00:05               | 800                       | 00:36          | 00:03                                  | 800                       | 00:44                                                  | 00:04          |      |  |  |
| 900                       | 00:42                       | 00:04               | 900                       | 00:40          | 00:04                                  | 900                       | 00:48                                                  | 00:04          |      |  |  |
| 1000                      | 00:46                       | 00:04               | 1000                      | 00:43          | 00:03                                  | 1000                      | 00:52                                                  | 00:04          |      |  |  |
|                           |                             |                     |                           |                |                                        |                           |                                                        |                |      |  |  |
|                           |                             |                     |                           |                |                                        |                           |                                                        |                |      |  |  |
|                           |                             |                     |                           |                |                                        |                           |                                                        |                |      |  |  |
|                           |                             |                     |                           |                |                                        |                           |                                                        |                |      |  |  |
|                           |                             |                     |                           |                |                                        |                           |                                                        |                |      |  |  |
|                           |                             |                     |                           |                |                                        |                           |                                                        |                |      |  |  |
| Bemerkung                 |                             |                     |                           |                |                                        | Laborant:                 | Wesche, D                                              | ominik         |      |  |  |
|                           |                             |                     | leutliche Trü             | bung           |                                        | _                         |                                                        |                |      |  |  |
| Schlauchve                | rlängerung:                 |                     | Ja                        | Nein           |                                        | Datum:                    | 10.4.2008                                              |                |      |  |  |

|                       | <u> </u>                                                              |                                                  |                                  |               |                  | Anlage:                                 |                              |                         |   |
|-----------------------|-----------------------------------------------------------------------|--------------------------------------------------|----------------------------------|---------------|------------------|-----------------------------------------|------------------------------|-------------------------|---|
|                       | für Geologie und Paläoing für Angewandte Geo                          | _                                                | ns-Univ                          | ERSITÄT       |                  | zu:                                     |                              |                         |   |
|                       | Patricia Göbel                                                        | ماده واده                                        | :4 -10                           |               | <u> </u>         |                                         |                              |                         |   |
| Haufv                 | tlung der Durc<br>verksmateriali<br>ulischen Gefä<br>dr.: Auftraggebe | ien mit <u>sta</u><br>ille nach D                | tionär                           |               | Pflastermörtel   |                                         |                              |                         |   |
| Probe                 |                                                                       |                                                  | stermö                           | rtel          | Zoit t io E      | in zolvorovoh                           | Wasservolumen V <sub>w</sub> |                         |   |
| Durchlau              | ıf                                                                    |                                                  |                                  |               |                  | inzelversuch fachbestim-                | im Messb                     |                         |   |
| Probend               | urchmesser                                                            | d                                                | cm                               | 10,0          | mur              | ng in s                                 | cn                           | 1 <sup>3</sup>          |   |
| durchflos             | ssene Probenlänge                                                     | 1                                                | cm                               | 12,0          | t 1=             | -                                       | V <sub>w1</sub> =            | -                       |   |
| eingebau              | ıte Filter                                                            |                                                  | kein                             |               | t <sub>2</sub> = | -                                       | V <sub>w2</sub> =            | -                       |   |
| Tempera               | atur                                                                  | θ                                                | °C                               | 19,1          | t <sub>3</sub> = | -                                       | V <sub>w3</sub> =            | -                       |   |
| hydraulis             | sche Druckhöhe                                                        | h                                                | cm                               | 1,0           | t <sub>4</sub> = |                                         | V <sub>w4</sub> =            |                         |   |
| durchströ             | ömte Fläche der                                                       | $A = \frac{\pi * d^2}{4}$                        | 2                                | 70.54         | t <sub>5</sub> = |                                         | V <sub>w5</sub> =            |                         |   |
| Probe (F              | ließquerschnitt)                                                      | $A = \frac{}{4}$                                 | cm²                              | 78,54         | t <sub>6</sub> = |                                         | V <sub>w6</sub> =            |                         |   |
| Durchläs<br>Gefälle i | sikeit mit konst. hydr.<br>n m/s                                      | Infiltrationsrate in I/(s*ha)                    | mit h=                           | cm Überstau   |                  | $V_{_{\scriptscriptstyle W}}\cdot 10$   | $0^{-3}dm^3$                 | 1041                    |   |
| k <sub>f</sub> =      | $=\frac{V_W\cdot l}{A\cdot h\cdot \Delta t}$                          | $\dot{V_i} =$                                    | $\frac{V_{w}}{A \cdot \Delta x}$ | t             | $V_i$            | $=\frac{V_w \cdot 10}{A \cdot 10^{-1}}$ | $^4m^2\cdot\Delta t$         | - · 10 ˈ <i>nc</i><br>t | i |
|                       |                                                                       | Einbau                                           |                                  |               |                  |                                         |                              |                         |   |
| k <sub>f1</sub> =     | -                                                                     | $V_1 =$                                          |                                  | -             |                  |                                         |                              |                         |   |
| k <sub>f2</sub> =     | -                                                                     | $\dot{V}_2$ =                                    |                                  | -             | <i>l</i> -       | $=\frac{V_{W}}{Acm^{2}\cdot 1}$         | $\frac{\cdot l}{}$ .         | $10^{-2}$               |   |
| k <sub>f3</sub> =     | -                                                                     | V <sub>2</sub> =                                 |                                  | -             | $\kappa_f$       | $Acm^2 \cdot 1$                         | $cm \cdot \Delta t$          | 10                      |   |
|                       | Fließrichtung                                                         | swechsel                                         |                                  |               | 1                |                                         |                              |                         |   |
| k <sub>f4</sub> =     |                                                                       | V. =                                             |                                  |               |                  |                                         |                              |                         |   |
| k <sub>f5</sub> =     |                                                                       | $V_5$ =                                          |                                  |               | 1                |                                         |                              |                         |   |
| k <sub>f6</sub> =     |                                                                       | $V_6$ =                                          |                                  |               | 1                |                                         |                              |                         |   |
| **10                  |                                                                       | Ausbau                                           |                                  |               | ł                |                                         |                              |                         |   |
|                       |                                                                       |                                                  |                                  |               | 1                |                                         |                              |                         |   |
|                       |                                                                       | <del>                                     </del> |                                  |               |                  |                                         |                              |                         |   |
|                       |                                                                       | <del>                                     </del> |                                  |               | I                |                                         |                              |                         |   |
|                       |                                                                       |                                                  |                                  |               | Į                |                                         |                              |                         |   |
|                       |                                                                       |                                                  |                                  |               |                  |                                         |                              |                         |   |
| Bemerku<br>Der Vers   | ingen:<br>such wurde nach 15 mi                                       | in abgebrochen,                                  | da kein V                        | Vasser an der | n Abfluss de     | er Zelle ausg                           | etreten ist.                 |                         |   |
| Ströungs              | gsrichtung unten> ol<br>srichtung oben> unte                          |                                                  |                                  |               |                  |                                         | Wesche, [                    |                         |   |
| Schlauve              | erlängerung:                                                          | Ja                                               | Nein                             |               |                  | Datum:                                  | 10.04.2008                   | 8                       |   |

|                            |                             |                     |                           |             |                                        |                           | Anlage:                                       |                |       |
|----------------------------|-----------------------------|---------------------|---------------------------|-------------|----------------------------------------|---------------------------|-----------------------------------------------|----------------|-------|
|                            |                             | nd Paläontolo       | Münste<br>gie             | IS-UNIVER   | SITÄT                                  | zu:                       |                                               |                |       |
|                            | tur Angewan<br>tricia Göbel | iate Geologie       |                           |             |                                        |                           |                                               |                |       |
|                            | _                           | Durchla<br>erialien | _                         | it an       | durchström<br>der Probe<br>(Fließquers |                           | $A = \frac{\pi * d^2}{4}$                     | cm²            | 78,54 |
|                            | <u>ärem</u> hy<br>IN 1813   | /draulis<br>0-1     | chen G                    | efälle      | hydraulisch<br>Druckhöhe               |                           | h                                             | cm<br>°C       | 1,0   |
| Projekt Nr.:               |                             | Auftraggeb          | or.                       |             | Temperatur<br>eingebaute               |                           | θ                                             | kein           | 19,1  |
| Probe Nr.                  |                             |                     | flastermör                | tel         | Strömungsi                             |                           | ı                                             | unten> obe     | en    |
| Durchlauf                  |                             |                     |                           |             |                                        | rchmesser                 | d                                             | cm             | 10,0  |
| Probendurc                 | hmesser                     | d                   | cm                        | 10,0        | Probenläng                             |                           | 1                                             | cm             | 12,0  |
|                            |                             | _ ~                 |                           | . 0,0       | ,9                                     |                           | <u>, , , , , , , , , , , , , , , , , , , </u> | , C            | ,0    |
| durchfließer<br>während de |                             | Zeitdiffere nz      | durchfließe<br>während de |             | Zeitdiffere nz                         | durchfließe<br>während de | nde Menge<br>er Zeit                          | Zeitdiffere nz |       |
| Vw                         | t                           | $\Delta t$          | Vw                        | t           | $\Delta t$                             | Vw                        | t                                             | $\Delta t$     |       |
| cm³                        | min:s                       | S                   | cm³                       | min:s       | S                                      | cm³                       | min:s                                         | S              |       |
| 5                          | >20:00                      |                     |                           |             |                                        |                           |                                               |                |       |
| 10                         | -                           |                     |                           |             |                                        |                           |                                               |                |       |
| 15                         | -                           |                     |                           |             |                                        |                           |                                               |                |       |
| 20                         | -                           |                     |                           |             |                                        |                           |                                               |                |       |
| 25<br>30                   | -                           |                     |                           |             |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           |                                               |                |       |
| 35                         | -                           |                     |                           |             |                                        |                           |                                               |                |       |
| 40<br>45                   | -                           |                     |                           |             |                                        |                           |                                               |                |       |
| 50                         | _                           |                     |                           |             |                                        |                           |                                               |                |       |
| 00                         |                             |                     |                           |             |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           |                                               |                |       |
| Romorkus ~                 | on:                         |                     |                           |             |                                        |                           |                                               |                |       |
|                            | lufttrockene                | em Material,        |                           |             |                                        |                           |                                               |                |       |
|                            |                             | ch 15 min ab        |                           |             | sser an dem                            | Abfluss der               | Zelle ausge                                   | etreten ist.   |       |
| Höhe des V                 | Vassers in d                | ler Zelle stie      | g weniger al              | s 1cm       |                                        |                           |                                               |                |       |
|                            |                             |                     |                           |             |                                        |                           | Wesche, D                                     | ominik         |       |
| Schlauchve                 | rlängerung:                 |                     | Ja                        | <u>Nein</u> |                                        | Datum:                    | 10.4.2008                                     |                |       |

|                   | <u>.</u>                                                        |                                                  |                                  |               | A                | Anlage:                                                                                                 |                                |                 |         |
|-------------------|-----------------------------------------------------------------|--------------------------------------------------|----------------------------------|---------------|------------------|---------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|---------|
| Abteilu           | für Geologie und Paläoning für Angewandte Geol                  | _                                                | ns-Univ                          | ERSITÄT       | z                | zu:                                                                                                     |                                |                 |         |
|                   | tlung der Durc                                                  | _                                                |                                  |               |                  |                                                                                                         |                                |                 |         |
|                   | werksmateriali<br>uulischen Gefä<br><sub>Nr.:</sub> Auftraggebe | ille nach D                                      |                                  |               | Glasasche        |                                                                                                         |                                |                 |         |
| Probe             |                                                                 | е                                                | Zeit t ie Fir                    | nzelversuch   | Wasservol        | umen V                                                                                                  |                                |                 |         |
| Durchlau          | Ourchlauf                                                       |                                                  |                                  |               |                  | achbestim-                                                                                              | im Messb                       | echer in        |         |
| Probend           | urchmesser                                                      | d                                                | cm                               | 10,0          | mun              | g in s                                                                                                  | cm                             | 3               |         |
| durchflos         | ssene Probenlänge                                               | 1                                                | cm                               | 12,0          | t <sub>1</sub> = | 36                                                                                                      | V <sub>w1</sub> =              | 50              |         |
| eingebau          | ute Filter                                                      |                                                  | kein                             |               | t <sub>2</sub> = | 31                                                                                                      | V <sub>w2</sub> =              | 50              |         |
| Tempera           | atur                                                            | θ                                                | °C                               | 19,1          | t <sub>3</sub> = | 30                                                                                                      | V <sub>w3</sub> =              | 50              |         |
| hydraulis         | sche Druckhöhe                                                  | h                                                | cm                               | 1,0           | t <sub>4</sub> = |                                                                                                         | V <sub>w4</sub> =              |                 |         |
|                   | ömte Fläche der                                                 | $A = \frac{\pi * d^2}{4}$                        | cm²                              | 78,54         | t <sub>5</sub> = |                                                                                                         | V <sub>w5</sub> =              |                 |         |
| ,                 | ließquerschnitt)                                                | 4                                                |                                  | ·             | t <sub>6</sub> = |                                                                                                         | V <sub>w6</sub> =              |                 |         |
| Gefälle i         |                                                                 | Infiltrationsrate<br>in I/(s*ha)                 |                                  |               |                  |                                                                                                         |                                |                 |         |
| $k_f$ =           | $=\frac{V_{_W}\cdot l}{A\cdot h\cdot \Delta t}$                 | $\dot{V}_{i} =$                                  | $\frac{V_{w}}{A \cdot \Delta u}$ | $\frac{1}{t}$ | $k_f$ :          | $=\frac{V_{_{\mathrm{W}}}}{Acm^{2}}$                                                                    | $\frac{1}{1cm \cdot \Delta t}$ | $\cdot 10^{-2}$ |         |
|                   |                                                                 | Einbau                                           |                                  |               | 1                |                                                                                                         |                                |                 |         |
| k <sub>f1</sub> = | 0,00212                                                         | $V_1$ =                                          | 17                               | 768,39        |                  |                                                                                                         |                                |                 |         |
| k <sub>f2</sub> = | 0,00246                                                         | <u>v</u> , =                                     | 20                               | 053,61        | $\dot{V}_{i} =$  | $\dot{V}_{i} = \frac{V_{w} \cdot 10^{-3} dm^{3}}{A \cdot 10^{-4} m^{2} \cdot \Delta t} \cdot 10^{4} ha$ |                                |                 |         |
| k <sub>f3</sub> = | 0,00255                                                         | $V_3 =$                                          | 2                                | 122,07        |                  | $A \cdot 10^{-4}$                                                                                       | $m^2 \cdot \Delta t$           |                 |         |
| 1                 | Fließrichtung                                                   | swechsel                                         |                                  |               | _                |                                                                                                         |                                |                 |         |
| k <sub>f4</sub> = |                                                                 | ,       =                                        |                                  |               | ]                |                                                                                                         |                                |                 |         |
| k <sub>f5</sub> = |                                                                 | $V_5$ =                                          |                                  |               |                  |                                                                                                         |                                |                 |         |
| k <sub>f6</sub> = |                                                                 | $V_6$ =                                          |                                  |               |                  |                                                                                                         |                                |                 |         |
|                   |                                                                 | Ausbau                                           |                                  |               | 1                |                                                                                                         |                                |                 |         |
|                   |                                                                 |                                                  |                                  |               |                  |                                                                                                         |                                |                 |         |
|                   |                                                                 |                                                  |                                  |               | 1                |                                                                                                         |                                |                 |         |
|                   |                                                                 | <del>                                     </del> |                                  |               | 1                |                                                                                                         |                                |                 |         |
|                   |                                                                 |                                                  |                                  |               | 4                |                                                                                                         |                                |                 |         |
|                   |                                                                 |                                                  |                                  |               |                  |                                                                                                         |                                |                 |         |
|                   | ungen:<br>ntrolle der Lagerungsdi<br>werte Verdichtung in A     |                                                  | _                                |               |                  | ch nach DIN                                                                                             | l 18127 keir                   | ne              |         |
| Ströungs          | gsrichtung unten> ol<br>srichtung oben> unte<br>erlängerung:    | en                                               | <u>Nein</u>                      |               |                  |                                                                                                         | Wesche, D<br>31.03.08          | ominik          |         |
|                   | J J-                                                            |                                                  |                                  |               |                  |                                                                                                         |                                |                 | ® hex07 |

|                            |                |                              |                           |                |                                        |                           | Anlage:                   |                |         |
|----------------------------|----------------|------------------------------|---------------------------|----------------|----------------------------------------|---------------------------|---------------------------|----------------|---------|
| Abteilung                  | _              | d Paläontolo<br>dte Geologie | MÜNSTEI<br>gie            | S-UNIVER       | SITÄT                                  |                           | zu:                       |                |         |
| Ermittlu                   | ıng der        | Durchla<br>erialien          | ässigke<br>mit            | it an          | durchström<br>der Probe<br>(Fließquers |                           | $A = \frac{\pi * d^2}{4}$ | cm²            | 78,54   |
|                            |                |                              | chen G                    | efälle         | hydraulisch<br>Druckhöhe               | -                         | h                         | cm             | 1,0     |
| nach D                     | IN 1813        | 0-1                          |                           |                | Temperatui                             | r                         | θ                         | °C             | 19,1    |
| Projekt Nr.:               |                | Auftraggebe                  | er:                       |                | eingebaute                             | Filter                    |                           | kein           |         |
| Probe Nr.                  |                |                              | Glasasche                 |                | Strömungsı                             | richtung                  | ι                         | ınten> obe     | n       |
| Durchlauf                  |                |                              | •                         |                | Probendu                               | rchmesser                 | d                         | cm             | 10,0    |
| Probendurc                 | hmesser        | d                            | cm                        | 10,0           | Probenläng                             | je                        | 1                         | cm             | 12,0    |
| durchfließer<br>während de |                | Zeitdiffere nz               | durchfließe<br>während de |                | Zeitdiffere nz                         | durchfließe<br>während de | •                         | Zeitdiffere nz |         |
| Vw                         | t              | $\Delta t$                   | Vw                        | t              | $\Delta t$                             | Vw                        | t                         | $\Delta t$     |         |
| cm³                        | min:s          | S                            | cm <sup>3</sup>           | min:s          | S                                      | cm³                       | min:s                     | S              |         |
| 50                         | 00:50          |                              | 50                        | 00:58          |                                        | 50                        | 00:53                     |                |         |
| 100                        | 01:16          | 00:26                        | 100                       | 01:32          | 00:34                                  | 100                       | 01:28                     | 00:35          |         |
| 150                        | 01:42          | 00:26                        | 150                       | 02:03          | 00:31                                  | 150                       | 01:59                     | 00:31          |         |
| 200                        | 02:08          | 00:26                        | 200                       | 02:34          | 00:31                                  | 200                       | 02:32                     | 00:33          |         |
| 250                        | 02:30          | 00:22                        | 250                       | 03:07          | 00:33                                  | 250                       | 03:04                     | 00:32          |         |
| 300                        | 02:57          | 00:27                        | 300                       | 03:37          | 00:30                                  | 300                       | 03:30                     | 00:26          |         |
| 350                        | 03:26          | 00:29                        | 350                       | 04:11          | 00:34                                  | 350                       | 04:02                     | 00:32          |         |
| 400                        | 03:52          | 00:26                        | 400                       | 04:39          | 00:28                                  | 400                       | 04:32                     | 00:30          |         |
| 450                        | 04:21          | 00:29                        | 450                       | 05:10          | 00:31                                  | 450                       | 05:01                     | 00:29          |         |
| 500                        | 05:05          | 00:44                        | 500                       | 05:41<br>06:13 | 00:31                                  | 500                       | 05:28<br>06:00            | 00:27          |         |
| 550<br>600                 | 05:37<br>06:14 | 00:32<br>00:37               | 550<br>600                | 06:13          | 00:32<br>00:31                         | 550<br>600                | 06:00                     | 00:32          |         |
|                            | 06:49          | 00:37                        | 000                       | 00.44          | 00.51                                  | 650                       | 07:00                     | 00:30          |         |
| 650<br>700                 | 06.49          | 00:36                        |                           |                |                                        | 700                       | 07:31                     | 00:30          |         |
| 750                        | 08:00          | 00:35                        |                           |                |                                        | 700                       | 07.01                     | 00.01          |         |
|                            |                |                              |                           |                |                                        |                           |                           |                |         |
|                            |                |                              |                           |                |                                        |                           |                           |                |         |
|                            |                |                              |                           |                |                                        |                           |                           |                |         |
|                            |                |                              |                           |                |                                        |                           |                           |                |         |
| Bemerkung                  | en:            |                              |                           |                |                                        |                           | Wesche, De 31.3.2008      | ominik         |         |
| Schlauchve                 | rlängerung:    |                              | Ja                        | <u>Nein</u>    |                                        |                           |                           |                | ® bex07 |

|                           |                                                                                                                             |                         |                                  |                  | Anlage:                                                                  |                                             |                              |           |    |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|------------------|--------------------------------------------------------------------------|---------------------------------------------|------------------------------|-----------|----|
|                           |                                                                                                                             | WESTFÄI WILHELM MÜNSTE  | ns-Univ                          | ERSITÄT          | z                                                                        | u:                                          |                              |           |    |
| Abteilur                  | für Geologie und Paläor<br>ng für Angewandte Geol<br>Patricia Göbel                                                         | •                       |                                  |                  |                                                                          |                                             |                              |           |    |
| Ermitt                    | tlung der Durc                                                                                                              | hlässigke               | it an                            |                  |                                                                          |                                             |                              |           |    |
|                           | verksmateriali                                                                                                              |                         |                                  |                  | Sa                                                                       | nd-Gla                                      | sasche                       | Gemis     | ch |
| <b>hydra</b><br>Projekt N | ulischen Gefä<br>r.: Auftraggeber                                                                                           |                         |                                  | ina Oia.         | Sasono                                                                   | Ocinio                                      | , CII                        |           |    |
| Probe I                   |                                                                                                                             |                         | asche-S                          | Sand             | Zeit t je Eir                                                            | zelvereveb                                  | Wasservolumen V <sub>w</sub> |           |    |
| Durchlauf                 | f                                                                                                                           |                         | achbestim-                       | im Messb         |                                                                          |                                             |                              |           |    |
| Probendu                  | ırchmesser                                                                                                                  | d                       | cm                               | 10,0             | mung                                                                     | mung in s                                   |                              | 13        |    |
| durchflos                 | sene Probenlänge                                                                                                            | 1                       | cm                               | 12,0             | t <sub>1</sub> =                                                         | 45                                          | V <sub>w1</sub> =            | 5         |    |
| eingebau                  | te Filter                                                                                                                   | 12,0                    |                                  |                  |                                                                          | 43                                          | V <sub>w2</sub> =            | 5         |    |
| Temperat                  | tur                                                                                                                         | θ                       | °C                               | 20,1             | t <sub>2</sub> =                                                         | 42                                          | V <sub>w3</sub> =            | 5         |    |
| hydrauliso                | Iraulische Druckhöhe h cm 5,0                                                                                               |                         |                                  |                  |                                                                          |                                             | V <sub>w4</sub> =            |           |    |
| durchströ                 | urchströmte Fläche der # # 42                                                                                               |                         |                                  |                  |                                                                          |                                             | V <sub>w5</sub> =            |           |    |
| Probe (FI                 | ießquerschnitt)                                                                                                             | cm <sup>2</sup>         | 78,54                            | t <sub>6</sub> = |                                                                          | V <sub>w6</sub> =                           |                              |           |    |
|                           | Durchlässikeit mit konst. hydr. Infiltrationsrate mit $h = \text{cm } \ddot{\text{U}}$ bersta Gefälle in m/s in $l/(s^*ha)$ |                         |                                  |                  |                                                                          |                                             |                              |           |    |
| _                         | $V_{m} \cdot l$                                                                                                             |                         | $V_{w}$                          |                  | 1                                                                        | $V_{\cdot \cdot \cdot}$                     | $\cdot l$                    | 2         |    |
| $k_f =$                   | $= \frac{V_W \cdot l}{A \cdot h \cdot \Delta t}$                                                                            | $V_i =$                 | $\frac{V_{w}}{A \cdot \Delta u}$ | <u>t</u>         | $k_f = \frac{V_W \cdot l}{Acm^2 \cdot 1cm \cdot \Delta t} \cdot 10^{-2}$ |                                             |                              |           |    |
|                           |                                                                                                                             | Einbau                  |                                  |                  | 1                                                                        |                                             |                              |           |    |
| k <sub>f1</sub> =         | 3,40E-05                                                                                                                    | $V_1 =$                 | 1                                | 41,47            |                                                                          |                                             |                              |           |    |
| k <sub>f2</sub> =         | 3,55E-05                                                                                                                    | <i>V</i> <sub>2</sub> = | 1                                | 48,05            | V. =                                                                     | $\frac{V_w \cdot 10^{-4}}{A \cdot 10^{-4}}$ | $\frac{dm^{3}}{dm^{3}}$ .    | $10^4 ha$ |    |
| k <sub>f3</sub> =         | 3,64E-05                                                                                                                    | $V_3 =$                 | 1                                | 51,58            | ι                                                                        | $A \cdot 10^{-4}$                           | $m^2 \cdot \Delta t$         |           |    |
|                           | Fließrichtungs                                                                                                              | swechsel                |                                  |                  | 1                                                                        |                                             |                              |           |    |
| k <sub>f4</sub> =         |                                                                                                                             | $\dot{V}_{A}$ =         |                                  |                  |                                                                          |                                             |                              |           |    |
| k <sub>f5</sub> =         |                                                                                                                             | $V_5$ =                 |                                  |                  |                                                                          |                                             |                              |           |    |
| k <sub>f6</sub> =         |                                                                                                                             | $\dot{V}_6$ =           |                                  |                  | 1                                                                        |                                             |                              |           |    |
|                           |                                                                                                                             | L 0 0 1<br>Ausbau       |                                  |                  |                                                                          |                                             |                              |           |    |
|                           |                                                                                                                             |                         |                                  |                  | 1                                                                        |                                             |                              |           |    |
|                           |                                                                                                                             |                         |                                  |                  | 1                                                                        |                                             |                              |           |    |
|                           |                                                                                                                             |                         |                                  |                  |                                                                          |                                             |                              |           |    |
|                           |                                                                                                                             |                         |                                  |                  | l                                                                        |                                             |                              |           |    |
|                           |                                                                                                                             |                         |                                  |                  |                                                                          |                                             |                              |           |    |
| Bemerkui<br>Verdichtu     | ngen:<br>ing der Probe bei w =                                                                                              | 10 %                    |                                  |                  |                                                                          |                                             |                              |           |    |
| Ströungsi                 | römungsrichtung unten> oben<br>röungsrichtung oben> unten<br>rhlauverlängerung: Ja <u>Nein</u>                              |                         |                                  |                  |                                                                          |                                             | Wesche, D                    | Oominik   |    |

|                           | <u></u>                      |                |                           |                |                                        |                           | Anlage:                   |                    |          |
|---------------------------|------------------------------|----------------|---------------------------|----------------|----------------------------------------|---------------------------|---------------------------|--------------------|----------|
|                           | r Geologie un<br>für Angewan |                | MÜNSTE<br>gie             | IS-UNIVER      | SITÄT                                  |                           | zu:                       |                    |          |
| _                         | tricia Göbel                 | iato coologio  |                           |                |                                        |                           |                           |                    |          |
|                           | ung der<br>erksmat           |                | _                         | it an          | durchström<br>der Probe<br>(Fließquers |                           | $A = \frac{\pi * d^2}{4}$ | cm²                | 78,54    |
| station                   | <u>ärem</u> hy               | /draulis       | chen G                    | efälle         | hydraulisch                            | -                         | h                         | cm                 | 5,0      |
|                           | IN 1813                      |                |                           |                | Druckhöhe                              |                           |                           | °C                 | ,        |
| Projekt Nr.:              |                              | Auftraggeb     | or.                       |                | Temperature eingebaute                 |                           | θ                         | 20,1               |          |
| Probe Nr.                 |                              |                | asasche-Sa                | ınd            | Strömungs                              |                           | L                         | kein<br>ınten> obe | en       |
| Durchlauf                 | '                            | <u> </u>       |                           |                |                                        | rchmesser                 | d                         | cm                 | 10,0     |
| Probenduro                | hmesser                      | d              | cm                        | 10,0           | Probenläng                             | e                         | 1                         | cm                 | 12,0     |
|                           |                              | <u> </u>       |                           |                |                                        |                           |                           |                    |          |
| durchfließe<br>während de | nde Menge<br>er Zeit         | Zeitdiffere nz | durchfließe<br>während de |                | Zeitdiffere nz                         | durchfließe<br>während de |                           | Zeitdiffere nz     |          |
| Vw                        | t                            | $\Delta t$     | Vw                        | t              | $\Delta t$                             | Vw                        | t                         | $\Delta t$         |          |
| cm³                       | min:s                        | S              | cm³                       | min:s          | S                                      | cm³                       | min:s                     | S                  |          |
| 5                         | 00:43                        |                | 5                         | 00:45          |                                        | 5                         | 00:57                     |                    |          |
| 10                        | 01:30                        | 00:47          | 10                        | 01:31          | 00:46                                  | 10                        | 01:39                     | 00:42              |          |
| 15                        | 02:16                        | 00:46          | 15                        | 02:15          | 00:44                                  | 15                        | 02:22                     | 00:43              |          |
| 20                        | 03:01                        | 00:45          | 20                        | 02:57          | 00:42                                  | 20                        | 03:02                     | 00:40              |          |
| 25                        | 03:47                        | 00:46          | 25                        | 03:41          | 00:44                                  | 25                        | 03:44                     | 00:42              |          |
| 30                        | 04:32                        | 00:45          | 30                        | 04:20          | 00:39                                  | 30                        | 04:25                     | 00:41              |          |
| 35<br>40                  | 05:17<br>06:01               | 00:45<br>00:44 | 35<br>40                  | 05:03<br>05:47 | 00:43<br>00:44                         | 35<br>40                  | 05:08<br>05:50            | 00:43<br>00:42     |          |
| 45                        | 06:46                        | 00:44          | 45                        | 06:28          | 00:44                                  | 45                        | 06:32                     | 00:42              |          |
| 50                        | 07:31                        | 00:45          | 50                        | 07:11          | 00:43                                  | 50                        | 07:13                     | 00:42              |          |
|                           | 07.01                        | 00.40          | 55                        | 07:53          | 00:42                                  | - 00                      | 07.10                     | 00.41              |          |
|                           |                              |                | 60                        | 08:36          | 00:43                                  |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
| Bemerkung                 | jen:                         |                |                           |                |                                        |                           | Wesche, De 18.4.2008      | ominik             | I        |
|                           |                              |                |                           |                |                                        |                           |                           |                    |          |
| Schlauchve                | erlängerung:                 |                | Ja                        | <u>Nein</u>    |                                        |                           |                           |                    | /Al have |
|                           |                              |                |                           |                |                                        |                           |                           |                    | ® bex0   |

Seite A181

|                        | <u></u>                                                    |                               |                                  |                  | Anlage:                                                                  |                                             |                       |                             |  |
|------------------------|------------------------------------------------------------|-------------------------------|----------------------------------|------------------|--------------------------------------------------------------------------|---------------------------------------------|-----------------------|-----------------------------|--|
| Abteilu                | für Geologie und Paläor<br>ng für Angewandte Geol          | _                             | ns-Univ                          | ERSITÄT          | 7                                                                        | zu:                                         |                       |                             |  |
|                        | Patricia Göbel                                             | hlässiaks                     | it on                            |                  | <u> </u>                                                                 |                                             |                       |                             |  |
|                        | tlung der Durc<br>verksmateriali                           | _                             |                                  |                  |                                                                          |                                             |                       |                             |  |
|                        | ulischen Gefä                                              | lle nach D                    | Basalt 1/3                       |                  |                                                                          |                                             |                       |                             |  |
| Probe                  |                                                            |                               |                                  |                  |                                                                          | ,1                                          |                       |                             |  |
| Durchlau               |                                                            | Das                           | altsplit                         | 1/3              |                                                                          | nzelversuch<br>achbestim-                   | Wasservol<br>im Messb |                             |  |
| Probendu               | urchmesser                                                 | d                             | cm                               | 10,0             | mun                                                                      | ig in s                                     | cm                    |                             |  |
| durchflos              | sene Probenlänge                                           | I                             | cm                               | 12,0             | t <sub>1</sub> =                                                         | 5                                           | V <sub>w1</sub> =     | 100                         |  |
| eingebau               | ite Filter                                                 |                               | kein                             | ,0               | t <sub>1</sub> =                                                         | 5                                           | V <sub>w2</sub> =     | 100                         |  |
| Tempera                |                                                            | °C                            | 19,3                             | t <sub>2</sub> = | 4                                                                        | V <sub>w3</sub> =                           | 100                   |                             |  |
| hydraulis              | che Druckhöhe                                              | cm                            | t <sub>4</sub> =                 | Ť                | V <sub>w4</sub> =                                                        |                                             |                       |                             |  |
| durchströ              | omte Fläche der                                            |                               | t <sub>5</sub> =                 |                  | V <sub>w5</sub> =                                                        |                                             |                       |                             |  |
|                        | ließquerschnitt)                                           | cm²                           | 78,54                            | t <sub>6</sub> = |                                                                          | V <sub>w6</sub> =                           |                       |                             |  |
| Durchläs<br>Gefälle ir | sikeit mit konst. hydr.<br>n m/s                           | Infiltrationsrate in I/(s*ha) | mit h=                           |                  |                                                                          |                                             |                       | •                           |  |
| k <sub>f</sub> =       | $= \frac{V_W \cdot l}{A \cdot h \cdot \Delta t}$           | $\dot{V_i} =$                 | $\frac{V_{w}}{A \cdot \Delta u}$ | <del>-</del>     | $k_f = \frac{V_W \cdot l}{Acm^2 \cdot 1cm \cdot \Delta t} \cdot 10^{-2}$ |                                             |                       |                             |  |
|                        |                                                            | Einbau                        |                                  |                  | 1                                                                        |                                             |                       |                             |  |
| k <sub>f1</sub> =      | 0,03056                                                    | $V_1 =$                       | 25                               | 464,79           |                                                                          |                                             | 2                     |                             |  |
| k <sub>f2</sub> =      | 0,03056                                                    | V <sub>2</sub> =              |                                  | 464,79           | $\dot{V_i} =$                                                            | $\frac{V_w \cdot 10^{-4}}{A \cdot 10^{-4}}$ | $\frac{3dm^3}{2}$ .   | $10^4 ha$                   |  |
| k <sub>f3</sub> =      | 0,03820                                                    | V <sub>3</sub> =              | 31                               | 830,99           |                                                                          | $A \cdot 10^{-6}$                           | $m^2 \cdot \Delta t$  |                             |  |
| . 1                    | Fließrichtungs                                             |                               |                                  |                  | ł                                                                        |                                             |                       |                             |  |
| k <sub>f4</sub> =      |                                                            | V <sub>4</sub> =              |                                  |                  | l                                                                        |                                             |                       |                             |  |
| k <sub>f5</sub> =      |                                                            | V <sub>5</sub> =              |                                  |                  |                                                                          |                                             |                       |                             |  |
| κ <sub>f6</sub> =      |                                                            | $V_6$ =                       |                                  |                  |                                                                          |                                             |                       |                             |  |
|                        |                                                            | Ausbau                        |                                  |                  | 1                                                                        |                                             |                       |                             |  |
|                        |                                                            |                               |                                  |                  |                                                                          |                                             |                       |                             |  |
|                        |                                                            |                               |                                  |                  |                                                                          |                                             |                       |                             |  |
|                        |                                                            |                               |                                  |                  |                                                                          |                                             |                       |                             |  |
|                        |                                                            |                               |                                  |                  | 1                                                                        |                                             |                       |                             |  |
| Bemerku                | ngen:                                                      |                               |                                  |                  |                                                                          |                                             |                       |                             |  |
| Einbau lu              | ufttrockener Probe, da<br>szelle leckt; durchfloss         |                               |                                  |                  | ung                                                                      |                                             |                       |                             |  |
| Ströungs               | gsrichtung unten> ot<br>richtung oben> unte<br>rlängerung: | n                             | <u>Nein</u>                      |                  |                                                                          |                                             | Laborant: V           | Wesche, Dominik<br>15.04.08 |  |

|                           |                                                |                | WESTFÄL<br>WILHELM<br>MÜNSTEI | S-UNIVER | SITÄT                                  |                           | Anlage:<br>zu:            |                   |        |
|---------------------------|------------------------------------------------|----------------|-------------------------------|----------|----------------------------------------|---------------------------|---------------------------|-------------------|--------|
| Abteilung                 | r Geologie un<br>für Angewan<br>tricia Göbel   |                | -                             |          |                                        |                           |                           |                   |        |
|                           | ung der<br>erksmat                             |                | _                             | it an    | durchström<br>der Probe<br>(Fließquers |                           | $A = \frac{\pi * d^2}{4}$ | cm²               | 78,54  |
|                           | <u>ärem</u> hy<br>IN 1813                      |                | chen Ge                       | efälle   | hydraulisch<br>Druckhöhe               | е                         | h                         | cm                | 1,0    |
|                           |                                                | U- I           |                               |          | Temperatui                             |                           | θ                         | °C                | 19,3   |
| Projekt Nr.:              |                                                | Auftraggeb     |                               |          | eingebaute                             | Filter                    |                           | kein              |        |
| Probe Nr.                 |                                                | В              | asaltsplit 1                  | /3       | Strömungsi                             |                           |                           | ınten> obe        |        |
| Durchlauf                 |                                                |                | 1                             |          |                                        | rchmesser                 | d<br>I                    | cm                | 10,0   |
| Probenduro                | hmesser                                        | d              | cm                            | 10,0     | Probenläng                             | cm                        | 12,0                      |                   |        |
| durchfließe<br>vährend de | nde Menge<br>er Zeit                           | Zeitdiffere nz | durchfließer<br>während de    |          | Zeitdiffere nz                         | durchfließe<br>während de | -                         | Zeitdiffere<br>nz |        |
| Vw                        | t                                              | $\Delta t$     | Vw                            | t        | $\Delta t$                             | Vw                        | t                         | $\Delta t$        |        |
| cm³                       | min:s                                          | S              | cm <sup>3</sup>               | min:s    | S                                      | cm³                       | min:s                     | S                 |        |
| 100                       | 00:35                                          |                | 100                           | 00:29    |                                        | 100                       | 00:28                     |                   |        |
| 200                       | 00:43                                          | 80:00          | 200                           | 00:33    | 00:04                                  | 200                       | 00:32                     | 00:04             |        |
| 300                       | 00:49                                          | 00:06          | 300                           | 00:38    | 00:05                                  | 300                       | 00:37                     | 00:05             |        |
| 400                       | 00:54                                          | 00:05          | 400                           | 00:42    | 00:04                                  | 400                       | 00:41                     | 00:04             |        |
| 500                       | 00:58                                          | 00:04          | 500                           | 00:47    | 00:05                                  | 500                       | 00:45                     | 00:04             |        |
| 600                       | 01:03                                          | 00:05          | 600                           | 00:52    | 00:05                                  | 600                       | 00:50                     | 00:05             |        |
| 700                       | 01:07                                          | 00:04          | 700                           | 00:56    | 00:04                                  | 700                       | 00:54                     | 00:04             |        |
| 800                       | 01:12                                          | 00:05          | 800                           | 01:00    | 00:04                                  | 800                       | 00:58                     | 00:04             |        |
| 900                       | 01:17                                          | 00:05          | 900                           | 01:05    | 00:05                                  | 900                       | 01:03                     | 00:05             |        |
| 1000                      | 01:21                                          | 00:04          | 1000                          | 01:10    | 00:05                                  | 1000                      | 01:07                     | 00:04             |        |
|                           |                                                |                |                               |          |                                        |                           |                           |                   |        |
|                           |                                                |                |                               |          |                                        |                           |                           |                   |        |
|                           |                                                |                |                               |          |                                        |                           |                           |                   |        |
| Bemerkung                 |                                                |                |                               |          |                                        |                           |                           |                   |        |
| √ersuchsze                | rockener Pro<br>elle leckt; du<br>erlängerung: | rchflossenes   | _                             | _        |                                        | ng                        |                           | Wesche, Do        | ominik |

|                           | <u>-</u>                                                                                |                               |                                  |                       |                                 | Anlage:                                     |                                        |           |  |
|---------------------------|-----------------------------------------------------------------------------------------|-------------------------------|----------------------------------|-----------------------|---------------------------------|---------------------------------------------|----------------------------------------|-----------|--|
|                           |                                                                                         | WESTFÄI WILHELM MÜNSTE        | ns-Univ                          | ERSITÄT               |                                 | zu:                                         |                                        |           |  |
| Abteilu                   | t für Geologie und Paläo<br>Ing für Angewandte Geo<br>Patricia Göbel                    | •                             |                                  |                       |                                 |                                             |                                        |           |  |
| Ermit                     | tlung der Durc                                                                          | chlässigke                    | it an                            |                       |                                 |                                             |                                        |           |  |
| Haufv                     | werksmateriali                                                                          | ien mit <u>sta</u>            | <u>tionär</u>                    |                       | Evtor                           | nsivsub                                     | ctrot                                  |           |  |
| <b>hydra</b><br>Projekt N | aulischen Gefä<br>Nr.: Auftraggebe                                                      |                               | IN 18 <sup>2</sup>               |                       | Exter                           | isivsub                                     | Strat                                  |           |  |
| Probe                     |                                                                                         |                               | sivsub                           | strat                 | - · · · · -                     |                                             | \.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\. | .,        |  |
| Durchlau                  |                                                                                         |                               | inzelversuch fachbestim-         | Wasservol<br>im Messb |                                 |                                             |                                        |           |  |
| Probend                   | urchmesser                                                                              | d                             | cm                               | 10,0                  |                                 | ng in s                                     | cm <sup>3</sup>                        |           |  |
|                           | ssene Probenlänge                                                                       | 1                             | cm                               | 12,0                  | 4 -                             |                                             | V <sub>w1</sub> =                      |           |  |
| eingebau                  |                                                                                         | ,                             |                                  | 12,0                  | t <sub>1</sub> =                | -                                           | V <sub>w2</sub> =                      |           |  |
| Tempera                   |                                                                                         | θ                             | kein<br>°C                       | 19,4                  | t <sub>2</sub> =                | -                                           | $V_{w2} = V_{w3} = V_{w3}$             |           |  |
|                           | sche Druckhöhe                                                                          | t <sub>3</sub> =              | -                                | V <sub>w3</sub> =     |                                 |                                             |                                        |           |  |
| -                         |                                                                                         | 15,0                          | t <sub>4</sub> =                 |                       |                                 |                                             |                                        |           |  |
|                           | chströmte Fläche der be (Fließquerschnitt) $A = \frac{\pi * d^2}{4} \text{ cm}^2$ 78,54 |                               |                                  |                       |                                 |                                             | V <sub>w5</sub> =                      |           |  |
|                           |                                                                                         |                               |                                  | om Übereteu           | t <sub>6</sub> =                |                                             | V <sub>w6</sub> =                      |           |  |
| Gefälle i                 | ssikeit mit konst. hydr.<br>n m/s                                                       | Infiltrationsrate in I/(s*ha) | mit n=                           | cm Oberstau           |                                 |                                             |                                        |           |  |
| ,                         | $V_{_W} \cdot l$                                                                        | V –                           | $\frac{V_{w}}{A \cdot \Delta x}$ | _                     | ,                               | $V_{\scriptscriptstyle  m M}$               | $_{_{\it I}} \cdot l$                  | 10=2      |  |
| $k_f =$                   | $=\frac{V_{W}\cdot l}{A\cdot h\cdot \Delta t}$                                          | $\mathbf{v}_{i}$ =            | $A \cdot \Delta$                 | <del>-</del>          | $k_f$                           | $=\frac{V_{W}}{Acm^{2}}$                    | 1                                      | ·10 ²     |  |
|                           |                                                                                         | Einbau                        |                                  |                       | $ACMF \cdot 1CM \cdot \Delta t$ |                                             |                                        |           |  |
| k <sub>f1</sub> =         | -                                                                                       | $V_1 =$                       |                                  | -                     |                                 |                                             |                                        |           |  |
| k <sub>f2</sub> =         | -                                                                                       | <i>V</i> <sub>2</sub> =       |                                  | -                     | $\dot{V}_{\cdot} =$             | $\frac{V_w \cdot 10^{-4}}{A \cdot 10^{-4}}$ | $\frac{dm^{3}}{dm}$ .                  | $10^4 ha$ |  |
| k <sub>f3</sub> =         | -                                                                                       | $V_3 =$                       |                                  | -                     | ι                               | $A \cdot 10^{-4}$                           | $m^2 \cdot \Delta t$                   |           |  |
|                           | Fließrichtung                                                                           | swechsel                      |                                  |                       | ]                               |                                             |                                        |           |  |
| k <sub>f4</sub> =         |                                                                                         | ·                             |                                  |                       |                                 |                                             |                                        |           |  |
| k <sub>f5</sub> =         |                                                                                         | $V_5$ =                       |                                  |                       | 1                               |                                             |                                        |           |  |
| k <sub>f6</sub> =         |                                                                                         | $\dot{V}_6$ =                 |                                  |                       | 1                               |                                             |                                        |           |  |
|                           |                                                                                         | Ausbau                        |                                  |                       | 1                               |                                             |                                        |           |  |
|                           | <u> </u>                                                                                |                               |                                  |                       | 1                               |                                             |                                        |           |  |
|                           |                                                                                         |                               |                                  |                       | 1                               |                                             |                                        |           |  |
|                           |                                                                                         |                               |                                  |                       |                                 |                                             |                                        |           |  |
|                           |                                                                                         |                               |                                  |                       |                                 |                                             |                                        |           |  |
|                           |                                                                                         |                               |                                  |                       | 1                               |                                             |                                        |           |  |
| Bemerkı                   | ınaen:                                                                                  |                               |                                  |                       | <u> </u>                        |                                             |                                        |           |  |
|                           | Versuchsabbruch nach                                                                    | 15 Minuten                    |                                  |                       |                                 |                                             |                                        |           |  |
| ]<br> <br>                |                                                                                         |                               |                                  |                       |                                 |                                             |                                        |           |  |
| Strömun                   | gsrichtung unten> ol                                                                    | ben                           |                                  |                       |                                 |                                             |                                        |           |  |
|                           | öungsrichtung oben> unten                                                               |                               |                                  |                       |                                 |                                             | Wesche, D                              |           |  |
| Schlauve                  | erlängerung:                                                                            | Ja                            | <u>Nein</u>                      |                       |                                 | Datum:                                      | 10.10.2008                             | 3         |  |
|                           |                                                                                         |                               |                                  |                       |                                 |                                             |                                        | ® bex0    |  |

|                          | _ =                                                                               |                               | WESTFÄL         | ISCHE<br>IS-UNIVER                    | SITÄT                                  |                           | Anlage:                   |                |       |
|--------------------------|-----------------------------------------------------------------------------------|-------------------------------|-----------------|---------------------------------------|----------------------------------------|---------------------------|---------------------------|----------------|-------|
| Abteilung                |                                                                                   | nd Paläontolo<br>dte Geologie | MÜNSTEI<br>gie  |                                       | SIIKI                                  |                           | zu:                       |                |       |
|                          |                                                                                   | Durchla<br>erialien           |                 | it an                                 | durchström<br>der Probe<br>(Fließquers |                           | $A = \frac{\pi * d^2}{4}$ | cm²            | 78,54 |
|                          | <u>ärem</u> hy<br>IN 1813                                                         |                               | chen G          | hen Gefälle hydraulische<br>Druckhöhe |                                        |                           | h                         | cm             | 15,0  |
|                          |                                                                                   |                               |                 |                                       | Temperatui                             |                           | θ                         | °C             | 19,4  |
| Projekt Nr.:             |                                                                                   | Auftraggeb                    |                 | ·                                     | eingebaute                             |                           | -                         | kein           |       |
| Probe Nr.                |                                                                                   | Ex                            | tensivsubs      | trat                                  | Strömungs                              |                           |                           | ınten> obe     |       |
| Durchlauf                | h                                                                                 |                               | 1               | 40.0                                  |                                        | rchmesser                 | d                         | cm             | 10,0  |
| Probendurc               | ninesser                                                                          | d                             | cm              | 10,0                                  | Probenläng                             | е                         | I                         | cm             | 12,0  |
|                          | rchfließende Menge Zeitdiffere durchfließende Men hrend der Zeit während der Zeit |                               |                 |                                       |                                        | durchfließe<br>während de |                           | Zeitdiffere nz |       |
| Vw                       | t                                                                                 | $\Delta t$                    | Vw              | t                                     | $\Delta t$                             | Vw                        | t                         | $\Delta t$     |       |
| cm <sup>3</sup>          | min:s                                                                             | S                             | cm <sup>3</sup> | min:s                                 | S                                      | cm <sup>3</sup>           | min:s                     | S              |       |
| 25                       | -                                                                                 | -                             |                 |                                       |                                        |                           |                           |                |       |
| 50                       | -                                                                                 | -                             |                 |                                       |                                        |                           |                           |                |       |
| 75                       | -                                                                                 | -                             |                 |                                       |                                        |                           |                           |                |       |
| 100                      | -                                                                                 | -                             |                 |                                       |                                        |                           |                           |                |       |
| 125                      | -                                                                                 | -                             |                 |                                       |                                        |                           |                           |                |       |
| 150                      | -                                                                                 | -                             |                 |                                       |                                        |                           |                           |                |       |
| 175                      | -                                                                                 | -                             |                 |                                       |                                        |                           |                           |                |       |
| 200                      | -                                                                                 | -                             |                 |                                       |                                        |                           |                           |                |       |
| 225                      | -                                                                                 | -                             |                 |                                       |                                        |                           |                           |                |       |
| 250                      | -                                                                                 | -                             |                 |                                       |                                        |                           |                           |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           |                           |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           |                           |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           |                           |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           | -                         |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           |                           |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           |                           |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           | -                         |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           |                           |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           |                           |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           |                           |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           |                           |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           |                           |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           |                           |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           |                           |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           |                           |                |       |
|                          |                                                                                   |                               |                 |                                       |                                        |                           |                           |                |       |
| Bemerkung∉<br>∕ersuchsab |                                                                                   | 15 Minuten                    |                 |                                       |                                        |                           | Wesche, D<br>10.10.08     | ominik         |       |
| Schlauchve               | rlängerung:                                                                       |                               | Ja              | Nein                                  |                                        |                           |                           |                |       |

|                   | <u></u>                                                                                     |                         |                                  |                   |                  | Anlage:                                     |                            |                 |  |
|-------------------|---------------------------------------------------------------------------------------------|-------------------------|----------------------------------|-------------------|------------------|---------------------------------------------|----------------------------|-----------------|--|
|                   |                                                                                             | WESTFÄI WILHELA MÜNSTE  | ns-Univ                          | ERSITÄT           |                  | zu:                                         |                            |                 |  |
| Abteilu           | t für Geologie und Paläor<br>ıng für Angewandte Geol<br>Patricia Göbel                      | ntologie                |                                  |                   |                  |                                             |                            |                 |  |
| Ermit             | tlung der Durc                                                                              | hlässigke               | it an                            |                   |                  |                                             |                            |                 |  |
| Hauf              | werksmateriali                                                                              | en mit <u>sta</u>       | <u>tionär</u>                    |                   | gewasc           | hanar S                                     | and O                      | 12              |  |
|                   | aulischen Gefä                                                                              |                         | IN 18                            |                   | gewasc           | ileliei c                                   | aliu u                     | _               |  |
| Projekt N         |                                                                                             | gewascl                 |                                  |                   |                  |                                             |                            |                 |  |
| Durchlau          |                                                                                             | ,                       | inzelversuch fachbestim-         | Wasservol         |                  |                                             |                            |                 |  |
|                   | urchmesser                                                                                  | d                       | cm                               | 10                |                  | ng in s                                     | im Messbecher in cm³       |                 |  |
|                   | ssene Probenlänge                                                                           | 1                       |                                  |                   | , 1              |                                             | V <sub>w1</sub> =          | 5               |  |
|                   | ute Filter                                                                                  | ,                       | cm                               | 12,0              | $t_1 = t_2 =$    | 45                                          | $V_{w1} = V_{w2} =$        | 5               |  |
| Tempera           |                                                                                             | kein<br>θ °C 19,4       |                                  |                   |                  | 17                                          | $V_{w2} = V_{w3} = V_{w3}$ | 5               |  |
|                   | ulische Druckhöhe h cm s.u.                                                                 |                         |                                  |                   | t <sub>3</sub> = | 21                                          |                            | -5              |  |
|                   |                                                                                             |                         |                                  |                   | t <sub>4</sub> = |                                             | V <sub>w4</sub> =          |                 |  |
|                   | urchströmte Fläche der robe (Fließquerschnitt) $A = \frac{\pi * d^2}{4} \text{ cm}^2$ 78,54 |                         |                                  |                   | t <sub>5</sub> = |                                             | V <sub>w5</sub> =          |                 |  |
|                   | ssikeit mit konst. hydr.                                                                    | 4<br>Infiltrationsrate  |                                  | cm Überetau       | t <sub>6</sub> = |                                             | V <sub>w6</sub> =          |                 |  |
| Gefälle i         |                                                                                             | in I/(s*ha)             | 11111 11 -                       | ciii Oberstau     |                  |                                             |                            |                 |  |
|                   | V .1                                                                                        |                         | V                                |                   |                  | V                                           | . 1                        |                 |  |
| $k_f$ =           | $=\frac{V_{_W}\cdot l}{A\cdot h\cdot \Delta t}$                                             | $V_i =$                 | $\frac{V_{w}}{A \cdot \Delta x}$ | <del>-</del><br>t | $k_f$            | $=\frac{V_{W}}{A cm^2}$                     | 1                          | $\cdot 10^{-2}$ |  |
|                   |                                                                                             | <u> </u><br>Einbau      | 77 47                            |                   |                  | $Acm^2$ .                                   | $1cm \cdot \Delta t$       |                 |  |
| k <sub>f1</sub> = | 4,244E-05                                                                                   |                         | 1                                | 41,47             |                  |                                             |                            |                 |  |
|                   | <u> </u>                                                                                    | <i>V</i> <sub>1</sub> = |                                  |                   |                  | 17 10-                                      | -3 1 2                     |                 |  |
| k <sub>f2</sub> = | 4,494E-05                                                                                   | <i>V</i> <sub>2</sub> = | 3                                | 74,48             | $\dot{V}_{i} =$  | $\frac{V_w \cdot 10^{-4}}{A \cdot 10^{-4}}$ | <u>am³</u> .               | $10^4 ha$       |  |
| k <sub>f3</sub> = | 4,547E-05                                                                                   | $V_3 =$                 | 3                                | 03,15             | ι                | $A \cdot 10^{-4}$                           | $m^2 \cdot \Delta t$       |                 |  |
|                   | Fließrichtungs                                                                              | swechsel                |                                  |                   |                  |                                             |                            |                 |  |
| k <sub>f4</sub> = |                                                                                             | $\dot{V}_{4}$ =         |                                  |                   |                  |                                             |                            |                 |  |
| k <sub>f5</sub> = |                                                                                             | $V_5$ =                 |                                  |                   |                  |                                             |                            |                 |  |
| k <sub>f6</sub> = |                                                                                             | $V_6$ =                 |                                  |                   |                  |                                             |                            |                 |  |
| 7 t6-             |                                                                                             | <u> </u>                |                                  |                   | 1                |                                             |                            |                 |  |
|                   | <i>,</i>                                                                                    | -usbau                  |                                  |                   | 1                |                                             |                            |                 |  |
|                   |                                                                                             |                         |                                  |                   |                  |                                             |                            |                 |  |
|                   |                                                                                             |                         |                                  |                   |                  |                                             |                            |                 |  |
|                   |                                                                                             |                         |                                  |                   |                  |                                             |                            |                 |  |
|                   |                                                                                             |                         |                                  |                   | 1                |                                             |                            |                 |  |
| Bemerkı           | ungen: Versuch mit                                                                          | h=1cm nach 10           | min abgel                        | brochen, da ko    | ein Wassera      | austritt erfolg                             | te                         |                 |  |
|                   | h <sub>1</sub> = 4cm                                                                        |                         | <b>0</b> ·                       | •                 |                  | 3                                           |                            |                 |  |
|                   | h <sub>2</sub> = 10cm                                                                       |                         |                                  |                   |                  |                                             |                            |                 |  |
| Strömun           | $h_3 = 8cm$ agsrichtung unten> ob                                                           | nen                     |                                  |                   |                  |                                             |                            |                 |  |
|                   | srichtung oben> unte                                                                        |                         |                                  | Laborant:         | Wesche, D        | Oominik                                     |                            |                 |  |
| _                 | erlängerung:                                                                                |                         | Nein                             |                   |                  |                                             | 02.04.2008                 |                 |  |

|                            |                    |                               |                                |                                     |                                        |                           | Anlage:                   |                |        |
|----------------------------|--------------------|-------------------------------|--------------------------------|-------------------------------------|----------------------------------------|---------------------------|---------------------------|----------------|--------|
| Abteilung                  | -                  | nd Paläontolo<br>dte Geologie | MÜNSTEI<br>gie                 | S-UNIVER                            | SITÄT                                  |                           | zu:                       |                |        |
| Ermittlu                   | ung der            | Durchla<br>erialien           | ässigke                        | it an                               | durchström<br>der Probe<br>(Fließquers |                           | $A = \frac{\pi * d^2}{4}$ | cm²            | 81,71  |
| station                    | <u>ärem</u> hy     | /draulis                      | chen G                         | efälle                              | hydraulisch<br>Druckhöhe               |                           | h                         | cm             | s.u.   |
| nach D                     | IN 1813            | 0-1                           |                                |                                     | Temperatur                             | r                         | θ                         | °C             | 19,4   |
| Projekt Nr.:               |                    | Auftraggeb                    | er:                            |                                     | eingebaute                             |                           |                           | kein           |        |
| Probe Nr.                  |                    | gewa                          | schener Sa                     | nd 0/2                              | Strömungs                              | richtung                  | ι                         | unten> obe     | n      |
| Durchlauf                  |                    |                               |                                |                                     | Probendu                               | rchmesser                 | d                         | cm             | 10,2   |
| Probendurc                 | hmesser            | d                             | cm                             | 10,2                                | Probenläng                             | е                         | 1                         | cm             | 12,0   |
| durchfließer<br>während de | _                  | Zeitdiffere nz                | durchfließer<br>während de     | _                                   | Zeitdiffere nz                         | durchfließe<br>während de | nde Menge<br>er Zeit      | Zeitdiffere nz |        |
| Vw                         | t                  | $\Delta t$                    | Vw                             | t                                   | $\Delta t$                             | Vw                        | t                         | $\Delta t$     |        |
| cm <sup>3</sup>            | min:s              | S                             | cm <sup>3</sup>                | min:s                               | S                                      | cm <sup>3</sup>           | min:s                     | S              |        |
| 5                          | 00:50              |                               | 5                              | 00:18                               |                                        | 5                         | 00:20                     |                |        |
| 10                         | 01:40              | 00:50                         | 10                             | 00:33                               | 00:15                                  | 10                        | 00:40                     | 00:20          |        |
| 15                         | 02:20              | 00:40                         | 15                             | 00:50                               | 00:17                                  | 15                        | 00:59                     | 00:19          |        |
| 20                         | 03:05              | 00:45                         | 20                             | 01:07                               | 00:17                                  | 20                        | 01:19                     | 00:20          |        |
| 25                         | 03:50              | 00:45                         | 25                             | 01:23                               | 00:16                                  | 25                        | 01:40                     | 00:21          |        |
| 30                         | 04:37              | 00:47                         | 30                             | 01:36                               | 00:13                                  | 30                        | 01:59                     | 00:19          |        |
| 35                         | 05:24              | 00:47                         | 35                             | 01:53                               | 00:17                                  | 35                        | 02:17                     | 00:18          |        |
| 40                         | 06:08              | 00:44                         | 40                             | 02:10                               | 00:17                                  | 40                        | 02:38                     | 00:21          |        |
| 45                         | 06:53              | 00:45                         | 45                             | 02:27                               | 00:17                                  | 45                        | 02:59                     | 00:21          |        |
|                            |                    |                               |                                |                                     |                                        | 50                        | 03:20                     | 00:21          |        |
|                            |                    |                               |                                |                                     |                                        |                           |                           |                |        |
|                            |                    |                               |                                |                                     |                                        |                           |                           |                |        |
|                            |                    |                               |                                |                                     |                                        |                           |                           |                |        |
|                            |                    |                               |                                |                                     |                                        |                           |                           |                |        |
|                            |                    |                               |                                |                                     |                                        |                           |                           |                |        |
| Dama!                      |                    | h = 4                         | - 10                           | - 0.575                             |                                        | l ab f                    | Mosshs                    | Dominik        |        |
| Bemerkung<br>Schlauchve    | en:<br>rlängerung: |                               | h <sub>2</sub> = 10cm,  <br>Ja | n <sub>3</sub> = 8cm<br><u>Nein</u> |                                        | Datum:                    | Wesche,<br>2.4.2008       |                | ® bex( |

Seite A187

| Ab           | teilu                                                                                                                                                                                                                    | ıng            | für            | eologie und Paläontolo<br>Angewandte Geologie                                      | WILHEI<br>MÜNST<br>ogie                 | ÄLISCHE<br>.MS-UNIVER<br>ER                             | SITÄT                                         |           |                                  |              | Anlage:<br>zu:                      |            |            |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|-----------------------------------------------|-----------|----------------------------------|--------------|-------------------------------------|------------|------------|
| Pro          | oct                                                                                                                                                                                                                      | :OI            | ·ve            | ersuch nach                                                                        | DIN 1                                   | 8127                                                    |                                               |           | Entnahmes<br>Tiefe:<br>Bodenart: | stelle:      | Gelände (k.A.<br>mS, fs, gs         |            | Stratibo   |
|              | Gewaschener Sand 0/2                                                                                                                                                                                                     |                |                |                                                                                    |                                         |                                                         |                                               |           | Art der Entn.: Haufwerksprobe    |              |                                     |            |            |
| Proje        | Projekt Nr.: Auftraggeber: Starke, Phillip                                                                                                                                                                               |                |                |                                                                                    |                                         |                                                         |                                               |           | Entn. am:                        | 14.01.2008   |                                     | durch:     | Starke, P. |
|              | Versuchszylinder                                                                                                                                                                                                         |                |                |                                                                                    |                                         |                                                         |                                               |           | Anzahl der                       | Schichten:   |                                     |            | 3          |
|              | Dι                                                                                                                                                                                                                       | ırch           | me             | esser d <sub>1</sub> :                                                             |                                         | 100                                                     | mm                                            |           | Anzahl der                       | Schläge pr   | o Schicht:                          |            | 25         |
|              | Hö                                                                                                                                                                                                                       | bhe            | h <sub>1</sub> | :                                                                                  |                                         | 121                                                     | mm                                            |           | zulässiges                       | Größtkorn    | in mm:                              |            | 2          |
|              | Vc                                                                                                                                                                                                                       | olun           | nen            | Versuchszylinder V                                                                 | ′ <sub>z</sub> :                        | 950,33                                                  | cm³                                           |           | Anteil des                       | Überkornes   | <i>ü</i> in %:                      |            | -          |
|              |                                                                                                                                                                                                                          | Fa             | llge           | ewicht                                                                             |                                         |                                                         |                                               |           | Korndichte                       | / Überkorn   | $ ho_{	ext{sü}}$ in g/cn            | n³:        | -          |
|              | Ma                                                                                                                                                                                                                       | ass            | e:             |                                                                                    |                                         | 2,5                                                     | kg                                            |           | Wassergel                        | nalt / Überk | orn $w_{\ddot{\mathrm{u}}}$ in $\%$ | <b>%</b> : | -          |
|              | Fa                                                                                                                                                                                                                       | llhċ           | he             | :                                                                                  |                                         | 300                                                     | mm                                            |           | Probe Nr.:                       |              |                                     |            | -          |
|              | Ve                                                                                                                                                                                                                       | ersu           | ch             | Nr.                                                                                |                                         |                                                         |                                               | 1         |                                  |              |                                     |            |            |
| a)           | Zy                                                                                                                                                                                                                       | linc           | ler            |                                                                                    |                                         | m <sub>Z</sub>                                          | g                                             | 7260      |                                  |              |                                     |            |            |
| Dichte       | feι                                                                                                                                                                                                                      | uch            | te F           | Probe + Zylinder                                                                   |                                         | $m_1 + m_Z$                                             | g                                             | 9127      |                                  |              |                                     |            |            |
|              | feı                                                                                                                                                                                                                      | uch            | te F           | Probe                                                                              |                                         | $m_{f}$                                                 | g                                             | 1867      |                                  |              |                                     |            |            |
|              | Di                                                                                                                                                                                                                       | chte           | Э              |                                                                                    |                                         | $\rho = m_{\rm f}/\ V_{\rm Z}$                          | g/cm <sup>3</sup>                             | 1,965     |                                  |              |                                     |            |            |
|              | a <sup>*</sup>                                                                                                                                                                                                           | b <sup>*</sup> | c              |                                                                                    |                                         |                                                         |                                               |           |                                  |              |                                     |            |            |
|              | 1                                                                                                                                                                                                                        | 4              | 1              | Behälter                                                                           |                                         | $m_{\mathrm{B}}$                                        | g                                             | 427,4     |                                  |              |                                     |            |            |
| shalt        | 2                                                                                                                                                                                                                        | 2              | 3              | trockene Probe + B                                                                 | ehälter                                 | $m_{\rm d}$ + $m_{\rm B}$                               | g                                             | 763,9     |                                  |              |                                     |            |            |
| Wassergehalt | 3                                                                                                                                                                                                                        | 1              | 2              | Behälter + feuchte I                                                               | Probe                                   | m <sub>B</sub> + m <sub>f</sub>                         | g                                             | 824,0     |                                  |              |                                     |            |            |
| Was          | 4                                                                                                                                                                                                                        | 5              | 4              | Wasser                                                                             |                                         | $m_{W}$                                                 | g                                             | 60,1      |                                  |              |                                     |            |            |
|              | 5                                                                                                                                                                                                                        | 3              | 5              | trockene Probe                                                                     |                                         | $m_{d}$                                                 | g                                             | 336,5     |                                  |              |                                     |            |            |
|              | W                                                                                                                                                                                                                        | ass            | erg            | jehalt w                                                                           | = (m <sub>W</sub> /                     | m <sub>d</sub> ) × 100 %                                | %                                             | 17,86     |                                  |              |                                     |            |            |
|              | Tre                                                                                                                                                                                                                      | ock            | end            | dichte                                                                             | $ ho_{\scriptscriptstyle d}$            | $a = \frac{\rho}{1 + \frac{w}{100}}$                    | g/cm <sup>3</sup><br>bzw.<br>t/m <sup>3</sup> | 1,667     |                                  |              |                                     |            |            |
| * Ann        | nerk                                                                                                                                                                                                                     | kun            | a)<br>b)       | Zeilenfolge<br>bei Trocknen von Te<br>bei bekannter Trock<br>bei Ermittlung der Ti | eilprober<br>enmass                     | n<br>e der Gesam                                        |                                               | e am Ende | des Gesam                        | tversuches   |                                     |            |            |
| rkorn        | korrigierter Wassergehalt $w = w \cdot \left(1 - \frac{\ddot{u}}{100}\right) + \frac{w_{\ddot{u}} \cdot \ddot{u}}{100}$ korrigierte $a = a \cdot \left(1 - \frac{\ddot{u}}{100}\right) + 0.9 \cdot \frac{\ddot{u}}{100}$ |                |                |                                                                                    |                                         |                                                         |                                               |           |                                  |              |                                     |            |            |
| Übeı         | ko<br>Tre                                                                                                                                                                                                                | rrig<br>ock    | iert<br>end    | dichte $\rho_d = \rho_d \cdot \left(1 - \frac{1}{2}\right)$                        | $\left(\frac{\ddot{u}}{100}\right) + 0$ | $0.9 \cdot \frac{\ddot{u}}{100} \cdot \rho_{\text{sú}}$ | t/m³                                          |           |                                  |              |                                     |            |            |
| Beme         | erkı                                                                                                                                                                                                                     | ung            | :              |                                                                                    |                                         |                                                         |                                               |           |                                  |              | Datum:                              | 02.04.0    | 8          |
|              |                                                                                                                                                                                                                          |                |                |                                                                                    |                                         |                                                         |                                               |           |                                  |              | Laborant:                           | Wesche     | , Dominik  |

|                                                                                        |                                    |                                          |               | Anlage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                         |                |   |
|----------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------|----------------|---|
| Institut für Geologie und Palä<br>Abteilung für Angewandte Ge                          | MÜNSTE                             | พร-Univ                                  | ERSITÄT       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | zu:                                     |                         |                |   |
| PD Dr. Patricia Göbel                                                                  |                                    |                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |                |   |
| Ermittlung der Dur<br>Haufwerksmateria<br>hydraulischen Gef<br>Projekt Nr.: Auftraggeb | lien mit <u>sta</u><br>älle nach D | tionär                                   | Füllsand      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |                |   |
| Probe Nr.                                                                              | F                                  | üllsand                                  | Zeit t ie E   | inzelversuch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | im Messbecher in                        |                         |                |   |
| Durchlauf                                                                              |                                    |                                          |               | bei Mehrfachbestim-<br>mung in s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                         |                |   |
| Probendurchmesser                                                                      | d                                  | cm                                       | 10,0          | mui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ng in s                                 | cm                      | 1 <sup>3</sup> |   |
| durchflossene Probenlänge                                                              | 1                                  | cm                                       | 12,0          | t <sub>1</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                       | V <sub>w1</sub> =       | -              |   |
| eingebaute Filter                                                                      |                                    | kein                                     |               | t <sub>2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                       | V <sub>w2</sub> =       | -              |   |
| Temperatur                                                                             | θ                                  | °C                                       | 18,2          | t <sub>3</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                       | V <sub>w3</sub> =       | -              |   |
| hydraulische Druckhöhe                                                                 | h                                  | cm                                       | 1,0           | t <sub>4</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | V <sub>w4</sub> =       |                |   |
| durchströmte Fläche der                                                                | $A = \frac{\pi * d^2}{4}$          | cm²                                      | 78,54         | t <sub>5</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | V <sub>w5</sub> =       |                |   |
| Probe (Fließquerschnitt)                                                               | 4                                  |                                          | ·             | t <sub>6</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | V <sub>w6</sub> =       |                |   |
| Durchlässikeit mit konst. hydr<br>Gefälle in m/s                                       | in I/(s*ha)                        | ` '                                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{w} \cdot 10$                        | $0^{-3}dm^3$            | 1041           |   |
| $k_f = \frac{V_W \cdot l}{A \cdot h \cdot \Delta t}$                                   | $\dot{V}_{i} =$                    | $V_{i} = \frac{V_{w}}{A \cdot \Delta t}$ |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $=\frac{V_w \cdot 10}{A \cdot 10^{-1}}$ | $^4m^2\cdot\Delta t$    | -·10 h         | а |
| •                                                                                      | Einbau                             |                                          |               | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                         |                |   |
| k <sub>f1</sub> = -                                                                    | $V_1 =$                            |                                          | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |                |   |
| k <sub>f2</sub> = -                                                                    | <u>v</u> , =                       |                                          | -             | $k_f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $=\frac{V_{W}}{Acm^{2}\cdot 1}$         | $\frac{\cdot l}{\cdot}$ | $10^{-2}$      |   |
| k <sub>f3</sub> = -                                                                    | V <sub>3</sub> =                   |                                          | -             | , and the second | $Acm^2 \cdot 1$                         | $cm \cdot \Delta t$     |                |   |
| Fließrichtung                                                                          | gswechsel                          |                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |                |   |
| k <sub>f4</sub> =                                                                      | <u>v</u> =                         |                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |                |   |
| k <sub>f5</sub> =                                                                      | V <sub>5</sub> =                   |                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |                |   |
| k <sub>f6</sub> =                                                                      | $V_6$ =                            |                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |                |   |
| Ī                                                                                      | Ausbau                             | =                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |                |   |
|                                                                                        |                                    |                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |                |   |
|                                                                                        |                                    |                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |                |   |
|                                                                                        |                                    |                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |                |   |
|                                                                                        |                                    |                                          |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                         |                |   |
| Bemerkungen:                                                                           | 1                                  |                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |                |   |
| Der Versuch wurde nach 20 n                                                            | nin abgebrochen,                   | da kein V                                | Vasser an der | n Abfluss d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er Zelle ausg                           | etreten ist.            |                |   |
| Strömungsrichtung unten> o<br>Ströungsrichtung oben> unt                               |                                    |                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Wesche, D<br>11.4.08    | Oominik        |   |
| Schlauverlängerung:                                                                    |                                    |                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                         |                |   |

| Abteilung                  | _            | nd Paläontolo<br>dte Geologie | MÜNSTE<br>gie             | 1S-UNIVER   | SITÄT                                  |                           | zu: Füllsand                        |              |       |  |
|----------------------------|--------------|-------------------------------|---------------------------|-------------|----------------------------------------|---------------------------|-------------------------------------|--------------|-------|--|
| Ermittlu                   | ıng der      | Durchlerialien                | ässigke<br>mit            | it an       | durchström<br>der Probe<br>(Fließquers |                           | $A = \frac{\pi * d^2}{4}$           | cm²          | 78,54 |  |
| stationa<br>nach D         |              |                               | chen G                    | efälle      | hydraulisch<br>Druckhöhe               | е                         | h                                   | cm           | 1,0   |  |
| iiacii Di                  | 111 1015     |                               |                           |             | Temperatur                             |                           | θ                                   | °C           | 18,2  |  |
| Projekt Nr.:               |              | Auftraggeb                    |                           |             | eingebaute                             |                           |                                     | kein         |       |  |
| Probe Nr.                  |              |                               | Füllsand                  |             | Strömungsı                             |                           |                                     | ınten> obe   |       |  |
| Durchlauf                  |              |                               |                           |             |                                        | rchmesser                 | d                                   | cm           | 10,0  |  |
| Probendurc                 | hmesser      | d                             | cm                        | 10,0        | Probenläng                             | е                         | 1                                   | cm           | 12,0  |  |
| durchfließer<br>während de |              | Zeitdiffere nz                | durchfließe<br>während de |             | Zeitdiffere nz                         | durchfließe<br>während de | Bende Menge Zeitdiffere der Zeit nz |              |       |  |
| Vw                         | t            | $\Delta t$                    | Vw                        | t           | $\Delta t$                             | Vw                        | t                                   | $\Delta t$   |       |  |
| cm <sup>3</sup>            | min:s        | S                             | cm³                       | min:s       | S                                      | cm <sup>3</sup>           | min:s                               | S            |       |  |
| 5                          | >20:00       |                               |                           |             |                                        |                           |                                     |              |       |  |
| 10                         | -            |                               |                           |             |                                        |                           |                                     |              |       |  |
| 15                         | -            |                               |                           |             |                                        |                           |                                     |              |       |  |
| 20                         | -            |                               |                           |             |                                        |                           |                                     |              |       |  |
| 25                         | -            |                               |                           |             |                                        |                           |                                     |              |       |  |
| 30                         | -            |                               |                           |             |                                        |                           |                                     |              |       |  |
| 35                         | -            |                               |                           |             |                                        |                           |                                     |              |       |  |
| 40                         | -            |                               |                           |             |                                        |                           |                                     |              |       |  |
| 45<br>50                   |              |                               |                           |             |                                        |                           |                                     |              |       |  |
| 30                         | -            |                               |                           |             |                                        |                           |                                     |              |       |  |
|                            |              |                               |                           |             |                                        |                           |                                     |              |       |  |
|                            |              |                               |                           |             |                                        |                           |                                     |              |       |  |
|                            |              |                               |                           |             |                                        |                           |                                     |              |       |  |
|                            |              |                               |                           |             |                                        |                           |                                     |              |       |  |
|                            |              |                               |                           |             |                                        |                           |                                     |              |       |  |
|                            | Material mit | h 20 min ab                   | gebrochen,                | da kein Was | ockendichte<br>sser an dem             |                           | Zelle ausge                         | etreten ist. |       |  |
| Schlauchve                 |              |                               | Ja                        | Nein        |                                        |                           | Wesche, D<br>10.4.2008              | ominik       |       |  |

|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Anlage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                                                                                                                  |  |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ILHELMS-UNIVERSITÄT                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                                                                                                                                  |  |  |
| UNSTER                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | zu:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                                                                                  |  |  |
| seraufnahmeverm                      | äaans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Entnahmestelle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : Fa. Klosterma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ann                   |                                                                                                                                                  |  |  |
|                                      | ogens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tiefe:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | k.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                                                                                  |  |  |
| ogens                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bodenart:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mG, fG, S, gU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                                                  |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Art der Entn.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Haufwerkspro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | be                    |                                                                                                                                                  |  |  |
| Auftraggeber: Starke, Phiilip        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Entn. am: durch: Starke, P. 26.01.2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                                                                                                                                  |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proctordurchme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | esser:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15,0                  | cm                                                                                                                                               |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proctorhöhe:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12,5                  | cm                                                                                                                                               |  |  |
| S 0/32                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proctorvolumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2208,9                | cm³                                                                                                                                              |  |  |
| 2,08                                 | g/cm³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zylinder:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $m_Z =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4459                  | g                                                                                                                                                |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bodenplatte:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $m_{BP} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7937                  | g                                                                                                                                                |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proctor ges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m <sub>Pr</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12396                 | g                                                                                                                                                |  |  |
| 1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                                                                                                                                  |  |  |
| $m_{\rm f}$ + $m_{Pr}$               | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                  |  |  |
| m <sub>w,sat</sub> + m <sub>Pr</sub> | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                                                  |  |  |
| m <sub>Schale</sub>                  | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                                                                                  |  |  |
| $m_A + m_Z + m_{Schale}$             | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                  |  |  |
| m <sub>d</sub> + m <sub>Schale</sub> | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                  |  |  |
| $m_f$                                | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                  |  |  |
| m <sub>sat</sub>                     | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                  |  |  |
| m <sub>kap</sub>                     | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                  |  |  |
| $m_{d}$                              | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                  |  |  |
| $m_{w,sat} = m_{sat} - m_d$          | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                                                                                  |  |  |
| $WAV = (m_{w,sat}/m_d)*100$          | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                  |  |  |
| $m_{w,kap} = m_{kap} - m_d$          | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                                                                                  |  |  |
| $WHV = (m_{w,kap}/m_d)^*100$         | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                                                                                  |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                                                                                                                                  |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                                                                                                                                  |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Datum:<br>Laborant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.04.08<br>Wesche, E | Dominik                                                                                                                                          |  |  |
|                                      | Auftraggeber: Starke, Phillip  Auftraggeber: Auftraggeber  Auftraggeber: Auftragge | SECRETAL SECTION STER SECRETARY SEC | Seeraufnahmevermögens ögens  Seeraufnahmevermögens ögens  Auftraggeber: Starke, Phiillip  Entn. am: 26.01.2008  Proctordurchme Proctorhöhe: Proctoryolumer Zylinder: Bodenplatte: Proctor ges. $m_t + m_{Pr}$ $m_{w,sat} + m_{Pr}$ $m_{r} + m_{r}$ $m_{r} + m_{r$ | ESTFÄLISCHE           | Entrahmestelle: Fa. Klostermann   Tiefe: k.A   Bodenart: mG, FG, S, gU   Art der Entn.: Haufwerksprobe   Entn. am: durch: Starke, P   26.01.2008 |  |  |

| Wil                                                              | STFÄLISCHE<br>HELMS-UNIVERSITÄT<br>NSTER |                                  | Anlage:<br>zu:                         |                           |
|------------------------------------------------------------------|------------------------------------------|----------------------------------|----------------------------------------|---------------------------|
| Bestimmung des Wasseraufnahmevermögens und Wasserhaltevermögen   |                                          | Entnahmestelle: Tiefe: Bodenart: |                                        |                           |
| Projekt Nr.:                                                     | Auftraggeber: DBU                        |                                  | Art der Entn.: Entn. am: durch: Starke |                           |
| Probenbezeichnung: <b>Tragsc</b> l Proctordichte nach DIN 18127: | hicht NL                                 | g/cm³                            | Proctorhöhe: 12,5                      | cm<br>cm<br>cm³<br>g<br>g |
| Masse feuchte Probe + Proctortopf bei max. Verdichtung           | $m_{\rm f} + m_{Pr}$                     | g                                | 16669                                  |                           |
| Masse wassergesättigte Probe +<br>Masse Proctortopf              | $m_{w,sat} + m_{Pr}$                     | g                                | 17311                                  |                           |
| Masse der Probenschale                                           | m <sub>Schale</sub>                      | g                                | 619,6                                  |                           |
| Masse der Probe nach Abtropfen +<br>Schale                       | m <sub>A</sub> + m <sub>Schale</sub>     | g                                | 5753,1                                 |                           |
| Trockenmasse + Schale                                            | m <sub>d</sub> + m <sub>Schale</sub>     | g                                | 5267,4                                 |                           |
| Masse der feuchten Probe                                         | $m_f$                                    | g                                | 4683                                   |                           |
| Masse der wassergesättigten Probe                                | m <sub>W,sat</sub>                       | g                                | 5325                                   |                           |
| Masse der Probe nach Abtropfen                                   | m <sub>A</sub>                           | g                                | 5133,5                                 |                           |
| Trockenmasse der Probe                                           | $m_{ m d}$                               | g                                | 4647,8                                 |                           |
| Wasseraufnahmevermögen                                           | $m_{WAV} = m_{W,sat} - m_d$              | g                                | 677,2                                  |                           |
| 3                                                                | $WAV = (m_{WAV}/m_d)^*100$               | %                                | 14,6                                   |                           |
| Wasserhaltevermögen                                              | $m_{WHV} = m_A - m_d$                    | g                                | 485,7                                  |                           |
|                                                                  | $WHV = (m_{WHV}/m_d)*100$                | %                                | 10,5                                   |                           |

| WE: WIL MÜI Institut für Geologie und Paläontologie Abteilung für Angewandte Geologie PD Dr. Patricia Göbel | Anlag<br>zu:                         | e:     |                             |                   |                    |          |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-----------------------------|-------------------|--------------------|----------|
| Bestimmung des Wass<br>und Wasserhaltevermö                                                                 |                                      | nögens | Entnahmestelle:<br>Tiefe:   |                   |                    |          |
|                                                                                                             | 9                                    |        | Bodenart:                   |                   |                    |          |
| Projekt Nr.:                                                                                                | Auftraggeber: DBU                    |        | Art der Entn.:<br>Entn. am: | durch:            | Starke             |          |
| Probenbezeichnung:                                                                                          |                                      |        | Proctordurchmesser:         |                   | 10,0               | cm       |
| Dräns                                                                                                       | and NL                               |        | Proctorhöhe:                |                   | 12,0               | cm       |
| 219.119                                                                                                     | and NE                               |        | Proctorvolumen:             |                   | 942,48             | cm³      |
| Proctordichte nach DIN 18127:                                                                               |                                      | g/cm³  | Zylinder:                   | m <sub>Z</sub> =  | 2845               | g        |
|                                                                                                             |                                      |        | Bodenplatte:                | m <sub>BP</sub> = |                    | 9        |
|                                                                                                             |                                      |        | Proctor ges.                | m <sub>Pr</sub> = | 7261               | g        |
| Masse feuchte Probe + Proctortopf<br>bei max. Verdichtung                                                   | $m_{\rm f}$ + $m_{Pr}$               | g      |                             | 8825              |                    |          |
| Masse wassergesättigte Probe +<br>Masse Proctortopf                                                         | $m_{w,sat} + m_{Pr}$                 | g      |                             | 9182              |                    |          |
| Masse der Probenschale                                                                                      | m <sub>Schale</sub>                  | g      |                             | 321               |                    |          |
| Masse der Probe nach Abtropfen +<br>Schale                                                                  | m <sub>A</sub> + m <sub>Schale</sub> | g      |                             | 2207              |                    |          |
| Trockenmasse + Schale                                                                                       | m <sub>d</sub> + m <sub>Schale</sub> | g      |                             | 1863              |                    |          |
| Masse der feuchten Probe                                                                                    | $m_f$                                | g      |                             | 1563              |                    |          |
| Masse der wassergesättigten Probe                                                                           | m <sub>W,sat</sub>                   | g      |                             | 1920              |                    |          |
| Masse der Probe nach Abtropfen                                                                              | m <sub>A</sub>                       | g      |                             | 1886              |                    |          |
| Trockenmasse der Probe                                                                                      | $m_{	extsf{d}}$                      | g      |                             | 1542              |                    |          |
| Wasaaraufuak                                                                                                | $m_{WAV} = m_{W,sat} - m_d$          | g      |                             | 378               |                    |          |
| Wasseraufnahmevermögen                                                                                      | $WAV = (m_{WAV}/m_d)^*100$           | %      |                             | 24,5              |                    |          |
| Wasserhaltevermögen                                                                                         | $m_{WHV} = m_A - m_d$                | g      |                             | 344,0             |                    |          |
| Traccomunic vormogen                                                                                        | $WHV = (m_{WHV}/m_d)^*100$           | %      |                             | 22,3              |                    |          |
| Bemerkungen:                                                                                                |                                      |        | Datum<br>Labora             |                   | 21.11.08<br>Wesche |          |
| bm04                                                                                                        |                                      |        |                             |                   | ©                  | Wesche08 |

| Wit                                                                 | STFÄLISCHE<br>.HELMS-UNIVERSITÄT<br>NSTER |              | Anla<br>zu:                                                                                       | age:                                                             |                       |                      |
|---------------------------------------------------------------------|-------------------------------------------|--------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------|----------------------|
| Bestimmung des Wass<br>und Wasserhaltevermö                         |                                           | nögens       | Entnahmestelle:<br>Tiefe:<br>Bodenart:                                                            |                                                                  |                       |                      |
| Projekt Nr.:                                                        | Auftraggeber: DBU                         |              | Art der Entn.:<br>Entn. am:                                                                       | durch:                                                           | Starke                |                      |
| Probenbezeichnung:  Feld 4 unterer E  Proctordichte nach DIN 18127: | Bereich TL - S                            | SoB<br>g/cm³ | Proctordurchmesse<br>Proctorhöhe:<br>Proctorvolumen:<br>Zylinder:<br>Bodenplatte:<br>Proctor ges. | r:<br>m <sub>Z</sub> =<br>m <sub>BP</sub> =<br>m <sub>Pr</sub> = | 4414                  | cm<br>cm<br>cm³<br>g |
| Masse feuchte Probe + Proctortopf bei max. Verdichtung              | $m_{\rm f}$ + $m_{Pr}$                    | g            |                                                                                                   | 9235                                                             |                       |                      |
| Masse wassergesättigte Probe +<br>Masse Proctortopf                 | $m_{w,sat} + m_{Pr}$                      | g            | 9471                                                                                              |                                                                  |                       |                      |
| Masse der Probenschale                                              | m <sub>Schale</sub>                       | g            | 276,4                                                                                             |                                                                  |                       |                      |
| Masse der Probe nach Abtropfen +<br>Schale                          | m <sub>A</sub> + m <sub>Schale</sub>      | g            | 2451,8                                                                                            |                                                                  |                       |                      |
| Trockenmasse + Schale                                               | m <sub>d</sub> + m <sub>Schale</sub>      | g            |                                                                                                   | 2226,6                                                           |                       |                      |
| Masse der feuchten Probe                                            | $m_f$                                     | g            |                                                                                                   | 1976                                                             |                       |                      |
| Masse der wassergesättigten Probe                                   | m <sub>W,sat</sub>                        | g            |                                                                                                   | 2212                                                             |                       |                      |
| Masse der Probe nach Abtropfen                                      | m <sub>A</sub>                            | g            |                                                                                                   | 2175,4                                                           |                       |                      |
| Trockenmasse der Probe                                              | $m_{d}$                                   | g            |                                                                                                   | 1950,2                                                           |                       |                      |
|                                                                     | $m_{WAV} = m_{W,sat} - m_d$               | g            |                                                                                                   | 261,8                                                            |                       |                      |
| Wasseraufnahmevermögen                                              | $WAV = (m_{WAV}/m_d)^*100$                | %            |                                                                                                   | 13,4                                                             |                       |                      |
| Wassanta Kasasana Yasas                                             | $m_{WHV} = m_A - m_d$                     | g            |                                                                                                   | 225,2                                                            |                       |                      |
| Wasserhaltevermögen                                                 | $WHV = (m_{WHV}/m_d)^*100$                | %            |                                                                                                   | 11,5                                                             |                       |                      |
| Bemerkungen:                                                        |                                           |              | Datu<br>Labo                                                                                      | ım:<br>orant:                                                    | 20. + 21.10<br>Wesche | 0.2008               |

| WIL                                                       | STFÄLISCHE<br>HELMS-UNIVERSITÄT<br>NSTER |        | Ar<br>zu                               | nlage:<br>:       |                   |          |
|-----------------------------------------------------------|------------------------------------------|--------|----------------------------------------|-------------------|-------------------|----------|
| Bestimmung des Wass<br>und Wasserhaltevermö               |                                          | nögens | Entnahmestelle:<br>Tiefe:<br>Bodenart: |                   |                   |          |
|                                                           |                                          |        | Art der Entn.:                         |                   |                   |          |
| Projekt Nr.:                                              | Auftraggeber: DBU                        |        | Entn. am:                              | durch:            | Starke            |          |
| Probenbezeichnung:                                        |                                          |        | Proctordurchmess                       | ser:              | 10,0              | cm       |
| Feld 5 oberer E                                           | Poroich TL - 9                           | So B   | Proctorhöhe:                           |                   | 12,0              | cm       |
| reid 3 Oberer E                                           | bereich ir - c                           | ОВ     | Proctorvolumen:                        |                   | 942,48            | cm³      |
| Proctordichte nach DIN 18127:                             |                                          | g/cm³  | Zylinder:                              | $m_Z =$           |                   | g        |
|                                                           |                                          |        | Bodenplatte:                           | m <sub>BP</sub> = |                   | g        |
|                                                           |                                          |        | Proctor ges.                           | m <sub>Pr</sub> = | 7259              | g        |
| Masse feuchte Probe + Proctortopf<br>bei max. Verdichtung | $m_{\rm f}$ + $m_{Pr}$                   | g      |                                        | 9325              |                   |          |
| Masse wassergesättigte Probe +<br>Masse Proctortopf       | $m_{w,sat} + m_{Pr}$                     | g      |                                        | 9552              |                   |          |
| Masse der Probenschale                                    | m <sub>Schale</sub>                      | g      | 264,6                                  |                   |                   |          |
| Masse der Probe nach Abtropfen +<br>Schale                | m <sub>A</sub> + m <sub>Schale</sub>     | g      |                                        | 2545,4            |                   |          |
| Trockenmasse + Schale                                     | m <sub>d</sub> + m <sub>Schale</sub>     | g      |                                        | 2303,0            |                   |          |
| Masse der feuchten Probe                                  | $m_f$                                    | g      |                                        | 2066              |                   |          |
| Masse der wassergesättigten Probe                         | m <sub>W,sat</sub>                       | g      |                                        | 2293              |                   |          |
| Masse der Probe nach Abtropfen                            | m <sub>A</sub>                           | g      |                                        | 2280,8            |                   |          |
| Trockenmasse der Probe                                    | $m_{	extsf{d}}$                          | g      |                                        | 2038,4            |                   |          |
| Wasaaraufuak                                              | $m_{WAV} = m_{W,sat} - m_d$              | g      |                                        | 254,6             |                   |          |
| Wasseraufnahmevermögen                                    | $WAV = (m_{WAV}/m_d)^*100$               | %      |                                        | 12,5              |                   |          |
| Wasserhaltevermögen                                       | $m_{WHV} = m_A - m_d$                    | g      |                                        | 242,4             |                   |          |
| rrassomanevermoyen                                        | $WHV = (m_{WHV}/m_d)^*100$               | %      |                                        | 11,9              |                   |          |
| Bemerkungen:                                              |                                          |        |                                        | atum:<br>borant:  | 20. + 21.1 Wesche | 0.2008   |
| bm04                                                      |                                          |        |                                        |                   | ©                 | Wesche08 |

Seite A195

|                                                             |                                      |       |                | Anlage:           |                                    |        |
|-------------------------------------------------------------|--------------------------------------|-------|----------------|-------------------|------------------------------------|--------|
|                                                             | STFÄLISCHE                           |       |                |                   |                                    |        |
|                                                             | LHELMS-UNIVERSITÄT<br>INSTER         |       |                |                   |                                    |        |
| Institut für Geologie und Paläontologie                     | INSTER                               |       |                | zu:               |                                    |        |
| Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel  |                                      |       |                |                   |                                    |        |
|                                                             |                                      |       | Entnahmestelle | : Fa. Stratiebo   |                                    |        |
| Bestimmung des Wass                                         |                                      | ogens | Tiefe:         | k.A               |                                    |        |
| und Wasserhalteverme                                        | ogens                                |       | Bodenart:      | keine Bodenklas   | se                                 |        |
|                                                             |                                      |       | Art der Entn.: | Haufwerksprob     | e                                  |        |
| Projekt Nr.:                                                | Auftraggeber: Starke, Phiilip        |       | Entn. am:      | •                 | Starke, P                          |        |
|                                                             |                                      |       | 14.01.2008     |                   | <b>C</b> ( <b>C</b> ) ( <b>C</b> ) | •      |
| Probenbezeichnung:                                          |                                      |       | Proctordurchme | esser:            | 15,0                               | cm     |
|                                                             |                                      |       | Proctorhöhe:   |                   | 12,5                               | cm     |
| RC                                                          | C 0/45                               |       | Proctorvolumen | 1:                | 2208,9                             | cm³    |
| Proctordichte nach DIN 18127:                               | -                                    | g/cm³ | Zylinder:      | $m_Z =$           | 4459                               | g      |
|                                                             |                                      |       | Bodenplatte:   | $m_{BP} =$        | 7937                               | g      |
|                                                             |                                      |       | Proctor ges.   | m <sub>Pr</sub> = | 12396                              | g      |
|                                                             |                                      |       |                |                   |                                    |        |
| Masse feuchte Probe + Proctortopf<br>bei max. Verdichtung   | $m_{\rm f}$ + $m_{Pr}$               | g     |                | 16573             |                                    |        |
| Masse wassergesättigte Probe +<br>Masse Proctortopf         | $m_{w,sat} + m_{Pr}$                 | g     |                | 17031             |                                    |        |
| Masse der Probenschale                                      | m <sub>Schale</sub>                  | g     |                | 1032              |                                    |        |
| Masse der Probe nach Abtropfen +<br>Masse Zylinder + Schale | $m_A + m_Z + m_{Schale}$             | g     |                | 9987              |                                    |        |
| Trockenmasse + Schale                                       | m <sub>d</sub> + m <sub>Schale</sub> | g     |                | 5136              |                                    |        |
| Masse der feuchten Probe                                    | $m_f$                                | g     |                | 4177              |                                    |        |
| Masse der wassergesättigten<br>Probe                        | m <sub>w,sat</sub>                   | g     |                | 4635              |                                    |        |
| Masse der Probe nach Abtropfen                              | m <sub>w,kap</sub>                   | g     |                | 4496              |                                    |        |
| Trockenmasse der Probe                                      | $m_{	extsf{d}}$                      | g     |                | 4104              |                                    |        |
| Wasseraufnahmevermögen                                      | $m_{w,sat} = m_{sat} - m_d$          | g     |                | 531               |                                    |        |
| -                                                           | $WAV = (m_{w,sat}/m_d)^*100$         | %     |                | 12,9              |                                    |        |
| Wasserhaltevermögen                                         | $m_{w,kap} = m_{w,kap} - m_d$        | g     |                | 392               |                                    |        |
|                                                             | $WHV = (m_{w,kap}/m_d)^*100$         | %     |                | 9,6               |                                    |        |
| Bemerkungen:                                                |                                      |       |                | Datum:            | 25.04.08                           |        |
|                                                             |                                      |       |                | Laborant:         | Wesche, D                          | ominik |

| <u> </u>                                                                     |                                      |       |                             | Anlage:                               |                |         |
|------------------------------------------------------------------------------|--------------------------------------|-------|-----------------------------|---------------------------------------|----------------|---------|
|                                                                              | STFÄLISCHE<br>LHELMS-UNIVERSITÄT     |       |                             |                                       |                |         |
|                                                                              | INSTER                               |       |                             |                                       |                |         |
| Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie |                                      |       |                             | zu:                                   |                |         |
| PD Dr. Patricia Göbel                                                        |                                      |       | 1                           |                                       |                |         |
| Bestimmung des Was                                                           | seraufnahmeverm                      | ögens | Entnahmestelle              |                                       |                |         |
| und Wasserhalteverme                                                         |                                      | Ū     | Tiefe:                      | k.A                                   |                |         |
|                                                                              | <b>G</b>                             |       | Bodenart:                   | mS, fs, gs                            |                |         |
|                                                                              |                                      |       | Art der Entn.:              | Haufwerkspro                          | be             |         |
| Projekt Nr.:                                                                 | Auftraggeber: Starke, Phiilip        |       | Entn. am:                   | durch:                                | Starke, P      |         |
|                                                                              |                                      |       | 14.01.2008                  |                                       |                |         |
| Probenbezeichnung:                                                           |                                      |       | Proctordurchme              | esser:                                | 15,0           | cm      |
| HK                                                                           | S 0/45                               |       | Proctorhöhe:                |                                       | 12,5           | cm      |
| Proctordichte nach DIN 18127:                                                | O 0/ <del>1</del> 3                  | g/cm³ | Proctorvolumen<br>Zylinder: |                                       | 2208,9<br>4459 | cm³     |
| Proctordichte hach bin 16127.                                                | -                                    | g/cm  | Bodenplatte:                | m <sub>Z</sub> =<br>m <sub>BP</sub> = |                | g       |
|                                                                              |                                      |       | Proctor ges.                | m <sub>Pr</sub> =                     |                | g<br>g  |
|                                                                              |                                      |       | r roctor ges.               | ···Pr                                 | 12000          | 9       |
| Masse feuchte Probe + Proctortopf                                            |                                      |       |                             |                                       |                |         |
| bei max. Verdichtung                                                         | $m_{\rm f}$ + $m_{Pr}$               | g     |                             | k.A.                                  |                |         |
| Masse wassergesättigte Probe + Masse Proctortopf                             | $m_{w,sat} + m_{Pr}$                 | g     |                             | 17429                                 |                |         |
| ·                                                                            |                                      |       | 1                           |                                       |                |         |
| Masse der Probenschale                                                       | m <sub>Schale</sub>                  | g     |                             | 1032                                  |                |         |
| Masse der Probe nach Abtropfen +<br>Masse Zylinder + Schale                  | $m_A + m_Z + m_{Schale}$             | g     |                             | 10090                                 |                |         |
| ,                                                                            |                                      |       | <del> </del>                |                                       |                |         |
| Trockenmasse + Schale                                                        | m <sub>d</sub> + m <sub>Schale</sub> | g     |                             | 5310                                  |                |         |
| Masse der feuchten Probe                                                     | $m_f$                                | g     |                             | k.A.                                  |                |         |
| Masse der wassergesättigten<br>Probe                                         | m <sub>w,sat</sub>                   | g     |                             | 5033                                  |                |         |
|                                                                              |                                      |       | <del> </del>                |                                       |                |         |
| Masse der Probe nach Abtropfen                                               | m <sub>w,kap</sub>                   | g     |                             | 4600                                  |                |         |
| Trockenmasse der Probe                                                       | $m_{ m d}$                           | g     |                             | 4278                                  |                |         |
| Was a resulting home a various in a con-                                     | $m_{w,sat} = m_{sat} - m_d$          | g     |                             | 755                                   |                |         |
| Wasseraufnahmevermögen                                                       | $WAV = (m_{w,sat}/m_d)^*100$         | %     |                             | 17,6                                  |                |         |
| Wassarhaltavarmägan                                                          | $m_{w,kap} = m_{kw,kap} - m_d$       | g     |                             | 322                                   |                |         |
| Wasserhaltevermögen                                                          | $WHV = (m_{w,kap}/m_d)^*100$         | %     |                             | 7,5                                   |                |         |
| Bemerkungen:                                                                 |                                      |       |                             |                                       |                |         |
|                                                                              |                                      |       |                             |                                       |                |         |
|                                                                              |                                      |       |                             | Datum:                                | 25.04.08       |         |
|                                                                              |                                      |       |                             | Laborant:                             | Wesche, D      | Oominik |

| Wii                                                                                                   | STFÄLISCHE<br>.HELMS-UNIVERSITÄT<br>NSTER |        | Anlage:<br>zu:                                                                                                                             |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel |                                           |        | zu.                                                                                                                                        |
| Bestimmung des Wass<br>und Wasserhaltevermö                                                           |                                           | nögens | Entnahmestelle:<br>Tiefe:<br>Bodenart:<br>Art der Entn.:                                                                                   |
| Projekt Nr.:                                                                                          | Auftraggeber: DBU                         |        | Entn. am: durch: Starke                                                                                                                    |
| Probenbezeichnung:                                                                                    | Basalt AG                                 |        | Proctordurchmesser: 15,0 cm                                                                                                                |
| <b>0/32 r</b><br>Proctordichte nach DIN 18127:                                                        | ot/grün                                   | g/cm³  | Proctorhöhe: 12,5 cm Proctorvolumer 2208,93 cm³  Zylinder: $m_Z$ = 4459 g  Bodenplatte: $m_{BP}$ = 5186 g  Proctor ges. $m_{Pr}$ = 11984 g |
| M ( )   D     D     (                                                                                 |                                           |        |                                                                                                                                            |
| Masse feuchte Probe + Proctortopf bei max. Verdichtung                                                | $m_{\rm f} + m_{Pr}$                      | g      | 16793                                                                                                                                      |
| Masse wassergesättigte Probe +<br>Masse Proctortopf                                                   | $m_{w,sat} + m_{Pr}$                      | g      | 17448                                                                                                                                      |
| Masse der Probenschale                                                                                | m <sub>Schale</sub>                       | g      | 379                                                                                                                                        |
| Masse der Probe nach Abtropfen +<br>Schale                                                            | m <sub>A</sub> + m <sub>Schale</sub>      | g      | 5524                                                                                                                                       |
| Trockenmasse + Schale                                                                                 | m <sub>d</sub> + m <sub>Schale</sub>      | g      | 5147                                                                                                                                       |
| Masse der feuchten Probe                                                                              | $m_f$                                     | g      | 4809                                                                                                                                       |
| Masse der wassergesättigten Probe                                                                     | m <sub>W,sat</sub>                        | g      | 5464                                                                                                                                       |
| Masse der Probe nach Abtropfen                                                                        | m <sub>A</sub>                            | g      | 5145                                                                                                                                       |
| Trockenmasse der Probe                                                                                | $m_{	extsf{d}}$                           | g      | 4768                                                                                                                                       |
| Wasanin trades                                                                                        | $m_{WAV} = m_{W,sat} - m_d$               | g      | 696                                                                                                                                        |
| Wasseraufnahmevermögen                                                                                | $WAV = (m_{WAV}/m_d)*100$                 | %      | 14,6                                                                                                                                       |
| Wasserhaltevermögen                                                                                   | $m_{WHV} = m_A - m_d$                     | g      | 377                                                                                                                                        |
| wassemaleveimogen                                                                                     | $WHV = (m_{WHV}/m_d)^*100$                | %      | 7,9                                                                                                                                        |
| Bemerkungen:  Das Gewicht des vollständigen Proct und dem Deckel der Durchlasszelle                   |                                           |        | cht vom Proctorzylinder, sowie dem Boden<br>er) Datum: 10.02.09<br>Laborant: Wesche                                                        |

| Wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STFÄLISCHE<br>.HELMS-UNIVERSITÄT<br>NSTER |                                                          | Anlage:<br>zu:                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------|
| Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                                                          | 24.                                                                                 |
| Bestimmung des Wasseraufnahmevermögens<br>und Wasserhaltevermögen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | Entnahmestelle:<br>Tiefe:<br>Bodenart:<br>Art der Entn.: |                                                                                     |
| Projekt Nr.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Auftraggeber: DBU                         |                                                          | Entn. am: durch: Starke                                                             |
| Probenbezeichnung:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Basalt AG                                 |                                                          | Proctordurchmesser: 15,0 cm                                                         |
| <b>0/32 gr</b><br>Proctordichte nach DIN 18127:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ün oben                                   | g/cm³                                                    | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                |
| <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                          |                                                                                     |
| Masse feuchte Probe + Proctortopf bei max. Verdichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $m_{\rm f}$ + $m_{Pr}$                    | g                                                        | 16847                                                                               |
| Masse wassergesättigte Probe +<br>Masse Proctortopf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m <sub>w,sat</sub> + m <sub>Pr</sub>      | g                                                        | 17360                                                                               |
| Masse der Probenschale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m <sub>Schale</sub>                       | g                                                        | 378                                                                                 |
| Masse der Probe nach Abtropfen +<br>Schale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m <sub>A</sub> + m <sub>Schale</sub>      | g                                                        | 5587                                                                                |
| Trockenmasse + Schale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m <sub>d</sub> + m <sub>Schale</sub>      | g                                                        | 5181                                                                                |
| Masse der feuchten Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $m_f$                                     | g                                                        | 4861                                                                                |
| Masse der wassergesättigten Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m <sub>W,sat</sub>                        | g                                                        | 5374                                                                                |
| Masse der Probe nach Abtropfen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>m</i> <sub>A</sub>                     | g                                                        | 5209                                                                                |
| Trockenmasse der Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $m_{ m d}$                                | g                                                        | 4803                                                                                |
| Wasaning to a second se | $m_{WAV} = m_{W,sat} - m_d$               | g                                                        | 571                                                                                 |
| Wasseraufnahmevermögen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $WAV = (m_{WAV}/m_d)*100$                 | %                                                        | 11,9                                                                                |
| Wassarhaltavar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $m_{WHV} = m_A - m_d$                     | g                                                        | 406                                                                                 |
| Wasserhaltevermögen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $WHV = (m_{WHV}/m_d)^*100$                | %                                                        | 8,5                                                                                 |
| Bemerkungen:<br>Das Gewicht des vollständigen Proct<br>und dem Deckel der Durchlasszelle (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                                                          | cht vom Proctorzylinder, sowie dem Boden<br>er) Datum: 17.11.08<br>Laborant: Wesche |

| WIL                                                                                        | STFÄLISCHE<br>HELMS-UNIVERSITÄT<br>NSTER |       | Anlage<br>zu:                                                   | :                                                                |                     |
|--------------------------------------------------------------------------------------------|------------------------------------------|-------|-----------------------------------------------------------------|------------------------------------------------------------------|---------------------|
| Bestimmung des Wasseraufnahmevermögens und Wasserhaltevermögen                             |                                          |       | Entnahmestelle: Tiefe: Bodenart: Art der Entn.:                 |                                                                  |                     |
| Projekt Nr.:                                                                               | Auftraggeber: DBU                        |       | Entn. am:                                                       | durch: Starke                                                    |                     |
| Probenbezeichnung:                                                                         | Basalt AG                                |       | Proctordurchmesser:                                             | 15,0                                                             | cm                  |
| <b>0/32 rc</b> Proctordichte nach DIN 18127:                                               | ot unten                                 | g/cm³ | Proctorhöhe: Proctorvolumer Zylinder: Bodenplatte: Proctor ges. | $12,5$ $2208,93$ $m_{Z} = 4459$ $m_{BP} = 5193$ $m_{Pr} = 11986$ | cm<br>cm³<br>g<br>g |
| Masse feuchte Probe + Proctortopf bei max. Verdichtung                                     | $m_{\rm f}$ + $m_{Pr}$                   | g     | 16                                                              | 6740                                                             |                     |
| Masse wassergesättigte Probe +<br>Masse Proctortopf                                        | $m_{w,sat} + m_{Pr}$                     | g     | 17                                                              | 7270                                                             |                     |
| Masse der Probenschale                                                                     | m <sub>Schale</sub>                      | g     | 3                                                               | 320                                                              |                     |
| Masse der Probe nach Abtropfen +<br>Schale                                                 | m <sub>A</sub> + m <sub>Schale</sub>     | g     | 5                                                               | 378                                                              |                     |
| Trockenmasse + Schale                                                                      | m <sub>d</sub> + m <sub>Schale</sub>     | g     | 5                                                               | 5041                                                             |                     |
| Masse der feuchten Probe                                                                   | $m_f$                                    | g     | 4                                                               | 754                                                              |                     |
| Masse der wassergesättigten Probe                                                          | m <sub>W,sat</sub>                       | g     | 5                                                               | 5284                                                             |                     |
| Masse der Probe nach Abtropfen                                                             | m <sub>A</sub>                           | g     | 5                                                               | 5058                                                             |                     |
| Trockenmasse der Probe                                                                     | $m_{ m d}$                               | g     | 4                                                               | 721                                                              |                     |
| Wasseraufnahmevermögen                                                                     | $m_{WAV} = m_{W,sat} - m_d$              | g     | ţ                                                               | 563                                                              |                     |
| wasseraumanmevermogen                                                                      | $WAV = (m_{WAV}/m_d)^*100$               | %     | 1                                                               | 11,9                                                             |                     |
| Wasserhaltevermögen                                                                        | $m_{WHV} = m_A - m_d$                    | g     | 3                                                               | 337                                                              |                     |
|                                                                                            | $WHV = (m_{WHV}/m_d)^*100$               | %     |                                                                 | 7,1                                                              |                     |
| Bemerkungen:<br>Das Gewicht des vollständigen Proct<br>und dem Deckel der Durchlasszelle ( |                                          |       | -                                                               | 17.11.08                                                         |                     |

| <u> </u>                                                    |                                      |       |                | Anlage:           |           |          |
|-------------------------------------------------------------|--------------------------------------|-------|----------------|-------------------|-----------|----------|
|                                                             | STFÄLISCHE                           |       |                |                   |           |          |
|                                                             | .HELMS-UNIVERSITÄT<br>NSTER          |       |                |                   |           |          |
| Institut für Geologie und Paläontologie                     | NSTER                                |       |                | zu:               |           |          |
| Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel  |                                      |       |                |                   |           |          |
| Bestimmung des                                              |                                      |       | Entnahmestelle | e: Fa. Klosterm   | ann       |          |
| Wasseraufnahmeverm                                          | ögens und                            |       | Tiefe:         | k.A               |           |          |
| Wasserhaltevermögens                                        | S                                    |       | Bodenart:      | fG, gs            |           |          |
|                                                             |                                      |       | Art der Entn.: | Haufwerkspro      | be        |          |
| Projekt Nr.:                                                | Auftraggeber: Starke, Phiilip        |       | Entn. am:      | durch:            | Starke, P |          |
| ,                                                           |                                      |       | 26.03.2008     |                   |           |          |
| Probenbezeichnung:                                          |                                      |       | Proctordurchm  | esser:            | 10,0      | cm       |
| l uko                                                       | S 2/5 A                              |       | Proctorhöhe:   |                   | 12,0      | cm       |
| ПК                                                          | 5 2/3 A                              |       | Proctorvolume  | n:                | 942,48    | cm³      |
| Proctordichte nach DIN 18127:                               | 1,62                                 | g/cm³ | Zylinder:      | m <sub>Z</sub> =  | 2844      | g        |
|                                                             |                                      |       | Bodenplatte:   | $m_{BP} =$        | 4416      | g        |
|                                                             |                                      |       | Proctor ges.   | m <sub>Pr</sub> = | 7260      | g        |
|                                                             |                                      |       |                |                   |           |          |
| Masse feuchte Probe + Proctortopf bei max. Verdichtung      | $m_{\rm f}$ + $m_{Pr}$               | g     |                | 8814              |           |          |
| Masse wassergesättigte Probe +<br>Masse Proctortopf         | $m_{w,sat} + m_{Pr}$                 | g     |                | 9215              |           |          |
| Masse der Probenschale                                      | m <sub>Schale</sub>                  | g     |                | 397               |           |          |
| Masse der Probe nach Abtropfen +<br>Masse Zylinder + Schale | $m_A + m_Z + m_{Schale}$             | g     |                | 4850              |           |          |
| Trockenmasse + Schale                                       | m <sub>d</sub> + m <sub>Schale</sub> | g     |                | 1942              |           |          |
| Masse der feuchten Probe                                    | $m_f$                                | g     |                | 1554              |           |          |
| Masse der wassergesättigten Probe                           | m <sub>sat</sub>                     | g     |                | 1955              |           |          |
| Masse der Probe nach Abtropfen                              | m <sub>kap</sub>                     | g     |                | 1609              |           |          |
| Trockenmasse der Probe                                      | $m_{d}$                              | g     |                | 1545              |           |          |
| Wasseraufnahmevermögen                                      | $m_{w,sat} = m_{sat} - m_d$          | g     |                | 410               |           |          |
|                                                             | $WAV = (m_{w,sat}/m_d)^*100$         | %     |                | 26,5              |           |          |
| Wasserhaltevermögen                                         | $m_{w,kap} = m_{kap} - m_d$          | g     |                | 64                |           |          |
|                                                             | $WHV = (m_{w,kap}/m_d)^*100$         | %     |                | 4,1               |           |          |
| Bemerkungen:                                                |                                      |       |                |                   |           |          |
|                                                             |                                      |       |                |                   |           |          |
|                                                             |                                      |       |                | Datum:            | 23.04.08  |          |
|                                                             |                                      |       |                | Laborant:         | Wesche, D | Oominik  |
|                                                             |                                      |       |                |                   | <b>®W</b> | /esche08 |

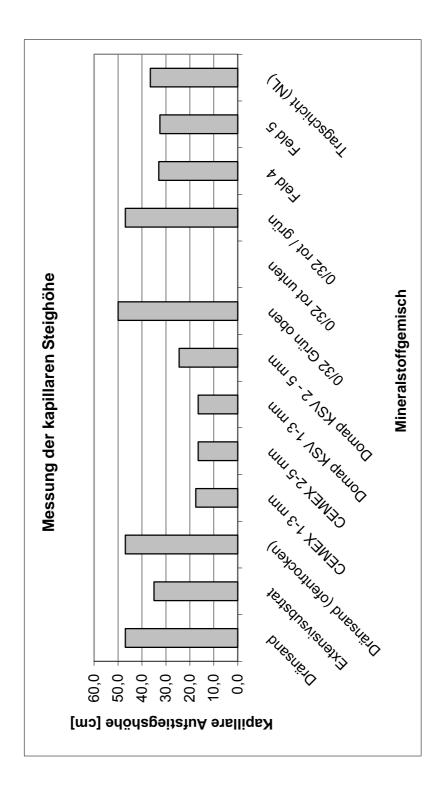
| WIL<br>MÜI<br>Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel | STFÄLISCHE<br>HELMS-UNIVERSITÄT<br>NSTER |       |                               | Anlage:<br>zu:    |                |           |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------|-------------------------------|-------------------|----------------|-----------|
| Bestimmung des                                                                                                      |                                          |       | Entnahmestell                 | e: Fa. Stratiebo  |                |           |
| Wasseraufnahmevermö                                                                                                 | ögens und                                |       | Tiefe:                        | k.A               |                |           |
| Wasserhaltevermögens                                                                                                | 6                                        |       | Bodenart:                     | fG, gs            |                |           |
|                                                                                                                     |                                          |       | Art der Entn.:                | Haufwerksprob     | e              |           |
| Projekt Nr.:                                                                                                        | Auftraggeber: Starke, Phiilip            |       | Entn. am:<br>26.03.2008       | durch:            | Starke, P      |           |
| Probenbezeichnung:                                                                                                  |                                          |       | Proctordurchm                 | nesser:           | 10,0           | cm        |
| _                                                                                                                   | S 2/5 B                                  |       | Proctorhöhe:<br>Proctorvolume | en:               | 12,0<br>942,48 | cm<br>cm³ |
| Proctordichte nach DIN 18127:                                                                                       | 1,62                                     | g/cm³ | Zylinder:                     | m <sub>Z</sub> =  | 2844           | g         |
|                                                                                                                     |                                          | -     | Bodenplatte:                  | m <sub>BP</sub> = | 4416           | g         |
|                                                                                                                     |                                          |       | Proctor ges.                  | m <sub>Pr</sub> = | 7260           | g         |
|                                                                                                                     |                                          |       |                               |                   |                |           |
| Masse feuchte Probe + Proctortopf bei max. Verdichtung                                                              | $m_f + m_{Pr}$                           | g     |                               | 8754              |                |           |
| Masse wassergesättigte Probe +<br>Masse Proctortopf                                                                 | $m_{w,sat} + m_{Pr}$                     | g     |                               | 9141              |                |           |
| Masse der Probenschale                                                                                              | m <sub>Schale</sub>                      | g     |                               | 474               |                |           |
| Masse der Probe nach Abtropfen +<br>Masse Zylinder + Schale                                                         | $m_A + m_Z + m_{Schale}$                 | g     |                               | 4879              |                |           |
| Trockenmasse + Schale                                                                                               | m <sub>d</sub> + m <sub>Schale</sub>     | g     |                               | 1950              |                |           |
| Masse der feuchten Probe                                                                                            | $m_f$                                    | g     |                               | 1494              |                |           |
| Masse der wassergesättigten Probe                                                                                   | m <sub>sat</sub>                         | g     |                               | 1881              |                |           |
| Masse der Probe nach Abtropfen                                                                                      | m <sub>kap</sub>                         | g     |                               | 1561              |                |           |
| Trockenmasse der Probe                                                                                              | $m_{ m d}$                               | g     |                               | 1476              |                |           |
| Wasseraufnahmevermögen                                                                                              | $m_{w,sat} = m_{sat} - m_d$              | g     |                               | 406               |                |           |
| ŭ                                                                                                                   | $WAV = (m_{w,sat}/m_d)^*100$             | %     |                               | 27,5              |                |           |
| Wasserhaltevermögen                                                                                                 | $m_{w,kap} = m_{kap} - m_d$              | g     |                               | 86                |                |           |
|                                                                                                                     | $WHV = (m_{w,kap}/m_d)^*100$             | %     |                               | 5,8               |                |           |
| Bemerkungen:                                                                                                        |                                          |       |                               | Datum:            | 23.04.08       |           |

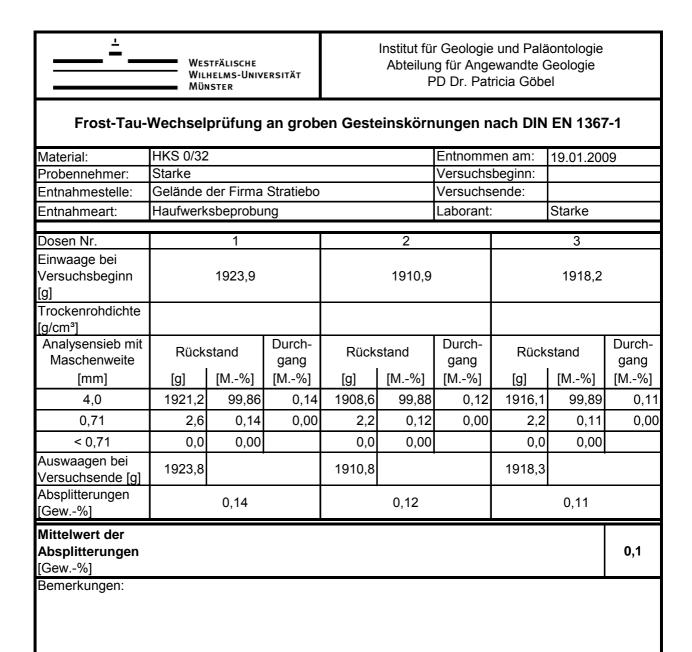
| <u>-</u>                                                    |                                      |       |                | Anlage:           |                       |         |
|-------------------------------------------------------------|--------------------------------------|-------|----------------|-------------------|-----------------------|---------|
|                                                             | ESTFÄLISCHE                          |       |                |                   |                       |         |
|                                                             | LHELMS-UNIVERSITÄT<br>ÜNSTER         |       |                |                   |                       |         |
| Institut für Geologie und Paläontologie                     |                                      |       |                | zu:               |                       |         |
| Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel  |                                      |       |                |                   |                       |         |
| Bestimmung des Was                                          | seraufnahmeverm                      | ädene | Entnahmestelle | : Fa. Stratiebo   |                       |         |
| und Wasserhalteverme                                        |                                      | ogens | Tiefe:         | k.A               |                       |         |
| und wassemaneverm                                           | ogens                                |       | Bodenart:      | mS, fs, gs        |                       |         |
|                                                             |                                      |       | Art der Entn.: | Haufwerksprob     | е                     |         |
| Projekt Nr.:                                                | Auftraggeber: Starke, Phiilip        |       | Entn. am:      | durch:            | Starke, P             |         |
|                                                             |                                      |       | 14.01.2008     |                   |                       |         |
| Probenbezeichnung:                                          |                                      |       | Proctordurchme | esser:            | 10,0                  | cm      |
| Durat                                                       | V( . l                               |       | Proctorhöhe:   |                   | 12,0                  | cm      |
| Pilast                                                      | ermörtel                             |       | Proctorvolumen | 1:                | 942,5                 | cm³     |
| Proctordichte nach DIN 18127:                               | 1,79                                 | g/cm³ | Zylinder:      | $m_Z =$           | 2844                  | g       |
|                                                             |                                      |       | Bodenplatte:   | $m_{BP} =$        | 4416                  | g       |
|                                                             |                                      |       | Proctor ges.   | m <sub>Pr</sub> = | 7260                  | g       |
|                                                             | <u> </u>                             | 1     |                |                   |                       |         |
| Masse feuchte Probe + Proctortopf bei max. Verdichtung      | m <sub>f</sub> + m <sub>Pr</sub>     | g     |                | 9153              |                       |         |
| Masse wassergesättigte Probe +<br>Masse Proctortopf         | m <sub>w,sat</sub> + m <sub>Pr</sub> | g     |                | 9239              |                       |         |
| Masse der Probenschale                                      | m <sub>Schale</sub>                  | g     |                | 474               |                       |         |
| Masse der Probe nach Abtropfen +<br>Masse Zylinder + Schale | $m_A + m_Z + m_{Schale}$             | g     |                | 5254              |                       |         |
| Trockenmasse + Schale                                       | m <sub>d</sub> + m <sub>Schale</sub> | g     |                | 2148              |                       |         |
| Masse der feuchten Probe                                    | $m_f$                                | g     |                | 1893              |                       |         |
| Masse der wassergesättigten<br>Probe                        | m <sub>sat</sub>                     | g     |                | 1979              |                       |         |
| Masse der Probe nach Abtropfen                              | m <sub>kap</sub>                     | g     |                | 1936              |                       |         |
| Trockenmasse der Probe                                      | $m_{\mathrm{d}}$                     | g     |                | 1674              |                       |         |
| Wasseraufnahmevermögen                                      | $m_{W,sat} = m_{sat} - m_d$          | g     |                | 305               |                       |         |
|                                                             | $WAV = (m_{w,sat}/m_d)^*100$         | %     |                | 18,2              |                       |         |
| Wasserhaltevermögen                                         | $m_{w,kap} = m_{kap} - m_d$          | g     |                | 262               |                       |         |
|                                                             | $WHV = (m_{w,kap}/m_d)^*100$         | %     |                | 15,7              |                       |         |
| Bemerkungen:                                                |                                      |       |                |                   |                       |         |
|                                                             |                                      |       |                |                   |                       |         |
|                                                             |                                      |       |                |                   | 25.04.08<br>Wesche, D | Oominik |
|                                                             |                                      |       |                |                   |                       |         |

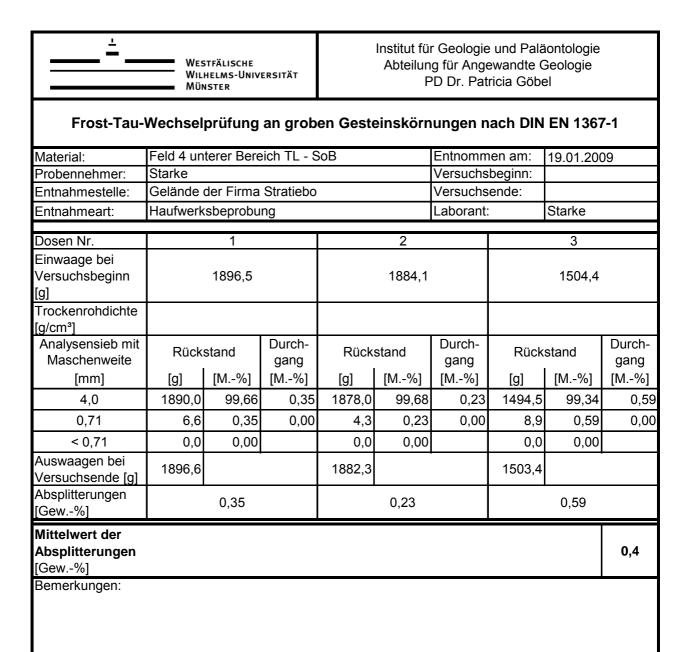
| w                                                                                               | ESTFÄLISCHE<br>ILHELMS-UNIVERSITÄT<br>ÜNSTER |       | Anlage:                                                                                   |                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------|----------------------------------------------|-------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Institut für Geologie und Paläontologie Abteilung für Angewandte Geologie PD Dr. Patricia Göbel | UNSTER                                       |       | zu:                                                                                       |                                                                                                                                                                                                |
| Bestimmung des Was<br>und Wasserhalteverm                                                       |                                              | ögens | Entnahmestelle: Fa. Stratiel Tiefe: k.A Bodenart: gS, fg, ms Art der Entn.: Haufwerksp    |                                                                                                                                                                                                |
| Projekt Nr.:                                                                                    | Auftraggeber: Starke, Phiilip                |       |                                                                                           | rch: Starke, P.                                                                                                                                                                                |
| Probenbezeichnung:  Glas  Proctordichte nach DIN 18127:                                         | sasche                                       | g/cm³ | Proctordurchmesser: Proctorhöhe: Proctorvolumen: Zylinder: m Bodenplatte: m <sub>BF</sub> | $     \begin{array}{rcr}         & 10,0 & cm \\         & 12,0 & cm \\         & 942,48 & cm^3 \\         & 2 & 2844 & g \\         & 2 & 4416 & g \\         & 2 & 7260 & g     \end{array} $ |
| Masse feuchte Probe + Proctortopf<br>bei max. Verdichtung                                       | $m_{\rm f}$ + $m_{Pr}$                       | g     | 8786                                                                                      |                                                                                                                                                                                                |
| Masse wassergesättigte Probe +<br>Masse Proctortopf                                             | m <sub>w,sat</sub> + m <sub>Pr</sub>         | g     | 9077                                                                                      |                                                                                                                                                                                                |
| Masse der Probenschale                                                                          | m <sub>Schale</sub>                          | g     | 368                                                                                       |                                                                                                                                                                                                |
| Masse der Probe nach Abtropfen +<br>Masse Zylinder + Schale                                     | $m_A + m_Z + m_{Schale}$                     | g     | 4899                                                                                      |                                                                                                                                                                                                |
| Trockenmasse + Schale                                                                           | m <sub>d</sub> + m <sub>Schale</sub>         | g     | 1859                                                                                      |                                                                                                                                                                                                |
| Masse der feuchten Probe                                                                        | m <sub>f</sub>                               | g     | 1526                                                                                      |                                                                                                                                                                                                |
| Masse der wassergesättigten<br>Probe                                                            | m <sub>sat</sub>                             | g     | 1817                                                                                      |                                                                                                                                                                                                |
| Masse der Probe nach Abtropfen                                                                  | m <sub>kap</sub>                             | g     | 1687                                                                                      |                                                                                                                                                                                                |
| Trockenmasse der Probe                                                                          | $m_{ m d}$                                   | g     | 1491                                                                                      |                                                                                                                                                                                                |
| Wasseraufnahmevermögen                                                                          | $m_{w,sat} = m_{sat} - m_d$                  | g     | 326                                                                                       |                                                                                                                                                                                                |
|                                                                                                 | $WAV = (m_{w,sat}/m_d)^*100$                 | %     | 21,9                                                                                      |                                                                                                                                                                                                |
| Wasserhaltevermögen                                                                             | $mw_{,kap} = m_{kap} - m_d$                  | g     | 196                                                                                       |                                                                                                                                                                                                |
|                                                                                                 | $WHV = (m_{w,kap}/m_d)^*100$                 | %     | 13,2                                                                                      |                                                                                                                                                                                                |
| Bemerkungen:                                                                                    |                                              |       |                                                                                           |                                                                                                                                                                                                |
|                                                                                                 |                                              |       | Datum:<br>Laborant:                                                                       | 23.04.08<br>Wesche, Dominik                                                                                                                                                                    |

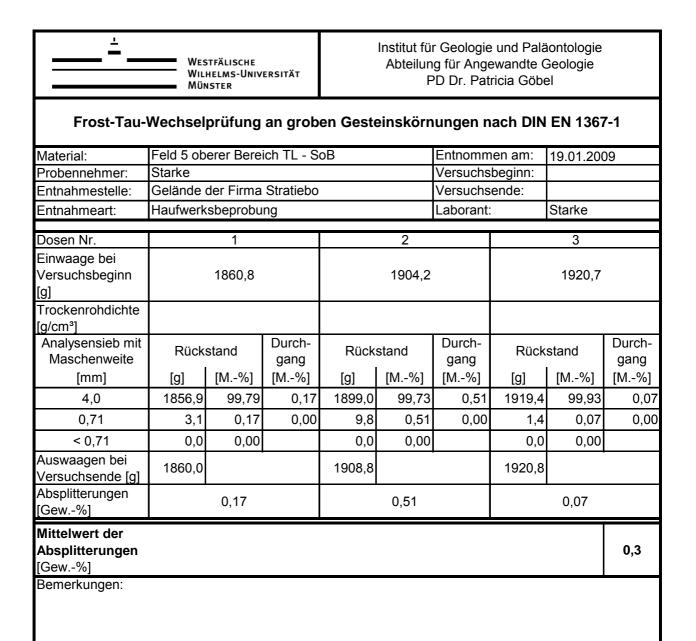
| <u>±</u>                                                    |                                      |       | Anlage:                                  |                                          |
|-------------------------------------------------------------|--------------------------------------|-------|------------------------------------------|------------------------------------------|
|                                                             | STFÄLISCHE<br>.HELMS-UNIVERSITÄT     |       |                                          |                                          |
| Mü Institut für Geologie und Paläontologie                  | NSTER                                |       | zu:                                      |                                          |
| Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel  |                                      |       |                                          |                                          |
| Bestimmung des Wass                                         | eraufnahmevermö                      | igens | Entnahmestelle: Fa. Stratie              | bo                                       |
| und Wasserhaltevermö                                        |                                      | •     | Tiefe: k.A                               |                                          |
|                                                             | _                                    |       | Bodenart: S, fg                          |                                          |
| Desired No.                                                 | Aufter week an Otania Divilia        |       | Art der Entn.: Haufwerks                 |                                          |
| Projekt Nr.:                                                | Auftraggeber: Starke, Phiilip        |       | Entn. am: durc 26.03.2008                | h: Starke, P.                            |
| Probenbezeichnung:                                          |                                      |       | Proctordurchmesser:                      | 10,0 cm                                  |
| Sand-Glasa                                                  | sche-Gemiscl                         | h     | Proctorhöhe:                             | 12,0 cm                                  |
| Proctordichte nach DIN 18127:                               | 1,92                                 | g/cm³ | Proctorvolumen: Zylinder: m <sub>Z</sub> | $942,48 \text{ cm}^3$ = $2844 \text{ q}$ |
| FIOCIOI GILLE HACH DIN 10121.                               | 1,92                                 | g/cm  | Bodenplatte: m <sub>BP</sub>             | J                                        |
|                                                             |                                      |       | Proctor ges. m <sub>Pr</sub>             | J                                        |
|                                                             |                                      |       |                                          |                                          |
| Masse feuchte Probe + Proctortopf bei max. Verdichtung      | $m_{\rm f}$ + $m_{Pr}$               | g     | 9202                                     |                                          |
| Masse wassergesättigte Probe +<br>Masse Proctortopf         | m <sub>w,sat</sub> + m <sub>Pr</sub> | g     | 9250                                     |                                          |
| Masse der Probenschale                                      | m <sub>Schale</sub>                  | g     | 474                                      |                                          |
| Masse der Probe nach Abtropfen +<br>Masse Zylinder + Schale | $m_A + m_Z + m_{Schale}$             | g     | 5285                                     |                                          |
| Trockenmasse + Schale                                       | m <sub>d</sub> + m <sub>Schale</sub> | g     | 2194                                     |                                          |
| Masse der feuchten Probe                                    | $m_f$                                | g     | 1942                                     |                                          |
| Masse der wassergesättigten Probe                           | m <sub>sat</sub>                     | g     | 1990                                     |                                          |
| Masse der Probe nach Abtropfen                              | m <sub>kap</sub>                     | g     | 1967                                     |                                          |
| Trockenmasse der Probe                                      | $m_{ m d}$                           | g     | 1720                                     |                                          |
| Waggaraufnahmayarmäga                                       | $m_{w,sat} = m_{sat} - m_d$          | g     | 270                                      |                                          |
| Wasseraufnahmevermögen                                      | $WAV = (m_{w,sat}/m_d)^*100$         | %     | 15,7                                     |                                          |
| Wasserhaltevermögen                                         | $m_{w,kap} = m_{kap} - m_d$          | g     | 247                                      |                                          |
|                                                             | $WHV = (m_{w,kap}/m_d)^*100$         | %     | 14,4                                     |                                          |
| Bemerkungen:                                                |                                      |       |                                          |                                          |
|                                                             |                                      |       |                                          | 04.04.00                                 |
|                                                             |                                      |       | Datum:<br>Laborant:                      | 24.04.08<br>Wesche, Dominik              |
|                                                             |                                      |       |                                          | ®Wesche08                                |

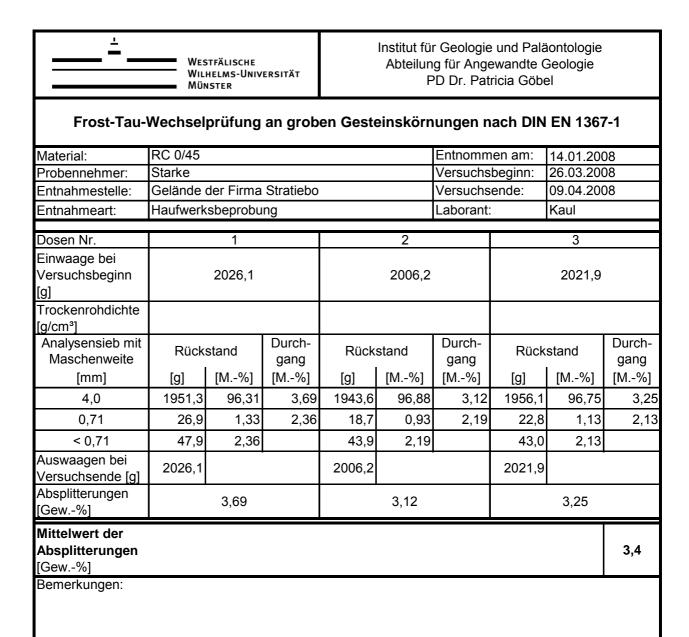
| WIL<br>MÜ<br>Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie | STFÄLISCHE<br>.HELMS-UNIVERSITÄT<br>NSTER |       |                                                                              | Anlage:<br>zu:      |                       |                     |
|-------------------------------------------------------------------------------------------|-------------------------------------------|-------|------------------------------------------------------------------------------|---------------------|-----------------------|---------------------|
| PD Dr. Patricia Göbel  Bestimmung des Wass  und Wasserhaltevermö                          |                                           | gens  | Entnahmestelle<br>Tiefe:<br>Bodenart:<br>Art der Entn.:                      | k.A<br>gS, fg       |                       |                     |
| Projekt Nr.:                                                                              | Auftraggeber: Starke, Phiilip             |       | Entn. am:<br>26.03.2008                                                      | durch:              | Starke, P             |                     |
| Probenbezeichnung: <b>Bas</b> Proctordichte nach DIN 18127:                               | alt 1/3                                   | g/cm³ | Proctordurchm Proctorhöhe: Proctorvolume Zylinder: Bodenplatte: Proctor ges. |                     | 4416                  | cm<br>cm³<br>g<br>g |
| Masse feuchte Probe + Proctortopf bei max. Verdichtung                                    | $m_{\rm f}$ + $m_{Pr}$                    | g     |                                                                              | 8866                |                       |                     |
| Masse wassergesättigte Probe +<br>Masse Proctortopf                                       | $m_{w,sat} + m_{Pr}$                      | g     |                                                                              | 9246                |                       |                     |
| Masse der Probenschale                                                                    | m <sub>Schale</sub>                       | g     |                                                                              | 488                 |                       |                     |
| Masse der Probe nach Abtropfen +<br>Masse Zylinder + Schale                               | $m_A + m_Z + m_{Schale}$                  | g     |                                                                              | 5076                |                       |                     |
| Trockenmasse + Schale                                                                     | m <sub>d</sub> + m <sub>Schale</sub>      | g     |                                                                              | 2065                |                       |                     |
| Masse der feuchten Probe                                                                  | $m_f$                                     | g     |                                                                              | 1606                |                       |                     |
| Masse der wassergesättigten Probe                                                         | m <sub>sat</sub>                          | g     |                                                                              | 1986                |                       |                     |
| Masse der Probe nach Abtropfen                                                            | m <sub>kap</sub>                          | g     |                                                                              | 1744                |                       |                     |
| Trockenmasse der Probe                                                                    | $m_{d}$                                   | g     |                                                                              | 1577                |                       |                     |
| Wasaning home was a series                                                                | $m_{w,sat} = m_{sat} - m_d$               | g     |                                                                              | 409                 |                       |                     |
| Wasseraufnahmevermögen                                                                    | $WAV = (m_{w,sat}/m_d)^*100$              | %     |                                                                              | 25,9                |                       |                     |
| Wasserhaltevermögen                                                                       | $m_{w,kap} = m_{kap} - m_d$               | g     |                                                                              | 167                 |                       |                     |
| vvasserrialteverifilogeri                                                                 | $WHV = (m_{w,kap}/m_d)^*100$              | %     |                                                                              | 10,6                |                       |                     |
| Bemerkungen:                                                                              |                                           |       |                                                                              | Datum:<br>Laborant: | 23.04.08<br>Wesche, E | Oominik             |


| — Wit                                                           | STFÄLISCHE<br>.HELMS-UNIVERSITÄT<br>NSTER        |        | Anlage:<br>zu:                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------|--------------------------------------------------|--------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bestimmung des Wass<br>und Wasserhaltevermö                     |                                                  | nögens | Entnahmestelle:<br>Tiefe:<br>Bodenart:<br>Art der Entn.: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Projekt Nr.:                                                    | Auftraggeber: DBU                                |        | Entn. am: dur                                            | ch: Starke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Probenbezeichnung: <b>Extensi</b> Proctordichte nach DIN 18127: | vsubstrat                                        | g/cm³  | Bodenplatte: m <sub>BF</sub>                             | $     \begin{array}{rcr}         & 10,0 & cm \\         & 12,0 & cm \\         & 942,48 & cm^3 \\         & 22 & 2845 & g \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 24 & 24 & 24 \\         & 2$ |
| Masse feuchte Probe + Proctortopf bei max. Verdichtung          | $m_{\rm f}$ + $m_{Pr}$                           | g      | 8813                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Masse wassergesättigte Probe +<br>Masse Proctortopf             | $m_{w,sat} + m_{Pr}$                             | g      | 9154                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Masse der Probenschale                                          | m <sub>Schale</sub>                              | g      | 321                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Masse der Probe nach Abtropfen +<br>Schale                      | m <sub>A</sub> + m <sub>Schale</sub>             | g      | 2168                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Trockenmasse + Schale                                           | m <sub>d</sub> + m <sub>Schale</sub>             | g      | 1849                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Masse der feuchten Probe                                        | m <sub>f</sub>                                   | g      | 1551                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Masse der wassergesättigten Probe                               | m <sub>W,sat</sub>                               | g      | 1892                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Masse der Probe nach Abtropfen                                  | $m_A$                                            | g      | 1847                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Trockenmasse der Probe                                          | $m_{ m d}$                                       | g      | 1528                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Wasseraufnahmevermögen                                          | $m_{WAV} = m_{W,sat} - m_d$                      | g      | 364                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                 | $WAV = (m_{WAV}/m_d)^*100$                       | %      | 23,8                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Wasserhaltevermögen                                             | $m_{WHV} = m_A - m_d$ $WHV = (m_{WHV}/m_d)^*100$ | g<br>% | 319<br><b>20,9</b>                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Bemerkungen:                                                    |                                                  |        | Datum:<br>Laborant:                                      | 25.11.08<br>Wesche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |


| ı                                                                            |                                      |       | 1              | Anlaga            |           |          |
|------------------------------------------------------------------------------|--------------------------------------|-------|----------------|-------------------|-----------|----------|
| <u> </u>                                                                     |                                      |       |                | Anlage:           |           |          |
|                                                                              | STFÄLISCHE<br>LHELMS-UNIVERSITÄT     |       |                |                   |           |          |
| Mi                                                                           | İNSTER                               |       |                | zu:               |           |          |
| Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie |                                      |       |                | zu.               |           |          |
| PD Dr. Patricia Göbel                                                        |                                      |       |                |                   |           |          |
| Bestimmung des Was                                                           | seraufnahmeverm                      | öaens | Entnahmestelle |                   |           |          |
| und Wasserhalteverme                                                         |                                      | - 9   | Tiefe:         | k.A               |           |          |
|                                                                              | 900                                  |       | Bodenart:      | mS, fs, gs        |           |          |
|                                                                              |                                      |       | Art der Entn.: | Haufwerksprob     | е         |          |
| Projekt Nr.:                                                                 | Auftraggeber: Starke, Phiilip        |       | Entn. am:      | durch:            | Starke, P |          |
|                                                                              |                                      |       | 14.01.2008     |                   |           |          |
| Probenbezeichnung:                                                           |                                      |       | Proctordurchme | esser:            | 10,0      | cm       |
| newasch                                                                      | nener Sand                           |       | Proctorhöhe:   |                   | 12,0      | cm       |
| gewasei                                                                      | icrici Garia                         |       | Proctorvolumer |                   | 942,48    | cm³      |
| Proctordichte nach DIN 18127:                                                | 1,7                                  | g/cm³ | Zylinder:      | $m_Z =$           |           | g        |
|                                                                              |                                      |       | Bodenplatte:   | m <sub>BP</sub> = |           | g        |
|                                                                              |                                      |       | Proctor ges.   | m <sub>Pr</sub> = | 7260      | g        |
|                                                                              |                                      |       |                |                   |           |          |
| Masse feuchte Probe + Proctortopf<br>bei max. Verdichtung                    | $m_{\rm f}$ + $m_{Pr}$               | g     |                | 9083              |           |          |
| Masse wassergesättigte Probe +<br>Masse Proctortopf                          | m <sub>w,sat</sub> + m <sub>Pr</sub> | g     |                | 9114              |           |          |
| Masse der Probenschale                                                       | m <sub>Schale</sub>                  | g     |                | 396,6             |           |          |
| Masse der Probe nach Abtropfen +<br>Masse Zylinder + Schale                  | $m_A + m_Z + m_{Schale}$             | g     |                | 5093              |           |          |
| Trockenmasse + Schale                                                        | m <sub>d</sub> + m <sub>Schale</sub> | g     |                | 1970              |           |          |
| Masse der feuchten Probe                                                     | $m_f$                                | g     |                | 1823              |           |          |
| Masse der wassergesättigten<br>Probe                                         | m <sub>sat</sub>                     | g     |                | 1854              |           |          |
| Masse der Probe nach Abtropfen                                               | m <sub>kap</sub>                     | g     |                | 1852              |           |          |
| Trockenmasse der Probe                                                       | $m_{\rm d}$                          | g     |                | 1574              |           |          |
| Wasseraufnahmevermögen                                                       | $m_{W,sat} = m_{sat} - m_d$          | g     |                | 280               |           |          |
|                                                                              | $WAV = (m_{w,sat}/m_d)*100$          | %     |                | 17,8              |           |          |
| Wasserhaltevermögen                                                          | $m_{w,kap} = m_{kap} - m_d$          | g     |                | 279               |           |          |
|                                                                              | $WHV = (m_{w,kap}/m_d)^*100$         | %     |                | 17,7              |           |          |
| Bemerkungen:                                                                 |                                      | -     | -              |                   |           |          |
|                                                                              |                                      |       |                |                   |           |          |
|                                                                              |                                      |       |                | Datum:            | 25.04.08  |          |
|                                                                              |                                      |       |                | Laborant:         | Wesche, E | Oominik  |
|                                                                              |                                      |       |                |                   |           | /esche08 |


| <u> </u>                                                    | CTEX LCCUE                               |       |                                                                                             | Anlage:                               |                       |                            |
|-------------------------------------------------------------|------------------------------------------|-------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|----------------------------|
| WIL                                                         | stfälische<br>Helms-Universität<br>NSTER |       |                                                                                             | zu:                                   |                       |                            |
| Bestimmung des Wass<br>und Wasserhaltevermö                 |                                          | gens  | Entnahmestelle<br>Tiefe:<br>Bodenart:                                                       | e: Fa. Stratieb<br>k.A<br>fs, ms, gs` | 0                     |                            |
| Projekt Nr.:                                                | Auftraggeber: Starke, Phiilip            |       | Art der Entn.:<br>Entn. am:<br>26.03.2008                                                   | ·                                     | obe<br>Starke, P      | ).                         |
| Probenbezeichnung: Fül Proctordichte nach DIN 18127:        | <b>Isand</b>                             | g/cm³ | Proctordurchm<br>Proctorhöhe:<br>Proctorvolume<br>Zylinder:<br>Bodenplatte:<br>Proctor ges. |                                       | 4416                  | cm<br>cm<br>cm³<br>g<br>g  |
| Masse feuchte Probe + Proctortopf<br>bei max. Verdichtung   | m <sub>f</sub> + m <sub>Pr</sub>         | g     |                                                                                             | 9135                                  |                       |                            |
| Masse wassergesättigte Probe +<br>Masse Proctortopf         | m <sub>w,sat</sub> + m <sub>Pr</sub>     | g     |                                                                                             | 9213                                  |                       |                            |
| Masse der Probenschale                                      | m <sub>Schale</sub>                      | g     |                                                                                             | 368                                   |                       |                            |
| Masse der Probe nach Abtropfen +<br>Masse Zylinder + Schale | $m_A + m_Z + m_{Schale}$                 | g     |                                                                                             | 5145                                  |                       |                            |
| Trockenmasse + Schale                                       | m <sub>d</sub> + m <sub>Schale</sub>     | g     |                                                                                             | 2011                                  |                       |                            |
| Masse der feuchten Probe                                    | $m_f$                                    | g     |                                                                                             | 1875                                  |                       |                            |
| Masse der wassergesättigten Probe                           | m <sub>sat</sub>                         | g     |                                                                                             | 1953                                  |                       |                            |
| Masse der Probe nach Abtropfen                              | m <sub>kap</sub>                         | g     |                                                                                             | 1933                                  |                       |                            |
| Trockenmasse der Probe                                      | $m_{ m d}$                               | g     |                                                                                             | 1643                                  |                       |                            |
| Wasseraufnahmevermögen                                      | $m_{w,sat} = m_{sat} - m_d$              | g     |                                                                                             | 310                                   |                       |                            |
| wasseraumannevermogen                                       | $WAV = (m_{W,sat}/m_d)^*100$             | %     |                                                                                             | 18,9                                  |                       |                            |
| Wasserhaltevermögen                                         | $m_{w,kap} = m_{kap} - m_d$              | g     |                                                                                             | 290                                   |                       |                            |
| Wassermakevermogen                                          | $WHV = (m_{w,kap}/m_d)^*100$             | %     |                                                                                             | 17,6                                  |                       |                            |
| Bemerkungen:                                                |                                          |       |                                                                                             |                                       |                       |                            |
|                                                             |                                          |       |                                                                                             | Datum:<br>Laborant:                   | 23.04.08<br>Wesche, [ | Dominik<br><b>Yesche08</b> |


| ц             | 7 |
|---------------|---|
| $\overline{}$ | ı |
|               |   |


| - I                    | WESTFÄLISCHE                    | Westfäl<br>Institut für | Westfälische Wilhelms-Universität<br>Institut für Geologie und Paläontologie | niversität<br>aontologie | Mes         | Messung der kapillaren Steighöhe | kapillaı  | en Steig          | höhe                             |
|------------------------|---------------------------------|-------------------------|------------------------------------------------------------------------------|--------------------------|-------------|----------------------------------|-----------|-------------------|----------------------------------|
|                        | Wilhelms-Universität<br>Münster |                         | Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel                   | Geologie<br>el           | Projekt Nr. |                                  |           | Auftraggeber: DBU | DBU                              |
|                        |                                 |                         |                                                                              |                          |             |                                  |           |                   |                                  |
|                        | ollotoom do ata a               | 7.000                   | Rohrduch                                                                     | Start der Messung        | Messung     | Ende der Messung                 | essung    | Vt                | kapillare<br>Stoichöbo           |
| Probenbezeichnung      | Entnanmestelle                  | Bodenart                | messer<br>[cm]                                                               | Datum                    | Uhrzeit     | Datum                            | Uhrzeit   | [hh:mm]           | oteignone<br>h <sub>k</sub> [cm] |
| Dränsand               |                                 |                         | 4                                                                            | 27.11.2008               | 12:30       | 28.11.2008                       | 11:15     | 22:45             | 47,0                             |
| Extensivsubstrat       |                                 |                         | 4                                                                            | 28.11.2008               | 11:45       | 02.12.2008                       | 10:30     | 94:45             | 35,0                             |
| Dränsand (ofentrocken) |                                 |                         | 4                                                                            | 02.12.2008               | 12:00       | 03.12.2008                       | 13:30     | 25:30             | 47,0                             |
| CEMEX 1-3 mm           |                                 |                         | 4                                                                            | 11.12.2008               | 11:00       | 12.12.2008                       | 11:30     | 24:30             | 17,5                             |
| CEMEX 2-5 mm           |                                 |                         | 4                                                                            | 12.12.2008               | 11:45       | 15.12.2008                       | 11:45     | 72:00             | 16,5                             |
| Domap KSV 1-3 mm       |                                 |                         | 4                                                                            | 19.02.2009               | 10:30       | 20.02.2009                       | 10:00     | 23:30             | 16,5                             |
| Domap KSV 2 - 5 mm     |                                 |                         | 4                                                                            | 20.02.2009               | 13:30       | 23.02.2009                       | 10:30     | 00:69             | 24,5                             |
| 0/32 Grün oben         |                                 |                         | 12                                                                           | 21.01.2009               | 14:30       | 22.01.2009                       | 14:30     | 24:00             | 50                               |
| 0/32 rot unten         |                                 |                         | 12                                                                           |                          | nic         | nicht durchführbar               | ľ         |                   |                                  |
| 0/32 rot / grün        |                                 |                         | 12                                                                           | 29.01.2009               | 11:30       | 02.02.2009                       | 13:00     | 97:30             | 47                               |
| Feld 4                 |                                 |                         | 12                                                                           | 22.01.2009               | 15:30       | 23.01.2009                       | 15:15     | 23:45             | 33                               |
| Feld 5                 |                                 |                         | 12                                                                           | 20.01.2009               | 15:15       | 21.01.2009                       | 14:00     | 26:15             | 32,5                             |
| Tragschicht (NL)       |                                 |                         | 12                                                                           | 19.01.2009               | 12:00       | 20.01.2009                       | 14:15     | 22:45             | 36,5                             |
| ® Wesche08             |                                 |                         |                                                                              |                          |             |                                  | Laborant: | Wesche, Dominik   | ninik                            |





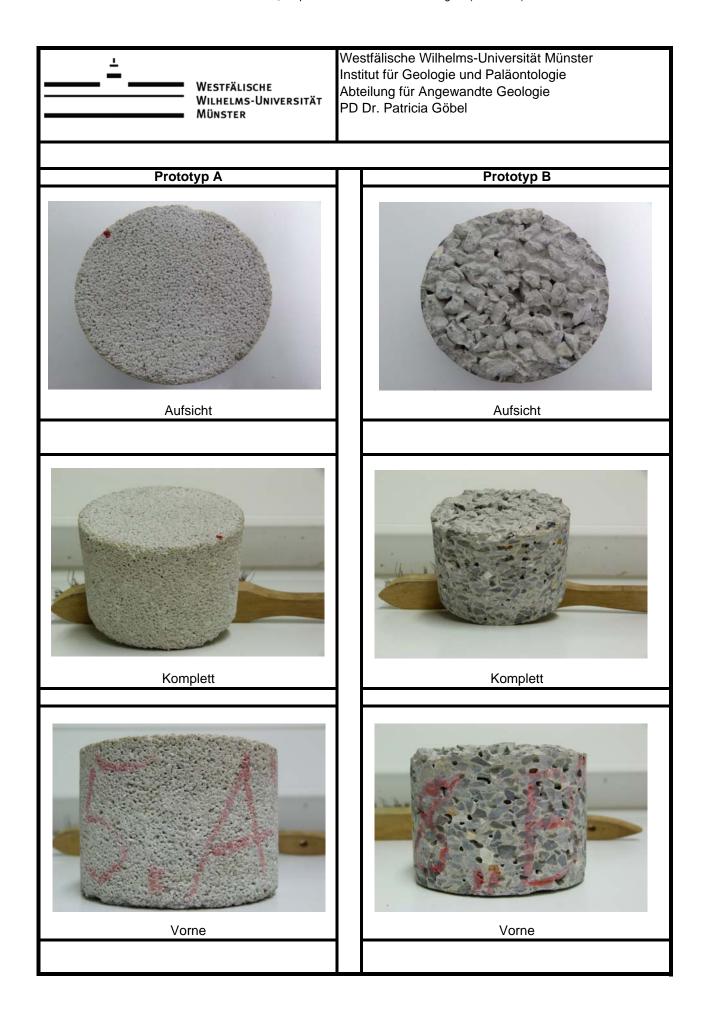


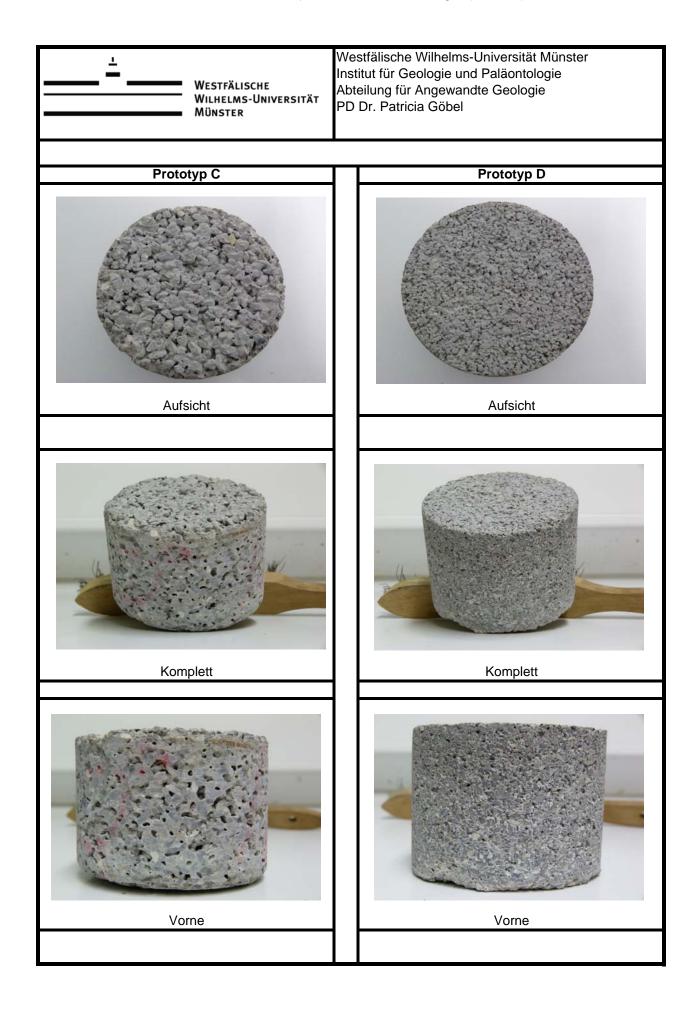


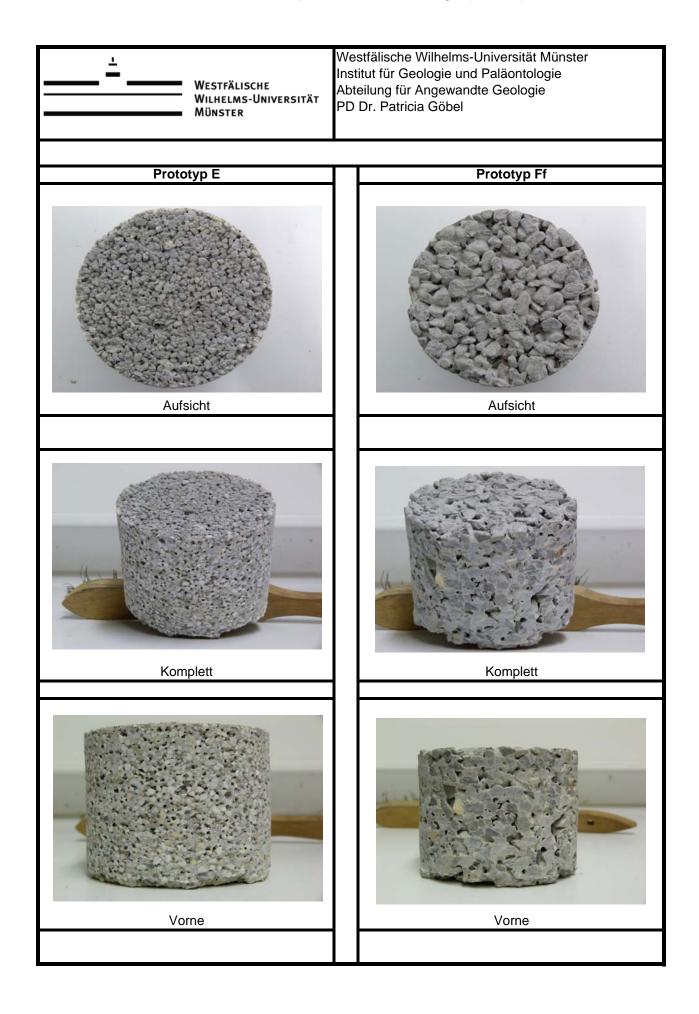


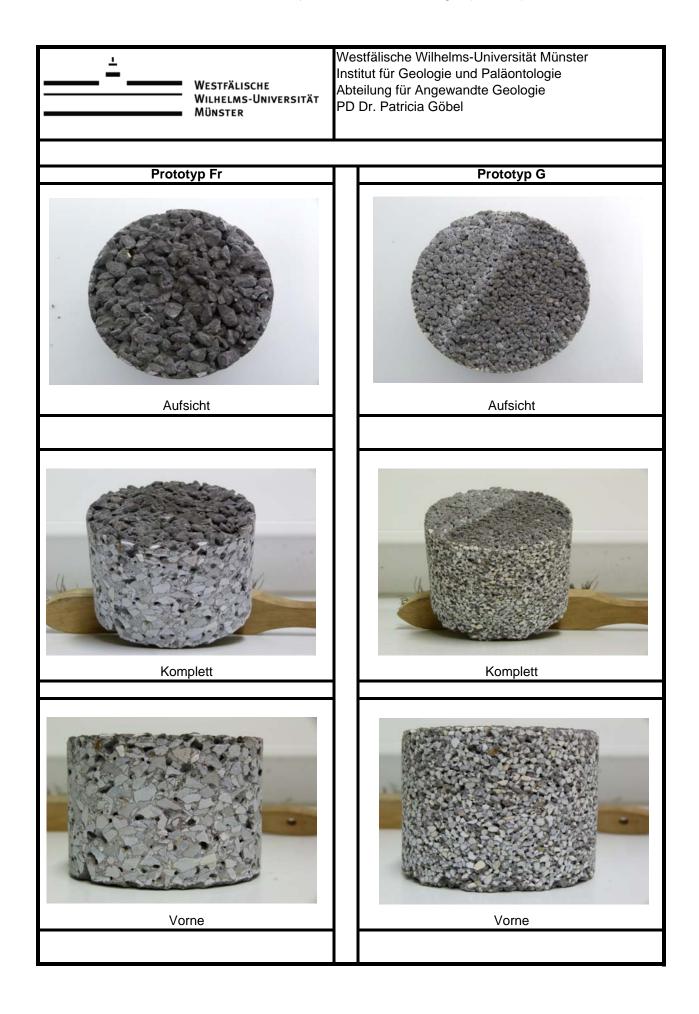
| _=-                                         | WILI         | STFÄLISCHE<br>HELMS-UNIV<br>NSTER | ERSITÄT        |          | Abteilun | r Geologie<br>g für Ange<br>PD Dr. Pat | ewandte ( |           |                |
|---------------------------------------------|--------------|-----------------------------------|----------------|----------|----------|----------------------------------------|-----------|-----------|----------------|
| Frost-Tau-                                  | Wechsel      | prüfung                           | an grob        | en Geste | einskörn | ungen n                                | ach DIN   | I EN 1367 | 7-1            |
| Material:                                   | HKS 0/45     | )                                 |                |          |          | Entnomm                                |           | 14.01.200 |                |
| Probennehmer:                               | Starke       |                                   |                |          |          | Versuchs                               |           | 26.03.200 |                |
| Entnahmestelle:                             | Gelände (    | der Firma                         | Stratiebo      |          |          | Versuchs                               | ende:     | 09.04.200 | J8             |
| Entnahmeart:                                | Haufwerk     | sbeprobu                          | ng             |          |          | Laborant:                              |           | Kaul      |                |
| Dean Na                                     |              | 1                                 |                |          |          |                                        |           |           |                |
| Dosen Nr.                                   | <del> </del> | 11                                |                |          | 2        |                                        |           | 3         |                |
| Einwaage bei<br>Versuchsbeginn<br>[g]       |              | 1777,6                            |                |          | 1999,1   |                                        |           |           |                |
| Trockenrohdichte [g/cm³]                    |              |                                   |                |          |          |                                        |           |           |                |
| Analysensieb mit<br>Maschenweite            | Rücks        | stand                             | Durch-<br>gang | Rück     | stand    | Durch-<br>gang                         | Rück      | kstand    | Durch-<br>gang |
| [mm] [g]                                    |              | [M%]                              | [M%]           | [g]      | [M%]     | [M%]                                   | [g]       | [M%]      | [M%]           |
| 4,0                                         | 1715,9       | 96,53                             | 3,47           | 1908,0   | 95,44    | 4,56                                   |           |           |                |
| 0,71                                        | 51,6         | 2,90                              | 0,57           | 81,4     | 4,07     | 0,49                                   |           |           |                |
| < 0,71                                      | 10,1         | 0,57                              |                | 9,7      | 0,49     |                                        |           |           |                |
| Auswaagen bei<br>Versuchsende [g]           | 1777,6       |                                   |                | 1999,1   |          |                                        |           |           | ,              |
| Absplitterungen<br>[Gew%]                   |              | 3,47                              |                |          | 4,56     |                                        |           |           |                |
| Mittelwert der<br>Absplitterungen<br>[Gew%] |              |                                   |                |          |          |                                        |           |           | 4,0            |
| Bemerkungen:                                |              |                                   |                |          |          |                                        |           |           |                |

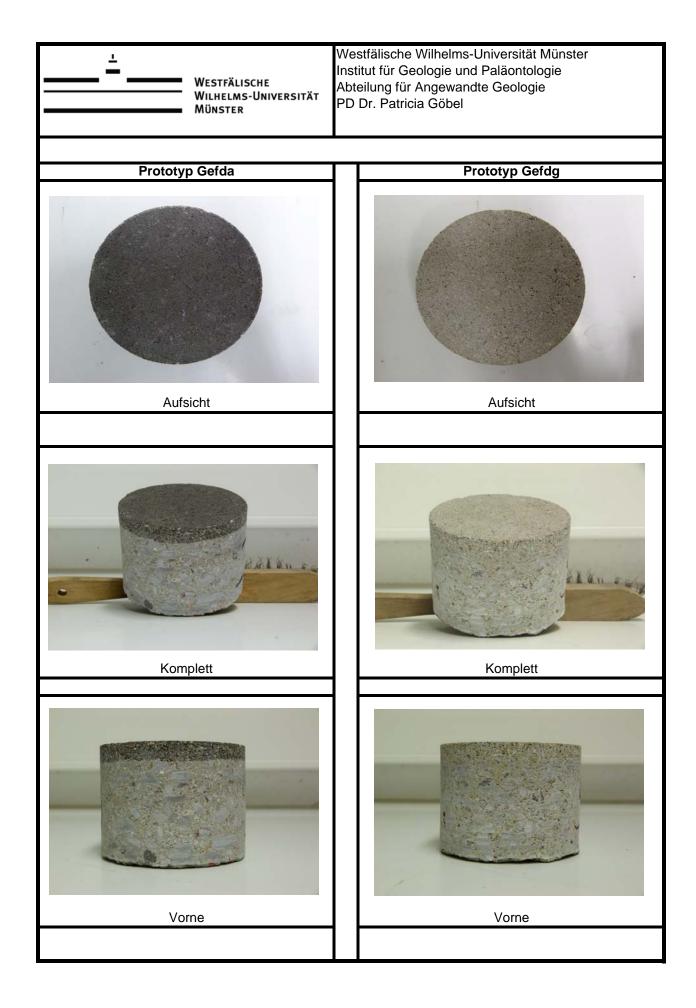
|               |         |                                   |                                                 |                                        |                                         |            | •        | •            |          | מספרי                      | 2207                   |        |
|---------------|---------|-----------------------------------|-------------------------------------------------|----------------------------------------|-----------------------------------------|------------|----------|--------------|----------|----------------------------|------------------------|--------|
|               |         | WESTFALISCHE WILHELMS-UNI MÜNSTER | WESTFALISCHE<br>Wilhelms-Universität<br>Münster | Ergebn                                 | Ergebnisse der Messung der Saugspannung | . Messu    | ng der ( | saugspa      | gunuus   | ,<br>,<br>,<br>,           | Laboranii. Sala Kolvei | Koivei |
| pF-Stufe: 1,8 | fe: 1,8 |                                   | eingestel                                       | eingestellter Druck: 0,3 bar ± 0,01 ba | r: 0,3 bar ±                            | : 0,01 bar |          |              | Datum:   | Datum: 15.09.10 - 01.10.10 | 01.10.10               |        |
|               | E       | Basaltsplitt                      | it                                              |                                        | Füllsand                                |            | Э        | Basaltsplitt | ıt.      |                            | Füllsand               |        |
|               | Fuge 1  | Fuge 2                            | Fuge 3                                          | Fuge 4                                 | Fuge 5                                  | Fuge 6     | Fuge 1   | Fuge 2       | Fuge 3   | Fuge 4                     | Fuge 5                 | Fuge 6 |
| Δt (h)        |         |                                   | Gewicht (g)                                     | tht (g)                                |                                         |            |          | ^            | assergeh | Wassergehalt (Vol%)        | (%)                    |        |
| 0,0           | 291,1   | 305,7                             | 299,5                                           | 302,3                                  | 305,3                                   | 299,8      | 32,9     | 43,6         | 37,3     | 40,7                       | 40,2                   | 37,5   |
| 0,5           | 285,7   | 301,1                             | 295,5                                           | 298,1                                  | 299,9                                   | 296,2      | 28,0     | 39,4         | 33,6     | 36,9                       | 35,2                   | 34,2   |
| 1,5           | 284,1   | 298,6                             | 294,3                                           | 296,8                                  | 299,6                                   | 295,9      | 26,5     | 37,1         | 32,5     | 35,7                       | 35,0                   | 34,0   |
| 2,3           | 282,5   | 292,9                             | 294,0                                           | 296,0                                  | 298,6                                   | 295,2      | 25,1     | 31,8         | 32,2     | 35,0                       | 34,0                   | 33,3   |
| 5,5           | 281,9   | 283,9                             | 293,5                                           | 295,7                                  | 297,7                                   | 295,1      | 24,5     | 23,6         | 31,7     | 34,7                       | 33,2                   | 33,2   |
| 23,5          | 281,3   | 264,8                             | 284,6                                           | 295,5                                  | 294,2                                   | 290,6      | 23,9     | 6,1          | 23,6     | 34,5                       | 30,0                   | 29,1   |
| 29,5          | 281,3   | 264,6                             | 281,8                                           | 295,2                                  | 293,9                                   | 290,2      | 23,9     | 5,9          | 21,0     | 34,2                       | 29,7                   | 28,7   |
| 47,5          | 280,1   | 264,1                             | 274,4                                           | 295,0                                  | 293,5                                   | 289,8      | 22,8     | 5,4          | 14,2     | 34,0                       | 29,4                   | 28,4   |
| 167,0         | 267,8   | 264,2                             | 259,5                                           | 292,2                                  | 292,1                                   | 289,6      | 11,6     | 5,5          | 9,0      | 31,5                       | 28,1                   | 28,2   |
| 190,5         | 266,0   | 264,2                             | 259,5                                           | 291,9                                  | 291,7                                   | 289,3      | 6,6      | 5,5          | 9,0      | 31,2                       | 27,7                   | 27,9   |
| 216,0         | 264,2   | 264,2                             | 259,5                                           | 291,6                                  | 291,3                                   | 289,2      | 8,3      | 5,5          | 9,0      | 30,9                       | 27,3                   | 27,8   |
| 310,5         | 255,9   | 264,2                             | 259,5                                           | 290,9                                  | 290,9                                   | 289,2      | 9,0      | 5,5          | 9,0      | 30,3                       | 27,0                   | 27,8   |
| 334,5         | 255,6   | 264,2                             | 259,5                                           | 290,8                                  | 290,8                                   | 289,2      | 4,0      | 5,5          | 9,0      | 30,2                       | 26,9                   | 27,8   |
| 358,5         | 255,4   | 264,2                             | 259,5                                           | 290,8                                  | 290,8                                   | 289,2      | 0,2      | 5,5          | 9,0      | 30,2                       | 26,9                   | 27,8   |
| 383,0         | 255,3   | 264,2                             | 259,5                                           | 290,8                                  | 290,8                                   | 289,2      | 0,1      | 5,5          | 0,6      | 30,2                       | 26,9                   | 27,8   |
|               |         |                                   |                                                 |                                        |                                         |            |          |              |          |                            |                        |        |

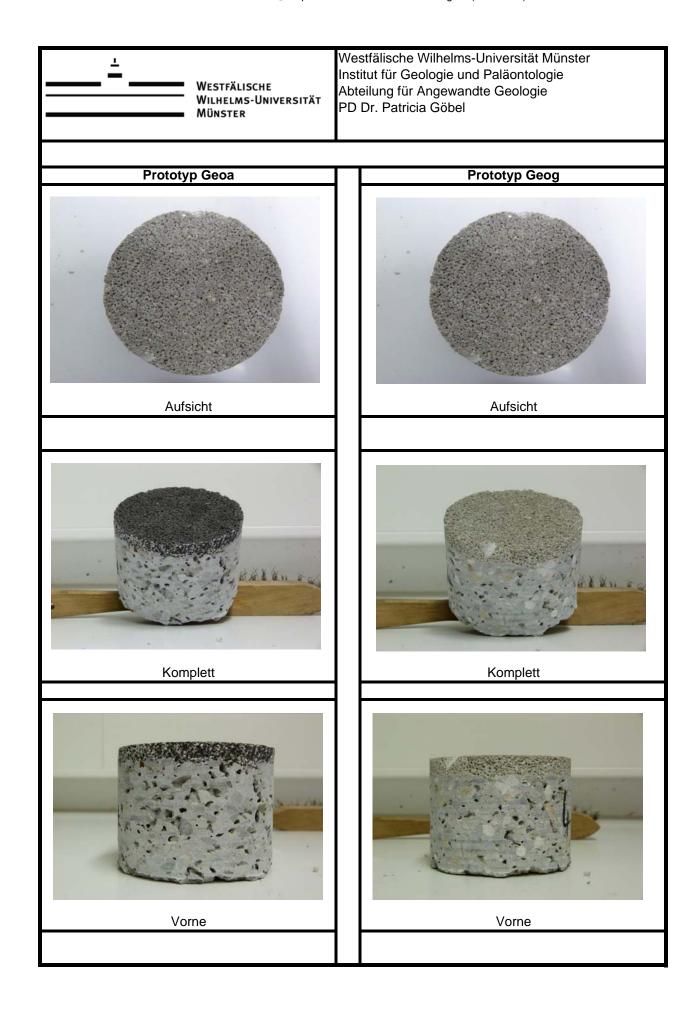

|         | -1            | WESTFÄLISCHE<br>WILHELMS-UNI<br>MÜNSTER | WESTFÄLISCHE<br>WILHELMS-UNIVERSITÄT<br>Münster |                                         | isse der     | Messu      | ng der (     | Ergebnisse der Messung der Saugspannung | gunuus   | Labora                            | <b>Laborant:</b> Sara Rölver |
|---------|---------------|-----------------------------------------|-------------------------------------------------|-----------------------------------------|--------------|------------|--------------|-----------------------------------------|----------|-----------------------------------|------------------------------|
| pF-Stu  | pF-Stufe: 2,5 |                                         | eingeste                                        | eingestellter Druck: 0,3 bar ± 0,01 bar | c: 0,3 bar ± | . 0,01 bar |              |                                         | Datum: ( | <b>Datum:</b> 07.10.10 - 05.11.10 | 05.11.10                     |
|         | Basal         | Basaltsplitt                            |                                                 | Füllsand                                |              | Basal      | Basaltsplitt |                                         | Füllsand |                                   |                              |
|         | Fuge 7        | Fuge 8                                  | Fuge 9                                          | Fuge 10                                 | Fuge 11      | Fuge 7     | Fuge 8       | Fuge 9                                  | Fuge 10  | Fuge 11                           |                              |
| Δt (h)  |               |                                         | Gewicht (g)                                     | _                                       |              |            | Wasse        | Wassergehalt (Vol%)                     | /ol%)    |                                   |                              |
| 0,0     | 284,7         | 292,9                                   | 305,5                                           | 304,3                                   | 304,9        | 34,1       | 35,4         | 35,2                                    | 33,4     | 34,0                              |                              |
| 8,0     | 281,6         | 288,2                                   | 301,3                                           | 301,0                                   | 295,3        | 31,3       | 31,1         | 31,4                                    | 30,4     | 25,2                              |                              |
| 2,3     | 279,9         | 283,0                                   | 299,4                                           | 297,0                                   | 289,8        | 29,7       | 26,3         | 29,6                                    | 26,7     | 20,2                              |                              |
| 0,9     | 279,3         | 271,8                                   | 293,7                                           | 287,3                                   | 286,1        | 29,2       | 16,1         | 24,4                                    | 17,8     | 16,8                              |                              |
| 24,2    | 274,4         | 254,6                                   | 281,4                                           | 281,0                                   | 281,8        | 24,7       | 0,3          | 13,1                                    | 12,0     | 12,8                              |                              |
| 120,3   | 251,7         | 254,4                                   | 277,4                                           | 278,4                                   | 279,0        | 3,9        | 0,1          | 9,5                                     | 9,6      | 10,3                              |                              |
| 144,3   | 248,3         | 254,4                                   | 277,1                                           | 278,2                                   | 278,7        | 2,0        | 0,1          | 9,2                                     | 9,5      | 10,0                              |                              |
| 167,3   | 248,0         | 254,3                                   | 277,0                                           | 278,1                                   | 278,6        | 9,0        | 0,0          | 9,1                                     | 9,4      | 6,6                               |                              |
| 191,7   | 247,8         | 254,3                                   | 276,9                                           | 278,0                                   | 278,6        | 0,3        | 0,0          | 0,6                                     | 6,9      | 6,6                               |                              |
| 294,1   | 247,8         | 254,3                                   | 276,8                                           | 277,8                                   | 278,2        | 0,3        | 0,0          | 8,9                                     | 9,1      | 9,5                               |                              |
| 311,1   | 247,7         | 254,3                                   | 276,8                                           | 277,8                                   | 278,2        | 0,2        | 0,0          | 8,9                                     | 9,1      | 9,5                               |                              |
| 335,3   | 247,7         | 254,3                                   | 276,8                                           | 277,8                                   | 278,2        | 0,2        | 0,0          | 8,9                                     | 9,1      | 9,5                               |                              |
| 359,8   | 247,7         | 254,3                                   | 276,8                                           | 277,8                                   | 278,1        | 0,2        | 0,0          | 8,9                                     | 9,1      | 9,5                               |                              |
| 455,8   | 247,7         | 254,3                                   | 276,7                                           | 277,8                                   | 278,0        | 0,2        | 0,0          | 8,8                                     | 9,1      | 9,4                               |                              |
| 479,3   | 247,7         | 254,3                                   | 276,7                                           | 277,8                                   | 277,9        | 0,2        | 0,0          | 8,8                                     | 9,1      | 6,9                               |                              |
| 503,333 | 247,7         | 254,3                                   | 276,7                                           | 277,8                                   | 277,9        | 0,2        | 0,0          | 8,8                                     | 9,1      | 6,9                               |                              |
| 622,833 | 247,7         | 254,3                                   | 276,7                                           | 277,7                                   | 277,8        | 0,2        | 0,0          | 8,8                                     | 0,6      | 9,2                               |                              |
| 695,167 | 247,7         | 254,3                                   | 276,4                                           | 277,7                                   | 277,8        | 0,2        | 0,0          | 8,5                                     | 0,6      | 9,2                               |                              |

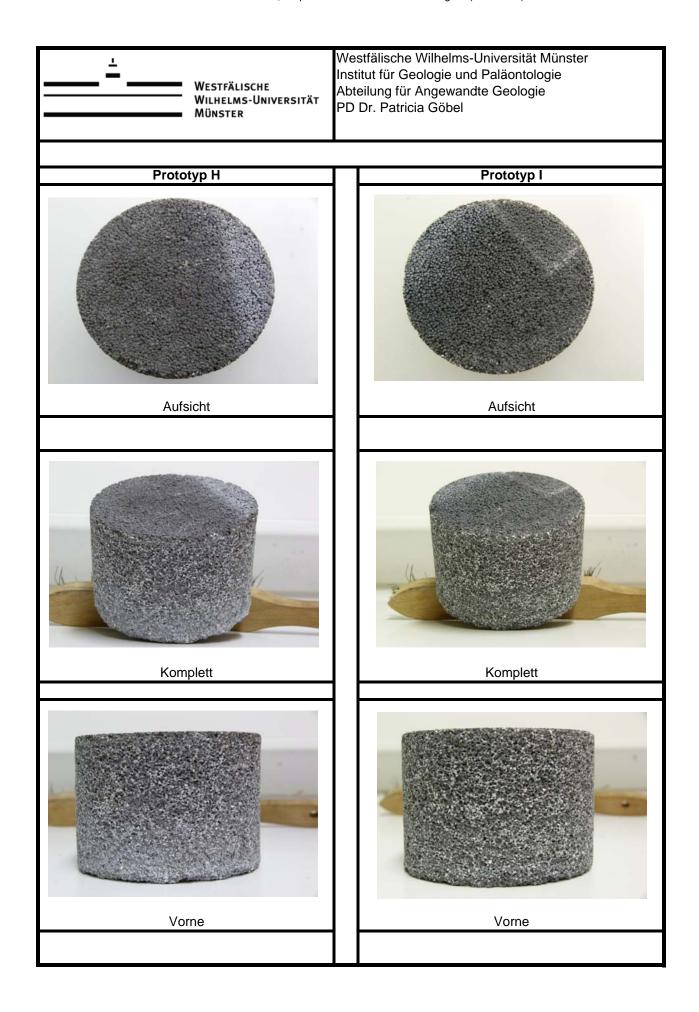

|        | -1            | WESTFÄLISG<br>WILHELMS-<br>MÜNSTER | WESTFÄLISCHE<br>Wilhelms-Universität<br>Münster | Ergebn                                  | isse der            | . Messung     | Ergebnisse der Messung der Saugspannung | Laborant: Sara Rölver      |
|--------|---------------|------------------------------------|-------------------------------------------------|-----------------------------------------|---------------------|---------------|-----------------------------------------|----------------------------|
| pF-Stu | pF-Stufe: 2,5 |                                    | eingestel                                       | eingestellter Druck: 0,3 bar ± 0,01 bar | : 0,3 bar ±         | : 0,01 bar    | Datum: (                                | Datum: 07.12.10 - 07.04.11 |
|        | Basalt        | Basalt-splitt                      | Füll-<br>sand                                   | Basalt-splitt                           | -splitt             | Füll-<br>sand |                                         |                            |
|        | Fuge 2        | Fuge 3                             | Fuge 5                                          | Fuge 2                                  | Fuge 3              | Fuge 5        |                                         |                            |
| Δt (h) | )             | Gewicht (g)                        | (k                                              | Wasse                                   | Wassergehalt (Vol%) | (ol%)         |                                         |                            |
| 0,0    | 307,7         | 310,8                              | 306,0                                           | 45,4                                    | 42,7                | 40,8          |                                         |                            |
| 191,3  | 263,3         | 267,0                              | 269,1                                           | 4,7                                     | 2,5                 | 0,7           |                                         |                            |
| 361,0  | 263,1         | 267,0                              | 269,0                                           | 4,5                                     | 2,5                 | 6,9           |                                         |                            |
| 744,8  | 263,1         | 267,0                              | 268,9                                           | 4,5                                     | 2,5                 | 8,9           |                                         |                            |
| 1006,5 | 262,4         | 266,8                              | 266,7                                           | 3,9                                     | 2,3                 | 8,4           |                                         |                            |
| 1198,8 | 262,4         | 266,5                              | 266,1                                           | 3,9                                     | 2,0                 | 4,2           |                                         |                            |
| 1342,8 | 262,2         | 266,7                              | 265,9                                           | 3,7                                     | 2,2                 | 4,0           |                                         |                            |
| 1511,5 | 262,2         | 266,7                              | 265,6                                           | 3,7                                     | 2,2                 | 3,8           |                                         |                            |
| 1682,3 | 262,0         | 266,6                              | 264,9                                           | 3,5                                     | 2,1                 | 3,1           |                                         |                            |
| 1846,5 | 261,9         | 266,5                              | 264,6                                           | 3,4                                     | 2,0                 | 2,8           |                                         |                            |
| 1919,0 | 262,0         | 266,2                              | 264,6                                           | 3,5                                     | 1,7                 | 2,8           |                                         |                            |
| 2039,0 | 262,1         | 266,1                              | 264,8                                           | 3,6                                     | 1,7                 | 3,0           |                                         |                            |
| 2182,5 | 262,1         | 266,1                              | 264,6                                           | 3,6                                     | 1,7                 | 2,8           |                                         |                            |
| 2230,5 | 262,0         | 265,1                              | 262,9                                           | 3,5                                     | 2,0                 | 1,3           |                                         |                            |
| 2374,5 | 262,2         | 266,3                              | 265,0                                           | 3,7                                     | 1,8                 | 3,2           |                                         |                            |
| 2590,5 | 262,2         | 266,2                              | 265,0                                           | 3,7                                     | 1,7                 | 3,2           |                                         |                            |
| 2926,5 | 262,1         | 266,3                              | 265,2                                           | 3,6                                     | 1,8                 | 3,4           |                                         |                            |
|        |               |                                    |                                                 |                                         |                     |               |                                         |                            |
|        |               |                                    |                                                 |                                         |                     |               |                                         |                            |
|        |               |                                    |                                                 |                                         |                     |               |                                         |                            |

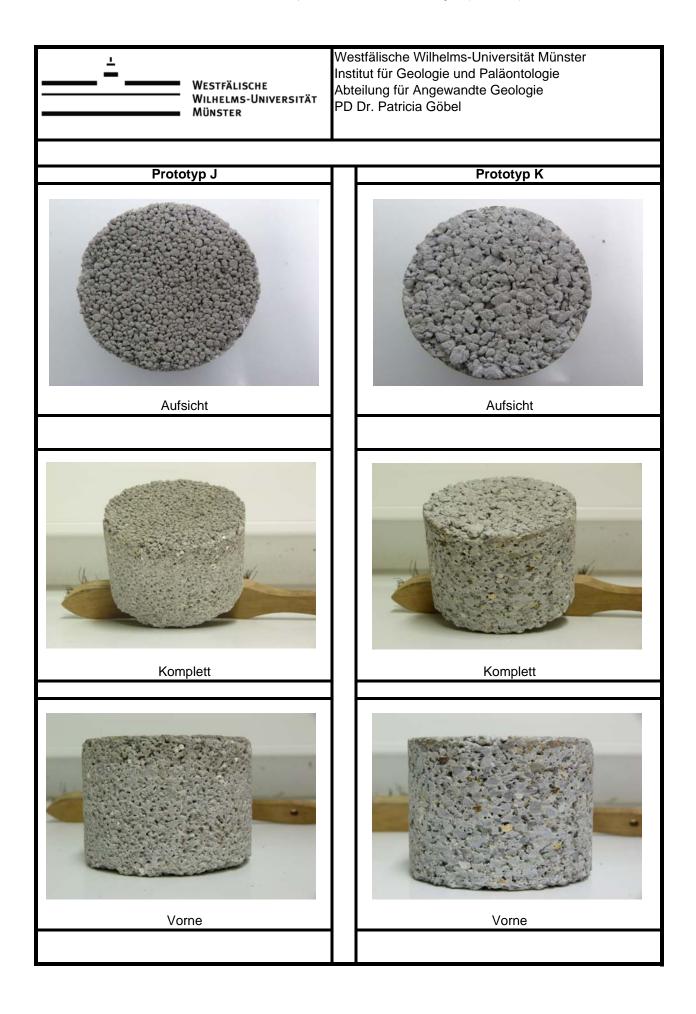

|        | - I           | ■ WESTFÄLISCHE       | CHE                             |                                              | Fraebnisse der Messung der Saugspanning | Messil.    | ng der 9         | Salidspa     | מחוממ     | Labora                            | Laborant: Sara Rölver | Rölver |
|--------|---------------|----------------------|---------------------------------|----------------------------------------------|-----------------------------------------|------------|------------------|--------------|-----------|-----------------------------------|-----------------------|--------|
|        |               | WILHELMS-<br>MÜNSTER | Wilhelms-Universität<br>Münster |                                              |                                         |            | ,<br>,<br>,<br>, |              | )<br>}    |                                   | 5                     | 5      |
| pF-Stu | pF-Stufe: 2,5 |                      | eingeste                        | eingestellter Druck: $0.3$ bar $\pm 0.01$ ba | <b>c:</b> 0,3 bar ±                     | : 0,01 bar |                  |              | Datum: 2  | <b>Datum:</b> 24.08.10 - 10.09.10 | 10.09.10              |        |
|        | 3             | Basaltsplitt         | #                               |                                              | Füllsand                                |            |                  | Basaltsplitt | t         |                                   | Füllsand              |        |
|        | Fuge 1        | Fuge 2               | Fuge 3                          | Fuge 4                                       | Fuge 5                                  | Fuge 6     | Fuge 1           | Fuge 2       | Fuge 3    | Fuge 4                            | Fuge 5                | Fuge 6 |
| Δt (h) |               |                      | Gewic                           | Gewicht (g)                                  |                                         |            |                  | M            | /assergeh | Wassergehalt (Vol%)               | (%)                   |        |
| 0      | 291,3         | 306,0                | 9'008                           | 6'908                                        | 304,5                                   | 301,3      | 37,9             | 43,9         | 38,8      | 32,5                              | 30,8                  | 29,8   |
| 0,5    | 278,5         | 302,8                | 296,1                           | 303,5                                        | 302,3                                   | 298,2      | 26,2             | 40,9         | 34,7      | 29,4                              | 28,8                  | 27,0   |
| 1,5    | 263,7         | 300,7                | 291,9                           | 6'008                                        | 302,1                                   | 296,9      | 12,6             | 39,0         | 30,8      | 27,0                              | 28,6                  | 25,8   |
| က      | 254,0         | 297,0                | 285,0                           | 298,2                                        | 301,0                                   | 294,4      | 3,7              | 35,6         | 24,5      | 24,5                              | 27,6                  | 23,5   |
| 5,5    | 253,1         | 291,0                | 274,2                           | 294,4                                        | 300,4                                   | 290,5      | 2,8              | 30,1         | 14,6      | 21,0                              | 27,1                  | 19,9   |
| 23,5   | 251,5         | 264,9                | 259,7                           | 280,2                                        | 297,1                                   | 274,0      | 4,1              | 6,1          | 1,3       | 8,0                               | 24,0                  | 8,     |
| 29     | 251,4         | 264,2                | 259,5                           | 279,2                                        | 295,3                                   | 273,1      | 1,3              | 5,5          | 1,1       | 7,1                               | 22,4                  | 3,9    |
| 48,75  | 251,2         | 263,6                | 259,2                           | 278,4                                        | 290,2                                   | 271,7      | 1,1              | 5,0          | 8,0       | 6,3                               | 17,7                  | 2,7    |
| 72,25  | 251,2         | 263,5                | 259,2                           | 277,8                                        | 286,9                                   | 271,0      | 1,1              | 6,4          | 8,0       | 5,8                               | 14,7                  | 2,0    |
| 167,5  | 251,1         | 263,5                | 259,1                           | 276,8                                        | 279,1                                   | 270,7      | 1,0              | 6,4          | 2,0       | 6,4                               | 7,5                   | 1,7    |
| 192,25 | 251,1         | 263,5                | 259,1                           | 276,8                                        | 277,5                                   | 270,6      | 1,0              | 6,4          | 2,0       | 6,4                               | 6,1                   | 1,7    |
| 215,25 | 251,1         | 263,5                | 259,1                           | 276,7                                        | 276,7                                   | 270,6      | 1,0              | 6,4          | 2,0       | 8,4                               | 5,3                   | 1,7    |
| 239,5  | 251,1         | 263,5                | 259,1                           | 276,7                                        | 276,1                                   | 270,6      | 1,0              | 6,4          | 2,0       | 8,4                               | 8,4                   | 1,7    |
| 335,5  | 251,1         | 263,5                | 259,1                           | 276,5                                        | 274,5                                   | 270,5      | 1,0              | 6,4          | 2,0       | 4,6                               | 3,3                   | 1,6    |
| 359,25 | 251,1         | 263,5                | 259,1                           | 276,4                                        | 274,4                                   | 270,5      | 1,0              | 6,4          | 2,0       | 4,5                               | 3,2                   | 1,6    |
| 383,25 | 251,1         | 263,5                | 259,1                           | 276,4                                        | 274,3                                   | 270,5      | 1,0              | 6,4          | 2,0       | 4,5                               | 3,1                   | 1,6    |
| 408,75 | 251,10        | 263,50               | 259,10                          | 276,40                                       | 274,30                                  | 270,50     | 1,0              | 4,9          | 0,7       | 4,5                               | 3,1                   | 1,6    |

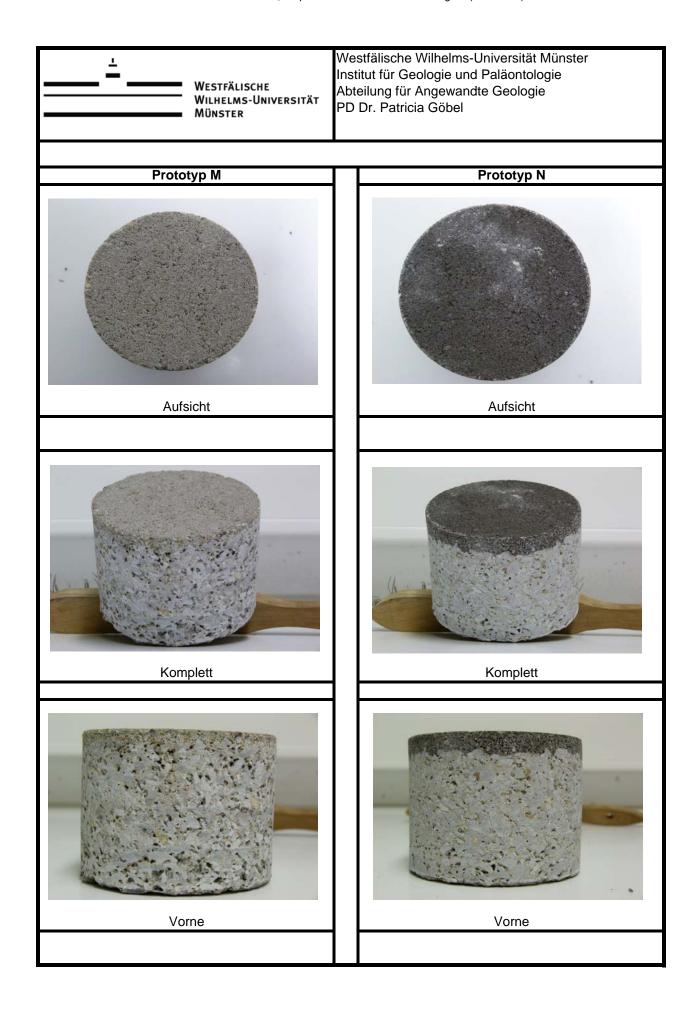

|         | -1            | WESTFÄLISCHE<br>WILHELMS-UNI<br>MÜNSTER | WESTFÄLISCHE<br>WILHELMS-UNIVERSITÄT<br>Münster |                                         | isse der     | Messu      | ng der (     | Ergebnisse der Messung der Saugspannung | gunuus   | Labora                            | <b>Laborant:</b> Sara Rölver |
|---------|---------------|-----------------------------------------|-------------------------------------------------|-----------------------------------------|--------------|------------|--------------|-----------------------------------------|----------|-----------------------------------|------------------------------|
| pF-Stu  | pF-Stufe: 2,5 |                                         | eingeste                                        | eingestellter Druck: 0,3 bar ± 0,01 bar | c: 0,3 bar ± | . 0,01 bar |              |                                         | Datum: ( | <b>Datum:</b> 07.10.10 - 05.11.10 | 05.11.10                     |
|         | Basal         | Basaltsplitt                            |                                                 | Füllsand                                |              | Basal      | Basaltsplitt |                                         | Füllsand |                                   |                              |
|         | Fuge 7        | Fuge 8                                  | Fuge 9                                          | Fuge 10                                 | Fuge 11      | Fuge 7     | Fuge 8       | Fuge 9                                  | Fuge 10  | Fuge 11                           |                              |
| Δt (h)  |               |                                         | Gewicht (g)                                     | _                                       |              |            | Wasse        | Wassergehalt (Vol%)                     | /ol%)    |                                   |                              |
| 0,0     | 284,7         | 292,9                                   | 305,5                                           | 304,3                                   | 304,9        | 34,1       | 35,4         | 35,2                                    | 33,4     | 34,0                              |                              |
| 8,0     | 281,6         | 288,2                                   | 301,3                                           | 301,0                                   | 295,3        | 31,3       | 31,1         | 31,4                                    | 30,4     | 25,2                              |                              |
| 2,3     | 279,9         | 283,0                                   | 299,4                                           | 297,0                                   | 289,8        | 29,7       | 26,3         | 29,6                                    | 26,7     | 20,2                              |                              |
| 0,9     | 279,3         | 271,8                                   | 293,7                                           | 287,3                                   | 286,1        | 29,2       | 16,1         | 24,4                                    | 17,8     | 16,8                              |                              |
| 24,2    | 274,4         | 254,6                                   | 281,4                                           | 281,0                                   | 281,8        | 24,7       | 0,3          | 13,1                                    | 12,0     | 12,8                              |                              |
| 120,3   | 251,7         | 254,4                                   | 277,4                                           | 278,4                                   | 279,0        | 3,9        | 0,1          | 9,5                                     | 9,6      | 10,3                              |                              |
| 144,3   | 248,3         | 254,4                                   | 277,1                                           | 278,2                                   | 278,7        | 2,0        | 0,1          | 9,2                                     | 9,5      | 10,0                              |                              |
| 167,3   | 248,0         | 254,3                                   | 277,0                                           | 278,1                                   | 278,6        | 9,0        | 0,0          | 9,1                                     | 9,4      | 6,6                               |                              |
| 191,7   | 247,8         | 254,3                                   | 276,9                                           | 278,0                                   | 278,6        | 0,3        | 0,0          | 0,6                                     | 6,9      | 6,6                               |                              |
| 294,1   | 247,8         | 254,3                                   | 276,8                                           | 277,8                                   | 278,2        | 0,3        | 0,0          | 8,9                                     | 9,1      | 9,5                               |                              |
| 311,1   | 247,7         | 254,3                                   | 276,8                                           | 277,8                                   | 278,2        | 0,2        | 0,0          | 8,9                                     | 9,1      | 9,5                               |                              |
| 335,3   | 247,7         | 254,3                                   | 276,8                                           | 277,8                                   | 278,2        | 0,2        | 0,0          | 8,9                                     | 9,1      | 9,5                               |                              |
| 359,8   | 247,7         | 254,3                                   | 276,8                                           | 277,8                                   | 278,1        | 0,2        | 0,0          | 8,9                                     | 9,1      | 9,5                               |                              |
| 455,8   | 247,7         | 254,3                                   | 276,7                                           | 277,8                                   | 278,0        | 0,2        | 0,0          | 8,8                                     | 9,1      | 9,4                               |                              |
| 479,3   | 247,7         | 254,3                                   | 276,7                                           | 277,8                                   | 277,9        | 0,2        | 0,0          | 8,8                                     | 9,1      | 6,9                               |                              |
| 503,333 | 247,7         | 254,3                                   | 276,7                                           | 277,8                                   | 277,9        | 0,2        | 0,0          | 8,8                                     | 9,1      | 6,9                               |                              |
| 622,833 | 247,7         | 254,3                                   | 276,7                                           | 277,7                                   | 277,8        | 0,2        | 0,0          | 8,8                                     | 0,6      | 9,2                               |                              |
| 695,167 | 247,7         | 254,3                                   | 276,4                                           | 277,7                                   | 277,8        | 0,2        | 0,0          | 8,5                                     | 0,6      | 9,2                               |                              |

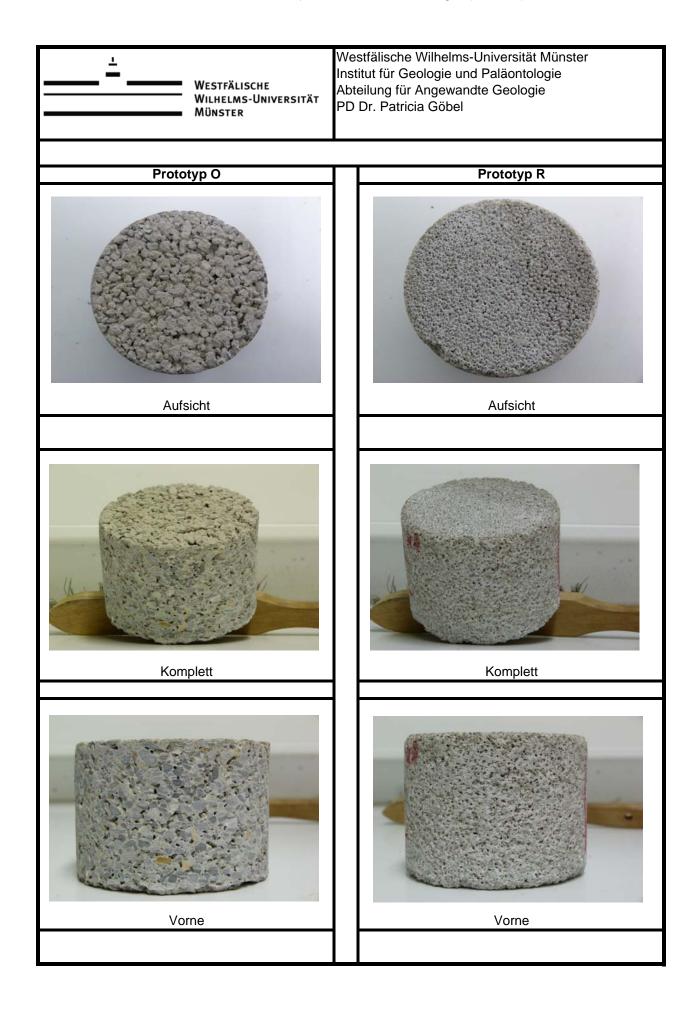

|        | -1            | WESTFÄLISC<br>WILHELMS-L | WESTFÄLISCHE<br>Wilhelms-Universität<br>Münster | Ergebn        | isse dei            | r Messun   | Ergebnisse der Messung der Saugspannung | Laborant: Sara Rölver      |
|--------|---------------|--------------------------|-------------------------------------------------|---------------|---------------------|------------|-----------------------------------------|----------------------------|
| pF-Stu | pF-Stufe: 2,5 |                          | eingestell                                      |               | : 0,3 bar ±         | . 0,01 bar | Datum:                                  | Datum: 07.12.10 - 07.04.11 |
|        | Basalt        | Basalt-splitt            | Füll-                                           | Basalt-splitt | -splitt             | Füll-      |                                         |                            |
|        | Fuge 2        | Fuge 3                   | Fuge 5                                          | Fuge 2        | Fuge 3              | Fuge 5     |                                         |                            |
| Δt (h) | 9             | Gewicht (g)              | (1                                              | Wasse         | Wassergehalt (Vol%) | /ol%)      |                                         |                            |
| 0,0    | 307,7         | 310,8                    | 306,0                                           | 45,4          | 42,7                | 40,8       |                                         |                            |
| 191,3  | 263,3         | 267,0                    | 269,1                                           | 4,7           | 2,5                 | 2,0        |                                         |                            |
| 361,0  | 263,1         | 267,0                    | 269,0                                           | 4,5           | 2,5                 | 6,9        |                                         |                            |
| 744,8  | 263,1         | 267,0                    | 268,9                                           | 4,5           | 2,5                 | 8,9        |                                         |                            |
| 1006,5 | 262,4         | 266,8                    | 266,7                                           | 3,9           | 2,3                 | 8,4        |                                         |                            |
| 1198,8 | 262,4         | 266,5                    | 266,1                                           | 3,9           | 2,0                 | 4,2        |                                         |                            |
| 1342,8 | 262,2         | 266,7                    | 265,9                                           | 3,7           | 2,2                 | 0,4        |                                         |                            |
| 1511,5 | 262,2         | 266,7                    | 265,6                                           | 3,7           | 2,2                 | 3,8        |                                         |                            |
| 1682,3 | 262,0         | 266,6                    | 264,9                                           | 3,5           | 2,1                 | 3,1        |                                         |                            |
| 1846,5 | 261,9         | 266,5                    | 264,6                                           | 3,4           | 2,0                 | 2,8        |                                         |                            |
| 1919,0 | 262,0         | 266,2                    | 264,6                                           | 3,5           | 1,7                 | 2,8        |                                         |                            |
| 2039,0 | 262,1         | 266,1                    | 264,8                                           | 3,6           | 1,7                 | 3,0        |                                         |                            |
| 2182,5 | 262,1         | 266,1                    | 264,6                                           | 3,6           | 1,7                 | 2,8        |                                         |                            |
| 2230,5 | 262,0         | 265,1                    | 262,9                                           | 3,5           | 2,0                 | 1,3        |                                         |                            |
| 2374,5 | 262,2         | 266,3                    | 265,0                                           | 3,7           | 1,8                 | 3,2        |                                         |                            |
| 2590,5 | 262,2         | 266,2                    | 265,0                                           | 3,7           | 1,7                 | 3,2        |                                         |                            |
| 2926,5 | 262,1         | 266,3                    | 265,2                                           | 3,6           | 1,8                 | 3,4        |                                         |                            |
|        |               |                          |                                                 |               |                     |            |                                         |                            |
|        |               |                          |                                                 |               |                     |            |                                         |                            |
|        |               |                          |                                                 |               |                     |            |                                         |                            |



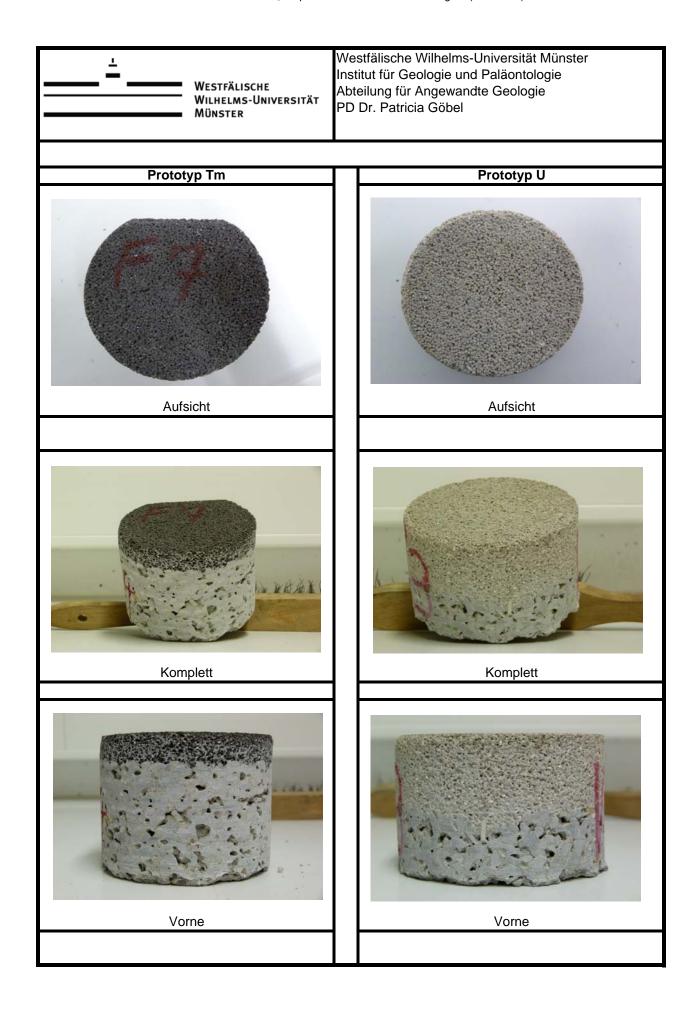



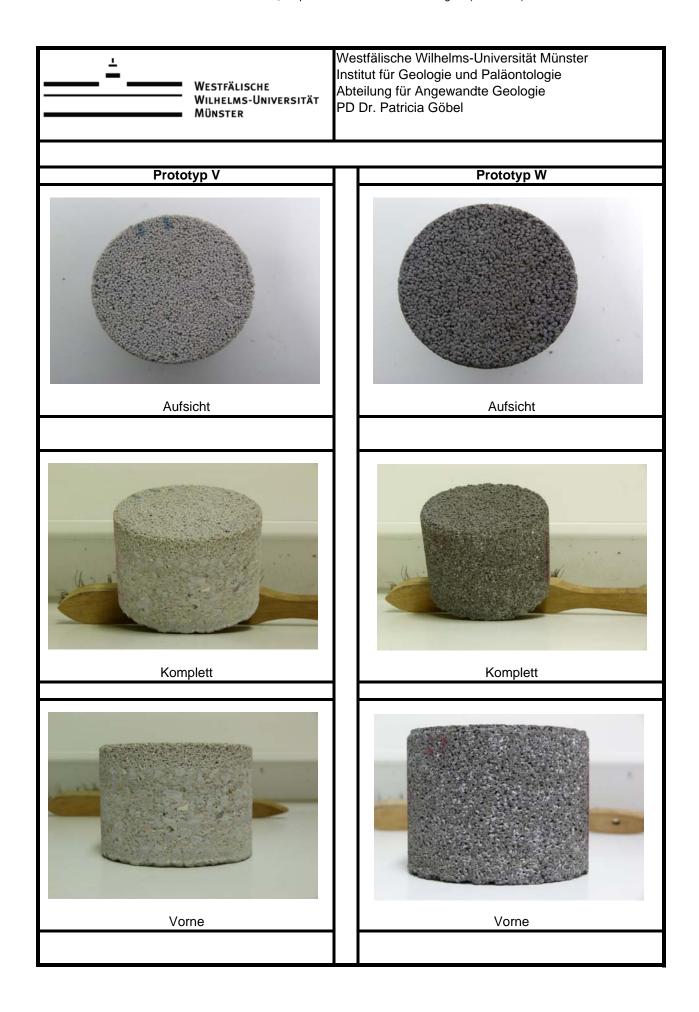



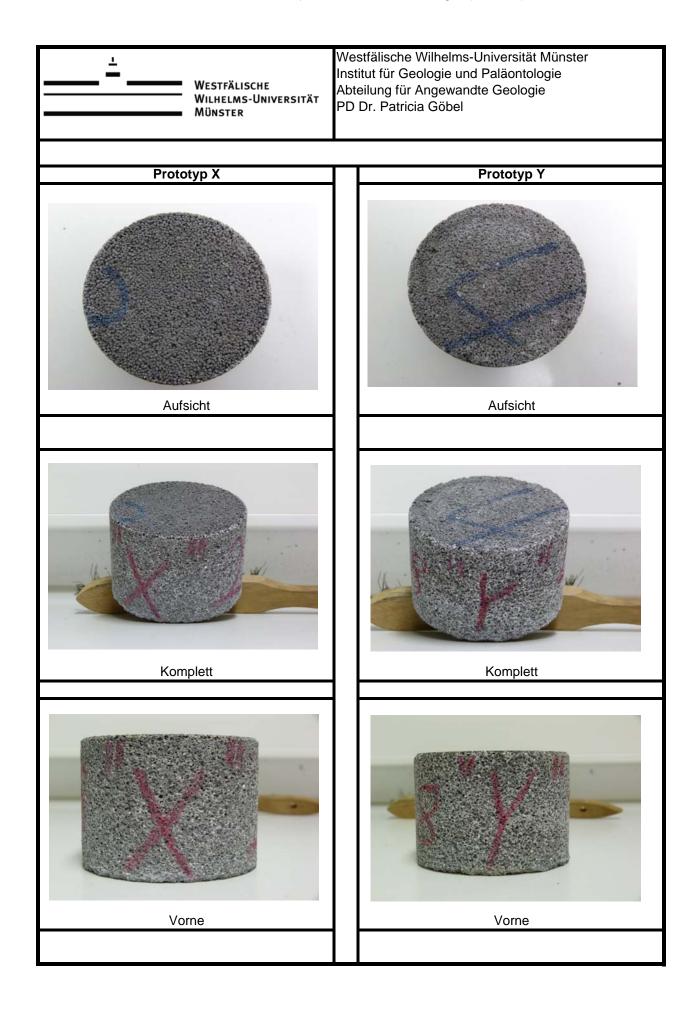



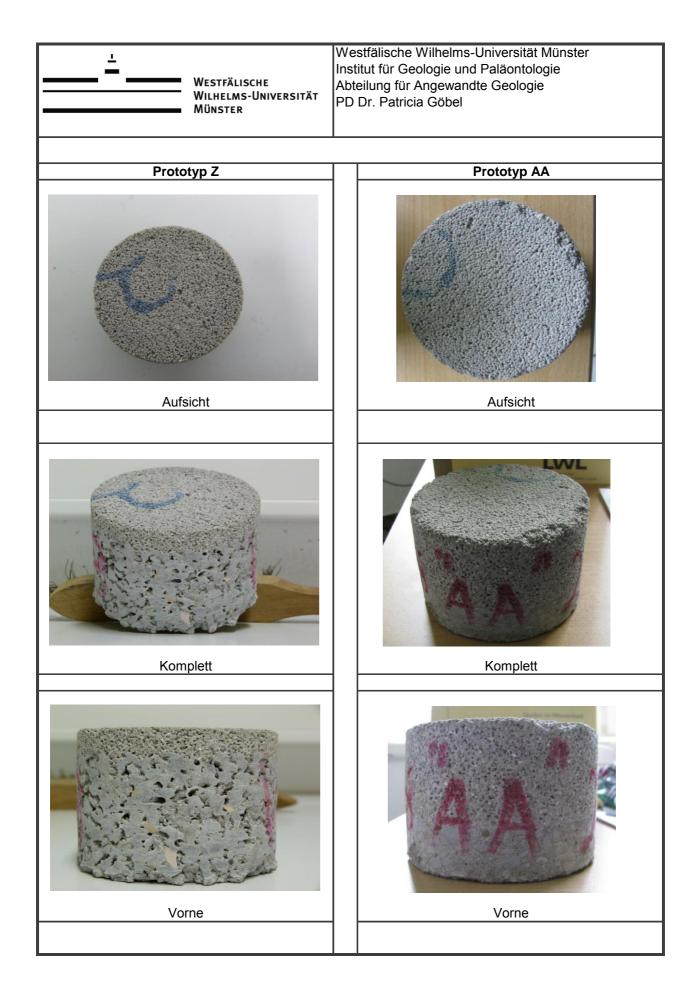
















|          |        | <u> </u>         |                     | Westfälische Wilhelms-Univ                  |                          |
|----------|--------|------------------|---------------------|---------------------------------------------|--------------------------|
|          |        | _ <b>_</b> ,,,   | <b>-</b>            | Institut für Geologie und Pa                | aläontologie             |
|          |        |                  | ESTFÄLISCHE         | Abteilung für Angewandte                    | Geologie                 |
|          |        |                  | ILHELMS-UNIVERSITÄT | PD Dr. Patricia Göbel                       |                          |
|          |        | IVI              | ÜNSTER              | 1 5 51. Tutilia Godei                       |                          |
|          |        |                  |                     |                                             |                          |
| Abm      | iessi  | ungen Prototypen |                     |                                             |                          |
|          |        | Durchmesser [cm] | Probenlänge [cm]    | Volumen ( $V=\pi \cdot r^2 \cdot h$ ) [cm³] | Fließquerschnitt A [cm²] |
|          | 4      | 9,92             | 7,90                | 610,58                                      | 77,29                    |
|          | 5      | 9,92             | 7,62                | 588,94                                      | 77,29                    |
| Α        | 6      | 9,90             | 7,85                | 604,27                                      | 76,98                    |
|          | 7      | 9,91             | 7,75                | 597,78                                      | 77,13                    |
|          | 8      | 10,02            | 7,90                | 622,95                                      | 78,85                    |
|          | 4      | 10,05            | 7,76                | 615,58                                      | 79,33                    |
|          | 5      | 9,90             | 7,70                | 600,42                                      | 76,98                    |
| В        | -      |                  |                     |                                             |                          |
| Ď        | 6      | 9,90             | 8,10                | 623,51                                      | 76,98                    |
|          | 7      | 9,96             | 7,85                | 611,62                                      | 77,91                    |
| <u> </u> | 8      | 9,90             | 8,00                | 615,81                                      | 76,98                    |
|          | 4      | 9,90             | 7,75                | 596,57                                      | 76,98<br>                |
|          | 5      | 9,95             | 7,90                | 614,28                                      | 77,76                    |
| С        | 6a     | 9,92             | 7,50                | 579,66                                      | 77,29                    |
|          | 7      | 9,94             | 7,87                | 610,71                                      | 77,60                    |
|          | 8      | 9,90             | 7,85                | 604,27                                      | 76,98                    |
|          | 1      | 9,93             | 7,87                | 609,49                                      | 77,44                    |
|          | 2      | 9,95             | 7,96                | 618,94                                      | 77,76                    |
|          | 3      | 9,92             | 8,02                | 619,85                                      | 77,29                    |
| D        | 4      | 9,90             | 7,77                | 598,11                                      | 76,98                    |
|          | 5      | 9,93             | 7,72                | 597,87                                      | 77,44                    |
|          | 7      | 9,91             | 7,87                | 607,03                                      | 77,13                    |
|          | 8      | 9,91             | 7,72                | 595,46                                      | 77,13                    |
|          | 1      | 9,78             | 7,65                | 574,68                                      | 75,12                    |
|          | 2      | 9,90             | 8,25                | 635,06                                      | 76,98                    |
|          | 3      | 9,92             | 8,13                | 628,35                                      | 77,29                    |
| _        | 4      | 9,93             | 8,11                | 628,07                                      | 77,44                    |
|          | 5      | 9,93             | 8,25                | 638,91                                      |                          |
|          | -      |                  |                     | 650,82                                      | 77,44<br>77,76           |
|          | 6<br>7 | 9,95             | 8,37                | -                                           | 77,76                    |
| <b>-</b> | -      | 9,95             | 8,20                | 637,60                                      | 77,76                    |
|          | 1      | 9,93             | 8,11                | 628,07                                      | 77,44                    |
|          | 2      | 9,95             | 8,13                | 632,16                                      | 77,76                    |
|          | 3      | 9,94             | 8,14                | 631,67                                      | 77,60                    |
| Ff       | 4      | 9,96             | 7,97                | 620,96                                      | 77,91                    |
|          | 5      | 9,98             | 7,99                | 625,03                                      | 78,23                    |
|          | 6      | 9,94             | 8,19                | 635,55                                      | 77,60                    |
|          | 7      | 10,01            | 8,22                | 646,89                                      | 78,70                    |
|          | 1      | 9,96             | 7,34                | 571,88                                      | 77,91                    |
|          | 2      | 9,96             | 7,47                | 582,01                                      | 77,91                    |
| Fr       | 3      | 9,92             | 7,55                | 583,53                                      | 77,29                    |
|          | 4      | 9,93             | 7,77                | 601,74                                      | 77,44                    |
| Ī        | 5      | 9,93             | 7,55                | 584,70                                      | 77,44                    |
|          | 1a     | 9,96             | 7,72                | 601,49                                      | 77,91                    |
|          | 2      | 9,96             | 7,77                | 605,38                                      | 77,91                    |
| G        | 3      | 9,93             | 7,67                | 594,00                                      | 77,44                    |
| ľ        | 4      | 9,92             | 7,86                | 607,49                                      | 77,29                    |
| 1        | 5      | 9,93             | 7,86                | 608,71                                      | 77,29                    |
|          | J      | 3,33             | 7,00                | 000,71                                      | // <del>,44</del>        |

| Mesträlische Wilhelms-Universität Münster Institut für Geologie und Paläontologie Abteilung für Angewandte Geologie PD Dr. Patricia Göbel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Abmessungen Prototypen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| Abmessungen Prototypen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| Durchmesser [cm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| Abmessurgen Prototypen    1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Durchmesser [cm]   Probenlänge [cm]   Volumen (V=πr²·h) [cm³]   Fließquerschnitt A [cm²]   Fließque |     |
| Durchmesser [cm]   Probenlänge [cm]   Volumen (V=πr²·h) [cm³]   Fließquerschnitt A [cm²]   Fließque |     |
| 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| 2         9,98         7,64         597,65         78,23           3         9,91         7,61         586,98         77,13           4         9,92         7,62         588,94         77,29           5         9,92         7,71         595,89         77,29           1         9,91         7,35         566,92         77,13           2         9,90         7,49         576,56         76,98           4         9,89         7,66         588,45         76,82           5         9,90         7,74         595,80         76,98           4         9,89         7,66         588,45         76,82           5         9,90         7,74         595,80         76,98           2         9,89         7,92         608,43         76,98           2         9,89         7,79         599,65         76,98           4         9,95         7,69         597,95         77,76           5         9,91         7,90         609,35         77,13           4         10,06         7,61         604,88         79,49           6         9,88         7,71         591,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n²] |
| H       3       9,91       7,61       586,98       77,13         4       9,92       7,62       588,94       77,29         5       9,92       7,71       595,89       77,29         1       9,91       7,35       566,92       77,13         2       9,90       7,49       576,56       76,98         4       9,89       7,66       588,45       76,82         5       9,90       7,74       595,80       76,98         2       9,89       7,69       591,95       76,98         2       9,89       7,92       608,43       76,82         3       9,90       7,79       599,65       76,98         4       9,95       7,69       597,95       77,76         5       9,91       7,90       609,35       77,13         4       10,06       7,61       604,88       79,49         6       9,88       7,71       591,10       76,67         7       9,89       7,97       612,27       76,82         8       9,89       7,71       592,29       76,82         10       9,88       7,93       607,96       76,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 4         9,92         7,62         588,94         77,29           5         9,92         7,71         595,89         77,29           1         9,91         7,35         566,92         77,13           2         9,90         7,49         576,56         76,98           3         9,90         7,80         600,42         76,98           4         9,89         7,66         588,45         76,82           5         9,90         7,74         595,80         76,98           2         9,89         7,92         608,43         76,82           3         9,90         7,79         599,65         76,98           4         9,95         7,69         597,95         77,76           5         9,91         7,90         609,35         77,13           4         10,06         7,61         604,88         79,49           6         9,88         7,71         591,10         76,67           7         9,89         7,71         592,29         76,82           8         9,89         7,71         592,29         76,82           10         9,88         7,93         607,96 <td< th=""><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 5         9,92         7,71         595,89         77,29           1         9,91         7,35         566,92         77,13           2         9,90         7,49         576,56         76,98           4         9,89         7,66         588,45         76,82           5         9,90         7,74         595,80         76,98           1         9,90         7,69         591,95         76,98           2         9,89         7,92         608,43         76,82           3         9,90         7,79         599,65         76,98           4         9,95         7,69         597,95         77,76           5         9,91         7,90         609,35         77,13           4         10,06         7,61         604,88         79,49           4         10,06         7,61         604,88         79,49           8         9,89         7,71         591,10         76,67           7         9,88         7,71         592,29         76,82           10         9,88         7,93         607,96         76,67           2         9,91         8,08         623,23 <t< th=""><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| 5         9,92         7,71         595,89         77,29           1         9,91         7,35         566,92         77,13           2         9,90         7,49         576,56         76,98           4         9,89         7,66         588,45         76,82           5         9,90         7,74         595,80         76,98           1         9,90         7,69         591,95         76,98           2         9,89         7,92         608,43         76,82           3         9,90         7,79         599,65         76,98           4         9,95         7,69         597,95         77,76           5         9,91         7,90         609,35         77,13           4         10,06         7,61         604,88         79,49           4         10,06         7,61         604,88         79,49           8         9,89         7,71         591,10         76,67           7         9,88         7,71         592,29         76,82           10         9,88         7,93         607,96         76,67           2         9,91         8,08         623,23 <t< th=""><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| 1   9,91   7,35   566,92   77,13     2   9,90   7,49   576,56   76,98     4   9,89   7,66   588,45   76,82     5   9,90   7,74   595,80   76,98     1   9,90   7,69   591,95   76,98     2   9,89   7,92   608,43   76,82     3   9,90   7,79   599,65   76,98     4   9,95   7,69   597,95   77,76     5   9,91   7,90   609,35   77,13     4   10,06   7,61   604,88   79,49     6   9,88   7,71   591,10   76,67     7   9,89   7,97   612,27   76,82     8   9,89   7,71   592,29   76,82     10   9,88   7,93   607,96   76,67     1   9,31   7,20   490,14   68,08     2   9,91   8,08   623,23   77,13     M   3   9,89   8,05   618,41   76,82     4   9,31   7,20   490,14   68,08     5   9,90   8,20   631,21   76,98     1   9,88   7,87   603,36   76,67     N   3   9,90   7,98   614,28   76,98     4   9,88   7,87   603,36   76,67     5   9,89   8,01   615,34   76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| I       3       9,90       7,80       600,42       76,98         4       9,89       7,66       588,45       76,82         5       9,90       7,74       595,80       76,98         1       9,90       7,69       591,95       76,98         2       9,89       7,92       608,43       76,82         3       9,90       7,79       599,65       76,98         4       9,95       7,69       597,95       77,76         5       9,91       7,90       609,35       77,13         4       10,06       7,61       604,88       79,49         6       9,88       7,71       591,10       76,67         7       9,89       7,97       612,27       76,82         8       9,89       7,71       592,29       76,82         10       9,88       7,93       607,96       76,67         1       9,31       7,20       490,14       68,08         2       9,91       8,08       623,23       77,13         M       3       9,89       8,05       618,41       76,82         4       9,31       7,20       490,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| I       3       9,90       7,80       600,42       76,98         4       9,89       7,66       588,45       76,82         5       9,90       7,74       595,80       76,98         1       9,90       7,69       591,95       76,98         2       9,89       7,92       608,43       76,82         3       9,90       7,79       599,65       76,98         4       9,95       7,69       597,95       77,76         5       9,91       7,90       609,35       77,13         4       10,06       7,61       604,88       79,49         6       9,88       7,71       591,10       76,67         7       9,89       7,97       612,27       76,82         8       9,89       7,71       592,29       76,82         10       9,88       7,93       607,96       76,67         1       9,31       7,20       490,14       68,08         2       9,91       8,08       623,23       77,13         M       3       9,89       8,05       618,41       76,82         4       9,31       7,20       490,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 4       9,89       7,66       588,45       76,82         5       9,90       7,74       595,80       76,98         1       9,90       7,69       591,95       76,98         2       9,89       7,92       608,43       76,82         3       9,90       7,79       599,65       76,98         4       9,95       7,69       597,95       77,76         5       9,91       7,90       609,35       77,13         6       9,88       7,71       591,10       76,67         7       9,89       7,97       612,27       76,82         8       9,89       7,71       592,29       76,82         10       9,88       7,93       607,96       76,67         8       9,89       8,05       618,41       68,08         2       9,91       8,08       623,23       77,13         M       3       9,89       8,05       618,41       76,82         4       9,31       7,20       490,14       68,08         5       9,90       8,20       631,21       76,98         1       9,88       7,87       603,36       76,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| 5         9,90         7,74         595,80         76,98           1         9,90         7,69         591,95         76,98           2         9,89         7,92         608,43         76,82           3         9,90         7,79         599,65         76,98           4         9,95         7,69         597,95         77,76           5         9,91         7,90         609,35         77,13           4         10,06         7,61         604,88         79,49           6         9,88         7,71         591,10         76,67           8         9,89         7,71         592,29         76,82           8         9,89         7,71         592,29         76,82           10         9,88         7,93         607,96         76,67           2         9,91         8,08         623,23         77,13           M         3         9,89         8,05         618,41         76,82           4         9,31         7,20         490,14         68,08           5         9,90         8,20         631,21         76,98           1         9,88         7,87         603,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 1       9,90       7,69       591,95       76,98         2       9,89       7,92       608,43       76,82         3       9,90       7,79       599,65       76,98         4       9,95       7,69       597,95       77,76         5       9,91       7,90       609,35       77,13         4       10,06       7,61       604,88       79,49         6       9,88       7,71       591,10       76,67         7       9,89       7,97       612,27       76,82         8       9,89       7,71       592,29       76,82         10       9,88       7,93       607,96       76,67         2       9,91       8,08       623,23       77,13         M       3       9,89       8,05       618,41       76,82         4       9,31       7,20       490,14       68,08         5       9,90       8,20       631,21       76,98         1       9,88       7,87       603,36       76,67         2       9,88       7,87       603,36       76,67         9,89       8,01       614,28       76,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| J       3       9,90       7,79       599,65       76,98         4       9,95       7,69       597,95       77,76         5       9,91       7,90       609,35       77,13         4       10,06       7,61       604,88       79,49         6       9,88       7,71       591,10       76,67         7       9,89       7,97       612,27       76,82         8       9,89       7,71       592,29       76,82         10       9,88       7,93       607,96       76,67         2       9,91       8,08       623,23       77,13         M       3       9,89       8,05       618,41       76,82         4       9,31       7,20       490,14       68,08         5       9,90       8,20       631,21       76,98         5       9,90       8,20       631,21       76,98         1       9,88       7,87       603,36       76,67         2       9,88       7,87       603,36       76,67         3       9,90       7,98       614,28       76,98         4       9,88       7,80       598,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| J       3       9,90       7,79       599,65       76,98         4       9,95       7,69       597,95       77,76         5       9,91       7,90       609,35       77,13         4       10,06       7,61       604,88       79,49         6       9,88       7,71       591,10       76,67         7       9,89       7,97       612,27       76,82         8       9,89       7,71       592,29       76,82         10       9,88       7,93       607,96       76,67         2       9,91       8,08       623,23       77,13         M       3       9,89       8,05       618,41       76,82         4       9,31       7,20       490,14       68,08         5       9,90       8,20       631,21       76,98         5       9,90       8,20       631,21       76,98         1       9,88       7,87       603,36       76,67         2       9,88       7,87       603,36       76,67         3       9,90       7,98       614,28       76,98         4       9,88       7,80       598,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 5         9,91         7,90         609,35         77,13           4         10,06         7,61         604,88         79,49           6         9,88         7,71         591,10         76,67           7         9,89         7,97         612,27         76,82           8         9,89         7,71         592,29         76,82           10         9,88         7,93         607,96         76,67           2         9,91         8,08         623,23         77,13           M         3         9,89         8,05         618,41         76,82           4         9,31         7,20         490,14         68,08           5         9,90         8,20         631,21         76,98           1         9,88         7,87         603,36         76,67           2         9,88         7,87         603,36         76,67           1         9,88         7,87         603,36         76,67           2         9,88         7,80         598,00         76,67           5         9,89         8,01         615,34         76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 5         9,91         7,90         609,35         77,13           4         10,06         7,61         604,88         79,49           6         9,88         7,71         591,10         76,67           7         9,89         7,97         612,27         76,82           8         9,89         7,71         592,29         76,82           10         9,88         7,93         607,96         76,67           2         9,91         8,08         623,23         77,13           M         3         9,89         8,05         618,41         76,82           4         9,31         7,20         490,14         68,08           5         9,90         8,20         631,21         76,98           1         9,88         7,87         603,36         76,67           2         9,88         7,87         603,36         76,67           1         9,88         7,87         603,36         76,67           2         9,88         7,80         598,00         76,67           5         9,89         8,01         615,34         76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 4       10,06       7,61       604,88       79,49         6       9,88       7,71       591,10       76,67         7       9,89       7,97       612,27       76,82         8       9,89       7,71       592,29       76,82         10       9,88       7,93       607,96       76,67         1       9,31       7,20       490,14       68,08         2       9,91       8,08       623,23       77,13         3       9,89       8,05       618,41       76,82         4       9,31       7,20       490,14       68,08         5       9,90       8,20       631,21       76,98         1       9,88       8,11       621,76       76,67         2       9,88       7,87       603,36       76,67         N       3       9,90       7,98       614,28       76,98         4       9,88       7,80       598,00       76,67         5       9,89       8,01       615,34       76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 6         9,88         7,71         591,10         76,67           7         9,89         7,97         612,27         76,82           8         9,89         7,71         592,29         76,82           10         9,88         7,93         607,96         76,67           1         9,31         7,20         490,14         68,08           2         9,91         8,08         623,23         77,13           3         9,89         8,05         618,41         76,82           4         9,31         7,20         490,14         68,08           5         9,90         8,20         631,21         76,98           1         9,88         7,87         603,36         76,67           N         3         9,90         7,98         614,28         76,98           4         9,88         7,80         598,00         76,67           5         9,89         8,01         615,34         76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| K       7       9,89       7,97       612,27       76,82         8       9,89       7,71       592,29       76,82         10       9,88       7,93       607,96       76,67         1       9,31       7,20       490,14       68,08         2       9,91       8,08       623,23       77,13         M       3       9,89       8,05       618,41       76,82         4       9,31       7,20       490,14       68,08         5       9,90       8,20       631,21       76,98         1       9,88       8,11       621,76       76,67         2       9,88       7,87       603,36       76,67         N       3       9,90       7,98       614,28       76,98         4       9,88       7,80       598,00       76,67         5       9,89       8,01       615,34       76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 8       9,89       7,71       592,29       76,82         10       9,88       7,93       607,96       76,67         1       9,31       7,20       490,14       68,08         2       9,91       8,08       623,23       77,13         3       9,89       8,05       618,41       76,82         4       9,31       7,20       490,14       68,08         5       9,90       8,20       631,21       76,98         1       9,88       7,87       603,36       76,67         2       9,88       7,87       603,36       76,67         N       3       9,90       7,98       614,28       76,98         4       9,88       7,80       598,00       76,67         5       9,89       8,01       615,34       76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 10         9,88         7,93         607,96         76,67           1         9,31         7,20         490,14         68,08           2         9,91         8,08         623,23         77,13           M         3         9,89         8,05         618,41         76,82           4         9,31         7,20         490,14         68,08           5         9,90         8,20         631,21         76,98           1         9,88         8,11         621,76         76,67           2         9,88         7,87         603,36         76,67           N         3         9,90         7,98         614,28         76,98           4         9,88         7,80         598,00         76,67           5         9,89         8,01         615,34         76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 1       9,31       7,20       490,14       68,08         2       9,91       8,08       623,23       77,13         M       3       9,89       8,05       618,41       76,82         4       9,31       7,20       490,14       68,08         5       9,90       8,20       631,21       76,98         1       9,88       8,11       621,76       76,67         2       9,88       7,87       603,36       76,67         N       3       9,90       7,98       614,28       76,98         4       9,88       7,80       598,00       76,67         5       9,89       8,01       615,34       76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 2       9,91       8,08       623,23       77,13         M       3       9,89       8,05       618,41       76,82         4       9,31       7,20       490,14       68,08         5       9,90       8,20       631,21       76,98         1       9,88       8,11       621,76       76,67         2       9,88       7,87       603,36       76,67         N       3       9,90       7,98       614,28       76,98         4       9,88       7,80       598,00       76,67         5       9,89       8,01       615,34       76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| M       3       9,89       8,05       618,41       76,82         4       9,31       7,20       490,14       68,08         5       9,90       8,20       631,21       76,98         1       9,88       8,11       621,76       76,67         2       9,88       7,87       603,36       76,67         N       3       9,90       7,98       614,28       76,98         4       9,88       7,80       598,00       76,67         5       9,89       8,01       615,34       76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 4       9,31       7,20       490,14       68,08         5       9,90       8,20       631,21       76,98         1       9,88       8,11       621,76       76,67         2       9,88       7,87       603,36       76,67         N       3       9,90       7,98       614,28       76,98         4       9,88       7,80       598,00       76,67         5       9,89       8,01       615,34       76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 1     9,88     8,11     621,76     76,67       2     9,88     7,87     603,36     76,67       N     3     9,90     7,98     614,28     76,98       4     9,88     7,80     598,00     76,67       5     9,89     8,01     615,34     76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 2     9,88     7,87     603,36     76,67       N     3     9,90     7,98     614,28     76,98       4     9,88     7,80     598,00     76,67       5     9,89     8,01     615,34     76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 2     9,88     7,87     603,36     76,67       N     3     9,90     7,98     614,28     76,98       4     9,88     7,80     598,00     76,67       5     9,89     8,01     615,34     76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| N     3     9,90     7,98     614,28     76,98       4     9,88     7,80     598,00     76,67       5     9,89     8,01     615,34     76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 4     9,88     7,80     598,00     76,67       5     9,89     8,01     615,34     76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| 5     9,89     8,01     615,34     76,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| <u>2</u> 9,90 7,27 559,62 76,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| O 3 9,84 7,29 554,38 76,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 4 9,87 7,22 552,41 76,51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 5     9,86     7,30     557,40     76,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| R 9,93 8,07 624,97 77,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| S 9,91 7,94 612,43 77,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 1 9,82 7,29 552,13 75,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| <b>2</b> 9,83 7,24 549,46 75,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| T 3 9,84 7,05 536,13 76,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 4 9,88 7,18 550,46 76,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 5 9,93 6,98 540,56 77,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 1 9,44 8,19 573,22 69,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| Z     9,61     8,28     600,57     72,53       Tm     3     9,74     8,24     613,95     74,51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 4 9,24 8,27 554,55 67,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 5 9,61 8,22 596,22 72,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |

|         |     | <u> </u>         |                                    | Westfälische Wilhelms-Uni    |                          |
|---------|-----|------------------|------------------------------------|------------------------------|--------------------------|
|         |     | _ <b>_</b> ,,,   | ·                                  | Institut für Geologie und Pa | aläontologie             |
|         |     |                  | ESTFÄLISCHE<br>ILHELMS-UNIVERSITÄT | Abteilung für Angewandte     | Geologie                 |
|         |     |                  | ÜNSTER                             | PD Dr. Patricia Göbel        | _                        |
|         |     |                  | ONSTER                             |                              |                          |
| -       |     |                  |                                    |                              |                          |
| Abm     | ess | ungen Prototypen |                                    |                              |                          |
|         |     | Durchmesser [cm] | Probenlänge [cm]                   | Volumen (V=π·r²· h) [cm³]    | Fließquerschnitt A [cm²] |
|         | 1   | 9,83             | 6,74                               | 511,51                       | 75,89                    |
|         | 2   | 9,83             | 6,84                               | 519,10                       | 75,89                    |
| U       | 3   | 9,94             | 6,95                               | 539,32                       | 77,60                    |
|         | 4   | 9,82             | 6,62                               | 501,38                       | 75,74                    |
|         | 5   | 9,91             | 6,99                               | 539,16                       | 77,13                    |
|         | 1   | 9,92             | 7,54                               | 582,75                       | 77,29                    |
|         | 2   | 9,92             | 7,45                               | 575,80                       | 77,29                    |
| V       | 3   | 9,93             | 7,43<br>7,42                       | 574,64                       | 77,44                    |
| v       | 4   | 9,93             | 7,42<br>7,49                       | 580,06                       | 77,44                    |
|         | 5   |                  | 7,49                               | 591,73                       | 77,44                    |
| W       |     | 9,90             |                                    |                              |                          |
| VV      |     |                  | 8,31                               | 639,68                       | 76,98                    |
|         | 1   | 9,89             | 7,19                               | 552,35                       | 76,82                    |
| .,      | 1   | 9,89             | 7,68                               | 589,99                       | 76,82                    |
| Х       | 3   | 9,91             | 7,44                               | 573,87                       | 77,13                    |
|         | 4   | 9,91             | 7,35                               | 566,92                       | 77,13                    |
|         | 5   | ·                | 7,47                               | 575,02                       | 76,98                    |
|         | 1   | 9,90             | 7,56                               | 581,95                       | 76,98                    |
|         | 2   | 9,92             | 7,57                               | 585,07                       | 77,29                    |
| Υ       | 3   | 9,90             | 7,80                               | 600,42                       | 76,98                    |
|         | 4   | 9,89             | 7,54                               | 579,23                       | 76,82                    |
|         | 5   | ,                | 7,64                               | 588,10                       | 76,98                    |
|         | 1   | 9,92             | 7,45                               | 575,80                       | 77,29                    |
|         | 2   | 9,94             | 7,33                               | 568,81                       | 77,60                    |
| Z       | 3   | 9,91             | 7,30                               | 563,07                       | 77,13                    |
|         | 4   | 9,89             | 7,55                               | 580,00                       | 76,82                    |
|         | 5   | 9,92             | 7,46                               | 576,57                       | 77,29                    |
|         | 1a  | 9,92             | 7,32                               | 565,75                       | 77,29                    |
|         | 2   | 9,9              | 6,98                               | 537,30                       | 76,98                    |
| AA      | 3   | 9,95             | 7,2                                | 559,85                       | 77,76                    |
|         | 4   | 9,9              | 7,34                               | 565,01                       | 76,98                    |
|         | 5   | 9,93             | 7,11                               | 550,63                       | 77,44                    |
|         | 1a  | 9,90             | 7,87                               | 605,81                       | 76,98                    |
| <u></u> | 2   | 9,91             | 8,08                               | 623,23                       | 77,13                    |
| Gefdg   | 3   | 9,90             | 7,96                               | 612,74                       | 76,98                    |
| Ō       | 4   | 9,87             | 8,12                               | 621,27                       | 76,51                    |
|         | 5   | 9,88             | 8,05                               | 617,16                       | 76,67                    |
|         | 1a  | 9,91             | 7,92                               | 610,89                       | 77,13                    |
| в       | 2   | 9,89             | 8,06                               | 619,18                       | 76,82                    |
| Gefda   | 3   | 9,92             | 8,11                               | 626,81                       | 77,29                    |
| Ő       | 4   | 9,89             | 8,00                               | 614,57                       | 76,82                    |
| 1       | 5   |                  | 8,05                               | 620,92                       | 77,13                    |
|         | 1a  | 9,93             | 8,00                               | 619,55                       | 77,44                    |
| 50      | 2a  | 9,88             | 8,08                               | 619,46                       | 76,67                    |
| Geog    | 3a  | 9,91             | 7,89                               | 608,58                       | 77,13                    |
| Ű       | 4   | 9,91             | 8,10                               | 624,77                       | 77,13                    |
|         | 5   |                  | 8,18                               | 629,67                       | 76,98                    |
|         |     | -,               | -/                                 | /                            | /                        |

|                            |      | W                             | ESTFÄLISCHE<br>ILHELMS-UNIVERSITÄT<br>ÜNSTER | Westfälische Wilhelms-Univ<br>Institut für Geologie und Pa<br>Abteilung für Angewandte (<br>PD Dr. Patricia Göbel | aläontologie             |  |  |  |
|----------------------------|------|-------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|--|
| Abm                        | essı | ungen Prototypen              |                                              |                                                                                                                   |                          |  |  |  |
|                            |      | Durchmesser [cm]              | Probenlänge [cm]                             | Volumen ( $V=\pi \cdot r^2 \cdot h$ ) [cm <sup>3</sup> ]                                                          | Fließquerschnitt A [cm²] |  |  |  |
|                            | 1a   | 9,90                          | 8,11                                         | 624,28                                                                                                            | 76,98                    |  |  |  |
| g 2 9,91 8,16 629,40 77,13 |      |                               |                                              |                                                                                                                   |                          |  |  |  |
| Geoa                       | 3    | 9,90                          | 8,11                                         | 624,28                                                                                                            | 76,98                    |  |  |  |
| b                          | 4    | 9,90                          | 8,16                                         | 628,13                                                                                                            | 76,98                    |  |  |  |
|                            | 5    | 9,92                          | 8,12                                         | 627,58                                                                                                            | 77,29                    |  |  |  |
| <b>Erlä</b> u<br>a: Pr     |      | ung:<br>nkern auf der Obersei | te angeschliffen                             |                                                                                                                   |                          |  |  |  |

# Pflastersteine-WD Abschlussbericht "Evaporকালে পুলা শুলি পুলা শুলা ভাষা প্রভাগ (Az: 23277) Druckfestigkeit

gem. DIN 18501

Prüfnummer: 133a/2009 Werk: 14

**Produkt:** geoSTON® Abmessungen: 20/10/8 Farbe: Braun

Herstelldatum: 06.06.2008 Prüfalter: 286 Tage Prüftag: 19.03.2009

Nennmaße (mm): Länge: 197 **Breite:** 97 Dicke: 80

> Abstandhalter: Fase: 2/2

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                | 1                     | 2<br>Stoinahman | 3     | 4                                     | Anfordarun                  |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------|-----------------------|-----------------|-------|---------------------------------------|-----------------------------|--------------------|
| Länge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | L <sub>1</sub>                 |                       | Steinabmes      |       |                                       | t < 100mm: L <sub>no</sub>  |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mm         | L <sub>2</sub>                 | 197,0                 | 197,1           | 196,7 | 197,8                                 |                             |                    |
| Mittel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mm         | =2                             | 197,5                 | 197,5           | 197,1 | 196,9                                 | t ≥ 100mm: L <sub>nor</sub> | <sub>n</sub> ± 3mm |
| Breite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mm         | D                              | 197,3                 | 197,3           | 196,9 | 197,4                                 |                             |                    |
| District Control of the Control of t | mm         | B <sub>1</sub>                 | 97,1                  | 96,8            | 96,7  | 96,8                                  | t < 100mm: B <sub>no</sub>  | <sub>m</sub> ± 2mm |
| A4114 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mm         | B <sub>2</sub>                 | 96,9                  | 96,6            | 96,6  | 97,3                                  | t ≥ 100mm: B <sub>no</sub>  | <sub>m</sub> ± 3mm |
| Mittel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mm         |                                | 97,0                  | 96,7            | 96,7  | 97,1                                  |                             |                    |
| Dicke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mm         | $t_1$                          | 80,8                  | 80,4            | 80,2  | 80,7                                  | t < 100mm: D <sub>no</sub>  | <sub>m</sub> ± 3mm |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mm         | t <sub>2</sub>                 | 80,8                  | 80,7            | 80,4  | 81,0                                  | t ≥ 100mm: D <sub>no</sub>  | m ± 4mm            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mm         | t <sub>3</sub>                 | 81,6                  | 80,8            | 80,7  | 81,5                                  |                             |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mm         | t <sub>4</sub>                 | 80,6                  | 80,8            | 80,5  | 82,0                                  |                             |                    |
| Mittel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mm         |                                | 81,0                  | 80,7            | 80,5  | 81,3                                  |                             |                    |
| Abweichung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                | •                     |                 | ,     | · · · · · · · · · · · · · · · · · · · | ≤ 3mm                       |                    |
| Diagonalen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mm         | $D_1$                          | 1,0                   | 0,4             | 0,5   | 1,3                                   | - "                         |                    |
| (wenn > 300mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | D <sub>2</sub>                 | 216,2                 | 215,7           | 215,3 | 215,5                                 | $\dashv$                    |                    |
| Abweichung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                | 215,3                 | 215,2           | 214,7 | 214,9                                 | 4.2                         |                    |
| Ebenheit (D > 300 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mm<br>mm   |                                | 0,9                   | 0,5             | 0,6   | 0,6                                   | ≤ 3mm                       |                    |
| (über die Diagonale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | V <sub>1</sub>                 | <0,5                  | <0,5            | <0,5  | <0,5                                  | _                           |                    |
| messen)  Vorsatz (kleinste Dicke in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mm         | V <sub>2</sub>                 | <0,5                  | <0,5            | <0,5  | <0,5                                  |                             |                    |
| der Bruchfläche)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                | 7                     | 5               | 8     | 7                                     | ≥ 4mm                       |                    |
| Abstandhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm         | t                              | 3                     | 3               | 3     | 3                                     |                             |                    |
| Fase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mm         | V                              | 2/3                   | 2/3             | 2/3   | 2/3                                   | $v_{nom} \pm 2mm$           |                    |
| Trockengewicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g          | G                              | 3287                  | 3291            | 3269  | 3339                                  | Rohdichte:                  |                    |
| Volumen durch<br>Abmessungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cm³        | Vol                            | 1549                  | 1539            | 1531  | 1557                                  | Mittelwert:                 | 2135 kg/           |
| Rohdichte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kg / m³    |                                | 2122                  | 2138            | 2135  | 2144                                  | Abweichung:                 | 22 kg/             |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                |                       | Bruchfläche     | •     |                                       | •                           |                    |
| Bruchlast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | KN         | Р                              | 627,0                 | 672,7           | 634,8 | 730,8                                 | Druckfestigkeit             |                    |
| Druckfläche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                | 12800                 | 12800           | 12800 | 12800                                 | T Mittel =                  | 52,1 M             |
| e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mm²        |                                | 12000                 | 12800           | 12800 | 12800                                 |                             |                    |
| Druckfestigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MPa        | <u> </u>                       |                       |                 |       |                                       |                             | 0 N/mm²            |
| Di dekrestigkere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12         | Т                              | 49,0                  | 52,6            | 49,6  | 57,1                                  | T Min > 3  Sollwert Attrib  | 5 N/mm²            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |                       |                 |       |                                       | Einzelwerte ≥               | _                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |                       |                 |       |                                       | Einzeiwerte 2               | 40 МРа             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |                       |                 |       |                                       | _                           |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |                       |                 |       |                                       |                             |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |                       |                 |       |                                       | Anforderu                   | ngen erfüllt       |
| Mittel<br>Druckfestigkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MPa        | т                              | 49,0                  | 52,6            | 49,6  | 57,1                                  | T Mittel =                  | 52,1 M             |
| Bemerkungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                | , ohne Wasserlagerung | geprüft.        | -     |                                       |                             |                    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | reihe V 10/09<br>e 80 x 160 mm |                       |                 |       |                                       |                             |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Druckplatt | 6 90 X 100 IIIII               |                       |                 |       |                                       |                             |                    |
| Prüfer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J.Wildenhu |                                |                       |                 |       |                                       |                             |                    |

**KLOSTERMANN** 

### Pflastersteine-WD Abschlussbericht "Evaporaligne yen Pflasterstein-Belägen" (Az: 23277) Druckfestigkeit

Druckfestigkeit gem. DIN 18501

Prüfnummer: 133a/2009 Werk: 14

Produkt: geoSTON <sup>®</sup> Abmessungen: 20/10/8 Farbe: Braun

Herstelldatum: 06.06.2008 Prüfalter: 286 Tage Prüftag: 19.03.2009

Nennmaße (mm): Länge: 197 Breite: 97 Dicke: 80

Abstandhalter: 3 Fase: 2/2

|                                |                 |                                               | 1                     | 2                   | 3               | 4               |                                      |                     |  |  |  |  |  |
|--------------------------------|-----------------|-----------------------------------------------|-----------------------|---------------------|-----------------|-----------------|--------------------------------------|---------------------|--|--|--|--|--|
| Länge                          | 1               |                                               |                       | Steinabme           | ssungen         |                 | Anforderunge                         | n                   |  |  |  |  |  |
| Lange                          | mm              | L <sub>1</sub>                                | 197,0                 | 197,1               | 196,7           | 197,8           | t < 100mm: L <sub>no</sub>           | <sub>m</sub> ± 2mm  |  |  |  |  |  |
|                                | mm              | L <sub>2</sub>                                | 197,5                 | 197,5               | 197,1           | 196,9           | t ≥ 100mm: L <sub>no</sub>           | <sub>m</sub> ± 3mm  |  |  |  |  |  |
| Mittel                         | mm              |                                               | 197,3                 | 197,3               | 196,9           | 197,4           |                                      |                     |  |  |  |  |  |
| Breite                         | mm              | B <sub>1</sub>                                | 97,1                  | 96,8                | 96,7            | 96,8            | t < 100mm: B <sub>no</sub>           | <sub>m</sub> ± 2mm  |  |  |  |  |  |
|                                | mm              | B <sub>2</sub>                                | 96,9                  | 96,6                | 96,6            | 97,3            | t ≥ 100mm: B <sub>no</sub>           | <sub>m</sub> ± 3mm  |  |  |  |  |  |
| Mittel                         | mm              |                                               | 97,0                  | 96,7                | 96,7            | 97,1            |                                      |                     |  |  |  |  |  |
| Dicke                          | mm              | $t_1$                                         | 80,8                  | 80,4                | 80,2            | 80,7            | t < 100mm: D <sub>n</sub>            | <sub>om</sub> ± 3mm |  |  |  |  |  |
|                                | mm              | t <sub>2</sub>                                | 80,8                  | 80,7                | 80,4            | 81,0            | t ≥ 100mm: D <sub>n</sub>            | <sub>om</sub> ± 4mm |  |  |  |  |  |
|                                | mm              | t <sub>3</sub>                                | 81,6                  | 80,8                | 80,7            | 81,5            |                                      |                     |  |  |  |  |  |
|                                | mm              | t <sub>4</sub>                                | 80,6                  | 80,8                | 80,5            | 82,0            |                                      |                     |  |  |  |  |  |
| Mittel                         | mm              |                                               | 81,0                  | 80,7                | 80,5            | 81,3            |                                      |                     |  |  |  |  |  |
| Abweichung                     | mm              |                                               | 1,0                   | 0,4                 | 0,5             | 1,3             | ≤ 3mm                                |                     |  |  |  |  |  |
| Diagonalen                     | mm              | $D_1$                                         | 216,2                 | 215,7               | 215,3           | 215,5           |                                      |                     |  |  |  |  |  |
| (wenn > 300mm)                 |                 | D <sub>2</sub>                                | 215,3                 | 215,2               | 214,7           | 214,9           |                                      |                     |  |  |  |  |  |
| Abweichung                     |                 |                                               |                       |                     |                 |                 | ≤ 3mm                                |                     |  |  |  |  |  |
| Ebenheit (D > 30               | 0 mm) mm        | V <sub>1</sub>                                | <b>0,9</b><br><0,5    | <b>0,5</b> <0,5     | <b>0,6</b> <0,5 | <b>0,6</b> <0,5 |                                      |                     |  |  |  |  |  |
| (über die Diagonale            | 2               |                                               |                       | ·                   |                 | •               |                                      |                     |  |  |  |  |  |
| messen) Vorsatz (kleinste [    | Dicke in mm     | V <sub>2</sub>                                | <0,5                  | <0,5                | <0,5            | <0,5            | ≥ 4mm                                |                     |  |  |  |  |  |
| der Bruchfläche) Abstandhalter | mm              |                                               | 7                     | 5                   | 8               | 7               |                                      |                     |  |  |  |  |  |
|                                |                 | t                                             | 3                     | 3                   | 3               | 3               |                                      |                     |  |  |  |  |  |
| Fase                           | mm              | V                                             | 2/3                   | 2/3                 | 2/3             | 2/3             | v <sub>nom</sub> ± 2mm<br>Rohdichte: |                     |  |  |  |  |  |
| Trockengewicht Volumen durch   | g               | G                                             | 3287                  | 3291                | 3269            | 3339            |                                      | 24251 /             |  |  |  |  |  |
| Abmessungen                    | cm <sup>3</sup> | Vol                                           | 1549                  | 1539                | 1531            | 1557            | Mittelwert:                          | 2135 kg/r           |  |  |  |  |  |
| Rohdichte                      | kg / m³         |                                               | 2122                  | 2138<br>Bruchfläche | 2135            | 2144            | Abweichung:                          | 22 kg/r             |  |  |  |  |  |
|                                | 1               | 1                                             |                       | Di dellinaene       | <del> </del>    |                 | 1                                    |                     |  |  |  |  |  |
| Bruchlast<br>Druckfläche       | KN              | Р                                             | 627,0                 | 672,7               | 634,8           | 730,8           | Druckfestigkei                       |                     |  |  |  |  |  |
| OF Druckfläche<br>86           | mm²             |                                               | 12800                 | 12800               | 12800           | 12800           | T Mittel =                           | 52,1 M              |  |  |  |  |  |
| age                            |                 |                                               |                       |                     |                 |                 | T char >                             | 0 N/mm²             |  |  |  |  |  |
| Druckfestigke                  | it MPa          | т                                             | 49,0                  | 52,6                | 49,6            | 57,1            | T Min > 3                            | 5 N/mm²             |  |  |  |  |  |
|                                |                 |                                               |                       |                     |                 |                 | Sollwert Attril                      | out-Prüfung:        |  |  |  |  |  |
|                                |                 |                                               |                       |                     |                 |                 | Einzelwerte ≥                        | 40 MPa              |  |  |  |  |  |
|                                |                 |                                               |                       |                     |                 |                 |                                      |                     |  |  |  |  |  |
|                                |                 |                                               |                       |                     |                 |                 |                                      |                     |  |  |  |  |  |
|                                |                 |                                               |                       |                     |                 |                 | Anforderu                            | ngen erfüllt        |  |  |  |  |  |
| Mittel<br>Druckfestigke        | it MPa          | т                                             | 49,0                  | 52,6                | 49,6            | 57,1            | T Mittel =                           | 52,1 M              |  |  |  |  |  |
| Bemerkungen                    | Steine beid     | dseitig geschliffer                           | , ohne Wasserlagerung |                     |                 | ,               |                                      |                     |  |  |  |  |  |
|                                |                 | Versuchsreihe V 10/09 Druckplatte 80 x 160 mm |                       |                     |                 |                 |                                      |                     |  |  |  |  |  |
| Prüfer:                        | J.Wildenhu      |                                               |                       |                     |                 |                 |                                      |                     |  |  |  |  |  |
| i i diei .                     |                 |                                               |                       |                     |                 |                 |                                      |                     |  |  |  |  |  |

**KLOSTERMANN** 

#### Pflastersteine-WD geprüft gem. DIN EN 1338 Abschlussbericht "Evaporation von Pflasterstein-Belägen" (Az: 23277)

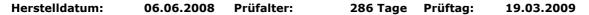
Prüfnummer: 134a/2009 Werk: 14

Produkt: geoSTON ® Abmessungen: 20/10/8 Farbe: Braun

Herstelldatum: 06.06.2008 Prüfalter: 286 Tage Prüftag: 19.03.2009

Nennmaße (mm): Länge : 197 Breite: 97 Dicke: 80

Abstandhalter: 3 Fase: 2/2




|                                    |                 |                                       | Abstanunaiter:          |                | rase:                                            | 2/2    |                                                    |
|------------------------------------|-----------------|---------------------------------------|-------------------------|----------------|--------------------------------------------------|--------|----------------------------------------------------|
|                                    |                 |                                       | 1                       | 2<br>Steinabme | 3                                                | 4      | Anfordorungon                                      |
| Länge                              |                 | L <sub>1</sub>                        |                         |                |                                                  |        | Anforderungen<br>t < 100mm: L <sub>nom</sub> ± 2mm |
|                                    | mm              | L <sub>2</sub>                        | 198,1                   | 197,4          | 197,0                                            | 197,9  |                                                    |
| Mittel                             | mm              |                                       | 198,3                   | 197,8          | 196,7                                            | 197,7  | t ≥ 100mm: L <sub>nom</sub> ± 3mm                  |
| Breite                             | mm              |                                       | 198,2                   | 197,6          | 196,9                                            | 197,8  | _                                                  |
| Di cite                            | mm              | B <sub>1</sub>                        | 97,6                    | 97,1           | 96,5                                             | 96,8   | t < 100mm: B <sub>nom</sub> ± 2mm                  |
|                                    | mm              | B <sub>2</sub>                        | 97,3                    | 97,1           | 96,1                                             | 97,1   | t ≥ 100mm: B <sub>nom</sub> ± 3mm                  |
| Mittel                             | mm              |                                       | 97,5                    | 97,1           | 96,3                                             | 97,0   |                                                    |
| Dicke                              | mm              | t <sub>1</sub>                        | 79,9                    | 79,9           | 79,6                                             | 80,0   | t < 100mm: D <sub>nom</sub> ± 3mm                  |
|                                    | mm              | t <sub>2</sub>                        | 79,9                    | 79,8           | 78,9                                             | 80,4   | t ≥ 100mm: D <sub>nom</sub> ± 4mm                  |
|                                    | mm              | t <sub>3</sub>                        | 80,0                    | 80,2           | 79,2                                             | 80,9   |                                                    |
|                                    |                 | t <sub>4</sub>                        | 80,2                    | 80,5           | 79,3                                             | 80,9   |                                                    |
| Mittel                             | mm              |                                       |                         |                |                                                  |        |                                                    |
| Abweichung                         | mm              | +                                     | 80,0                    | 80,1           | 79,3                                             | 80,6   | ≤ 3mm                                              |
| Diagonalen                         | mm<br>mm        | D <sub>1</sub>                        | 0,3                     | 0,7            | 0,7                                              | 0,9    | 2 311111                                           |
| (wenn > 300mm)                     |                 | D <sub>2</sub>                        | 215,7                   | 216,2          | 215,5                                            | 215,7  |                                                    |
| Abweichung                         |                 |                                       | 216,3                   | 215,5          | 215,0                                            | 215,4  |                                                    |
| Ebenheit (D > 300 mm)              | mm              |                                       | 0,6                     | 0,7            | 0,5                                              | 0,3    | ≤ 3mm                                              |
|                                    |                 | V <sub>1</sub>                        | <0,5                    | <0,5           | <0,5                                             | <0,5   |                                                    |
| (über die Diagonale<br>messen)     |                 | V <sub>2</sub>                        | <0,5                    | <0,5           | <0,5                                             | <0,5   |                                                    |
| Vorsatz (kleinste Dicke in         | mm              |                                       | _                       |                | _                                                | 10     | ≥ 4mm                                              |
| der Bruchfläche) Abstandhalter     | mm              | +                                     | 7                       | 8              | 7                                                | 10     |                                                    |
|                                    |                 | t                                     | 3                       | 3              | 3                                                | 3      |                                                    |
| Fase                               | mm              | V                                     | 2/3                     | 2/3            | 2/3                                              | 2/3    | v <sub>nom</sub> ± 2mm  Rohdichte:                 |
| Trockengewicht<br>Volumen aus      | g               | G                                     | 3276                    | 3276           | 3308                                             | 3321   | _                                                  |
| Abmessungen                        | cm <sup>3</sup> | Vol                                   | 1545                    | 1537           | 1502                                             | 1545   | Mittelwert: 2151 kg,                               |
| Rohdichte                          | kg / m³         |                                       | 2120                    | 2132           | 2202                                             | 2150   | Abweichung: <b>82 kg</b> ,                         |
| -                                  |                 |                                       |                         | Bruchfläche    |                                                  |        |                                                    |
| Dicke                              | mm              | $t_1$                                 | 77,3                    | 77,3           | 76,6                                             | 77,9   | Spaltzugfestigkeit:                                |
| Bruchlänge                         | mm              | l <sub>1</sub>                        | 198,2                   | 197,8          | 196,5                                            | 197,4  | T Mittel = 4,1 MPa                                 |
| Dicke                              | mm              | t <sub>2</sub>                        |                         |                |                                                  |        | Sollwert Attribut-Prüfung:                         |
| Bruchlänge                         | mm              | I <sub>2</sub>                        |                         |                |                                                  |        | Einzelwerte > 3,6 MPa                              |
| Bruchlast                          | N               | Р                                     | 100470                  | 99470          | 100850                                           | 102960 | Anforderungen erfüllt                              |
| längenbezogene Bruchlast           |                 | F                                     | 510                     | 500            | 510                                              | 520    | F ≥ 250 N/mm                                       |
|                                    | N/mm            |                                       |                         |                |                                                  |        | siehe Tabelle EN 1338                              |
| k-Faktor  Spaltzugfestigkeit       | MPa             | k<br>_                                | 0,98                    | 0,98           | 0,98                                             | 0,99   | Einzelwerte ≥ 3,6 Mpa                              |
| Spanning restriction               |                 | Т                                     | 4,1                     | 4,1            | 4,2                                              | 4,2    |                                                    |
| Bruchlast                          | N               | Р                                     |                         |                | +                                                |        |                                                    |
| längenbezogene Bruchlast           | N/mm            | F                                     | <u> </u>                |                | +                                                |        |                                                    |
| k-Faktor                           | <u> </u>        | k                                     | <del> </del>            |                | +                                                |        | siehe Tabelle EN 1338                              |
| Spaltzugfestigkeit                 | MPa             | Т                                     | <b></b>                 | <u> </u>       | <del>                                     </del> |        |                                                    |
| Mittel längenbezogene<br>Bruchlast | N/mm            | F                                     | 510                     | 500            | 510                                              | 520    | F ≥ 250 N/mm                                       |
| Mittel<br>Spaltzugfestigkeit       | MPa             | Т                                     | 4,1                     | 4,1            | 4,2                                              | 4,2    | Einzelwerte ≥ 3,6 Mpa                              |
| Bemerkungen                        |                 | idseitig geschliffe<br>sreihe V 10/09 | en, ohne Wasserlagerung | geprüft.       |                                                  |        |                                                    |
|                                    | 1               |                                       |                         |                |                                                  |        |                                                    |
| Prüfer:                            | J.Wildenhi      | ues                                   |                         |                |                                                  |        |                                                    |

#### Pflastersteine-WD geprüft gem. DIN EN 1338 Abschlussbericht "Evaporation von Pflasterstein-Belägen" (Az: 23277)

Prüfnummer: 134b/2009 Werk: 14

Produkt: geoSTON ® Abmessungen: 20/10/8 Farbe: Braun



Nennmaße (mm): Länge 197 Breite: 97 Dicke: 80

Abstandhalter: 3 Fase: 2/2



|                                           |                 |                                       | 5                                    | 6           | 7       | 8      |                                   |
|-------------------------------------------|-----------------|---------------------------------------|--------------------------------------|-------------|---------|--------|-----------------------------------|
| Länge                                     | <u> </u>        | L <sub>1</sub>                        |                                      | Steinabme   | ssungen |        | Anforderungen                     |
|                                           | mm              |                                       | 197,6                                | 197,3       | 196,5   | 197,3  | t < 100mm: L <sub>nom</sub> ± 2mm |
| Mittel                                    | mm              | L <sub>2</sub>                        | 198,1                                | 197,6       | 196,8   | 197,0  | t ≥ 100mm: L <sub>nom</sub> ± 3mm |
| Breite                                    | mm              |                                       | 197,9                                | 197,5       | 196,7   | 197,2  |                                   |
| breite                                    | mm              | B <sub>1</sub>                        | 97,9                                 | 97,1        | 97,0    | 96,8   | t < 100mm: B <sub>nom</sub> ± 2mm |
|                                           | mm              | B <sub>2</sub>                        | 97,4                                 | 97,,0       | 96,8    | 97,0   | t ≥ 100mm: B <sub>nom</sub> ± 3mm |
| Mittel                                    | mm              |                                       | 97,7                                 | 97,1        | 96,9    | 96,9   |                                   |
| Dicke                                     | mm              | $t_1$                                 | 81,3                                 | 80,2        | 79,6    | 81,8   | $t < 100$ mm: $D_{nom} \pm 3$ mm  |
|                                           | mm              | t <sub>2</sub>                        | 82,0                                 | 80,3        | 79,4    | 81,8   | t ≥ 100mm: D <sub>nom</sub> ± 4mm |
|                                           | mm              | t <sub>3</sub>                        | 82,4                                 | 80,2        | 79,3    | 80,8   |                                   |
|                                           | mm              | t <sub>4</sub>                        | 81,5                                 | 80,1        | 79,5    | 81,2   |                                   |
| Mittel                                    | mm              |                                       | 81,8                                 | 80,2        | 79,5    | 81,4   |                                   |
| Abweichung                                | mm              |                                       | 1,1                                  | 0,2         | 0,3     | 1,0    | ≤ 3mm                             |
| Diagonalen                                | mm              | $D_1$                                 | 216,3                                | 215,9       | 215,2   | 215,5  |                                   |
| (wenn > 300mm)                            |                 | D <sub>2</sub>                        | •                                    | ·           |         |        |                                   |
| Abweichung                                |                 |                                       | 215,4                                | 215,7       | 214,8   | 214,9  | ≤ 3mm                             |
| Ebenheit (D > 300 mm                      | mm<br>) mm      | M                                     | 0,9                                  | 0,2         | 0,4     | 0,6    | 2 3/11/11                         |
| (über die Diagonale                       |                 | V <sub>1</sub>                        | <0,5                                 | <0,5        | <0,5    | <0,5   |                                   |
| messen) Vorsatz (kleinste Dicke i         | n mm            | V <sub>2</sub>                        | <0,5                                 | <0,5        | <0,5    | <0,5   |                                   |
| der Bruchfläche)                          |                 |                                       | 9                                    | 7           | 8       | 10     | ≥ 4mm                             |
| Abstandhalter                             | mm              | t                                     | 3                                    | 3           | 3       | 3      |                                   |
| Fase                                      | mm              | V                                     | 2/3                                  | 2/3         | 2/3     | 2/3    | v <sub>nom</sub> ± 2mm            |
| Trockengewicht                            | a               | G                                     | 3434                                 | 3274        | 3316    | 3364   | Rohdichte:                        |
| Volumen aus<br>Abmessungen                | cm <sup>3</sup> | Vol                                   | 1580                                 | 1538        | 1514    | 1555   | Mittelwert: 2164 kg/ı             |
| Rohdichte                                 | kg / m³         |                                       | 2173                                 | 2129        | 2190    | 2163   | Abweichung: <b>61 kg/</b> I       |
| Ronulcite                                 | Kg / III-       |                                       | 21/3                                 | Bruchfläche | 2130    | 2103   |                                   |
| Dicke                                     |                 | $t_1$                                 | 78,5                                 | 77.7        | 77 1    | 78,4   | Spaltzugfestigkeit:               |
| 1 Bruchlänge                              | mm              | l <sub>1</sub>                        |                                      | 77,7        | 77,1    |        | T Mittel = <b>4,4 MPa</b>         |
| Dicke                                     | mm              | t <sub>2</sub>                        | 197,7                                | 198,2       | 196,8   | 197,6  | · ·                               |
| 2 Bruchlänge                              | mm              | l <sub>2</sub>                        |                                      |             |         |        | Sollwert Attribut-Prüfung:        |
|                                           | mm              |                                       |                                      |             |         |        | Einzelwerte > 3,6 Mpa             |
| Bruchlast                                 | N               | P                                     | 107380                               | 106780      | 94700   | 105190 | Anforderungen erfüllt             |
| 1 längenbezogene Bruchlas                 | t N/mm          | F                                     | 540                                  | 540         | 480     | 530    | F ≥ 250 N/mm                      |
| k-Faktor                                  |                 | k                                     | 0,99                                 | 0,99        | 0,98    | 0,99   | siehe Tabelle EN 1338             |
| Spaltzugfestigkeit                        | MPa             | Т                                     | 4,4                                  | 4,4         | 3,9     | 4,3    | Einzelwerte ≥ 3,6 Mpa             |
| Bruchlast                                 | N               | Р                                     |                                      |             |         |        |                                   |
| längenbezogene Bruchlas                   | t N/mm          | F                                     |                                      |             |         |        |                                   |
| k-Faktor                                  |                 | k                                     |                                      |             |         |        | siehe Tabelle EN 1338             |
| Spaltzugfestigkeit                        | MPa             | Т                                     |                                      |             |         |        |                                   |
| Mittel längenbezogene                     | N/mm            | F                                     | 540                                  | 540         | 480     | 530    | F ≥ 250 N/mm                      |
| Bruchlast                                 |                 |                                       |                                      |             | 3,9     | 4,3    | Einzelwerte ≥ 3,6 Mpa             |
|                                           | MPa             | Т                                     | 4,4                                  | 4,4         | 3,9     | .,-    |                                   |
| Bruchlast<br>Mittel                       | Steine bei      | idseitig geschliffe                   | <b>4,4</b><br>n, ohne Wasserlagerung |             | 3,9     | .,,    | _                                 |
| Bruchlast<br>Mittel<br>Spaltzugfestigkeit | Steine bei      |                                       |                                      |             | 3,9     |        |                                   |
| Bruchlast<br>Mittel<br>Spaltzugfestigkeit | Steine bei      | idseitig geschliffe<br>sreihe V 10/09 |                                      |             | 3,3     | - 1/2  | •                                 |

## Abschlussbericht "Evaporation von Pflasterstein-Belägen" (Az: 23277)

Prüfnummer: Produkt:

509 / 2010

Werk:

14 geoSTON protect Abmessungen: 20/10/8 Farbe:

Maschine: 1211

Anthrazit



Herstelldatum: Nennmaße (mm): Länge 197 Breite:

06.09.2010

Prüfalter:

28 Tage

Prüftag: Dicke:

04.10.2010

**KLOSTERMANN** 

97 80 Abstandhalter: 3 mm Fase: 2/2 mm

|     |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 1                                       | 2                    | 3                   | 4                    |                                                                                                                                                 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|----------------------|---------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Länge                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                     | A                                       | bmessungen gem.      | DIN EN 1338         |                      | Anforderungen                                                                                                                                   |
|     |                                                                                                                                                            | mm .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L <sub>1</sub>                                        | 196,5                                   | 197,7                | 196,2               | 196,9                | t < 100mm: L <sub>nom</sub> ± 2mm                                                                                                               |
|     | Mittel                                                                                                                                                     | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L <sub>2</sub>                                        | 196,9                                   | 197,4                | 196,8               | 197,9                | t ≥ 100mm: L <sub>nom</sub> ± 3mm                                                                                                               |
|     |                                                                                                                                                            | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | 196,7                                   | 197,6                | 196,5               | 197,4                |                                                                                                                                                 |
|     | Breite                                                                                                                                                     | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В <sub>1</sub>                                        | 96,6                                    | 97,0                 | 96,6                | 96,6                 | t < 100mm: B <sub>nom</sub> ± 2mm                                                                                                               |
|     |                                                                                                                                                            | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B <sub>2</sub>                                        | 96,2                                    | 96,6                 | 96,2                | 96,6                 | t ≥ 100mm: B <sub>nom</sub> ± 3mm                                                                                                               |
|     | Mlite)                                                                                                                                                     | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | 96,4                                    | 96,8                 | 96,4                | 96,6                 |                                                                                                                                                 |
|     | Dicke                                                                                                                                                      | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t <sub>1</sub>                                        | 81,2                                    | B1,6                 | 82,0                | 81,3                 | t < 100mm: Đ <sub>nom</sub> ± 3mm                                                                                                               |
|     |                                                                                                                                                            | nura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t <sub>2</sub>                                        | 80,9                                    | 81,1                 | 82,1                | 81,2                 | t ≥ 100mm: D <sub>nom</sub> ± 4mm                                                                                                               |
|     | İ                                                                                                                                                          | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t <sub>3</sub>                                        | 81,2                                    | 81,9                 | 82,1                | 80,7                 |                                                                                                                                                 |
|     |                                                                                                                                                            | mai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t₄                                                    | 81,4                                    | 81,9                 | 81,9                | 81,3                 |                                                                                                                                                 |
|     | Mittel                                                                                                                                                     | LU121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | 81,2                                    | 81,6                 | 78,8                | 80,0                 |                                                                                                                                                 |
|     | Abweichung                                                                                                                                                 | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | 0,5                                     | 0,8                  | 0,2                 | 0,6                  | ≤ 3mm                                                                                                                                           |
|     | Diagonales                                                                                                                                                 | nım                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dı                                                    | 215,8                                   | 216,2                | 215,7               | 215,9                |                                                                                                                                                 |
|     | (wenn > 300mm)                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D <sub>2</sub>                                        |                                         | 216,3                | 215,6               | 216,8                |                                                                                                                                                 |
|     | Abweichung                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 215,9                                   |                      |                     | •                    | ≤ 3mm                                                                                                                                           |
|     | Ebenhelt (D > 300 mm)                                                                                                                                      | mm<br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V                                                     | 0,1                                     | 0,1                  | 0,1                 | 0,9                  |                                                                                                                                                 |
|     | (über die Diagonale                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>1</sub>                                        | <0,5                                    | <0,5                 | <0,5                | <0,5                 | ≤ 1mm                                                                                                                                           |
|     | messen)<br>Vorsatz (kleinste Dicke in                                                                                                                      | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V <sub>2</sub>                                        | <0,5                                    | <0,5                 | <0,5                | <0,5                 | > 4                                                                                                                                             |
|     | der Bruchfläche)<br>Abstandhalter                                                                                                                          | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | 19                                      | 20                   | 20                  | 21                   | ≥ 4mm                                                                                                                                           |
|     |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t                                                     | 3                                       | 3                    | 3                   | 3                    |                                                                                                                                                 |
|     | Fase                                                                                                                                                       | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | v                                                     | 2/3                                     | 2/3                  | 2/3                 | 2/3                  | V <sub>nom</sub> ± 2mm                                                                                                                          |
|     | Trockengewicht                                                                                                                                             | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | 3214                                    | 3227                 | 3298                | 3164                 | Rohdichte:                                                                                                                                      |
|     | Volumen (aus Abmessung)                                                                                                                                    | crn 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vol                                                   | 15392                                   | 15609                | 14927               | 15255                | Mittelwert: 2110 kg/m                                                                                                                           |
|     | Rohdichts                                                                                                                                                  | kg / m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | 2088                                    | 2067                 | 2209                | 2074                 | Abwelchung: 142 kg/m                                                                                                                            |
|     |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | Druckfe                                 | stigkeit gem. DIN    | 18501               |                      | ·                                                                                                                                               |
|     | Probenummer                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 1                                       | 2                    | 3                   | 4                    |                                                                                                                                                 |
| DF  | Bruchlast                                                                                                                                                  | k#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P                                                     | 568,5                                   | 596,8                | 620,1               | 542,5                | Druckfestigkelt:                                                                                                                                |
| 28  | Druckfläche                                                                                                                                                | mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F                                                     | 12800                                   | 12800                | 12800               | 12800                | Mittelwert: 45,5 MP                                                                                                                             |
| age | Druckfestigkeit                                                                                                                                            | мра                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Т                                                     | 44,4                                    | 46,6                 | 48,4                | 42,4                 | Sollwert: > 40 MP                                                                                                                               |
|     | Probenummer                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | , , , , , , , , , , , , , , , , , , , , |                      |                     |                      |                                                                                                                                                 |
|     | Bruchlast                                                                                                                                                  | kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Р                                                     |                                         |                      |                     |                      | Druckfestigkeit:                                                                                                                                |
|     | Druckfläche                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F                                                     |                                         |                      |                     |                      | Mittelwert:                                                                                                                                     |
|     | Druckfestigkeit                                                                                                                                            | mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | т                                                     |                                         |                      |                     |                      | Sollwert:                                                                                                                                       |
|     |                                                                                                                                                            | МРа                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | Wasserdi                                | ırchfluss gem. BDI   | B-RIII WD           |                      |                                                                                                                                                 |
|     |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                     |                                         | _                    |                     |                      |                                                                                                                                                 |
|     | Probenummer                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 1                                       | 2                    | 3                   | 4                    |                                                                                                                                                 |
|     | Gewicht                                                                                                                                                    | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G                                                     | 3214                                    | 3227                 | 3298                | 3164                 | Wasserdurchfluss:                                                                                                                               |
|     | Steindicke                                                                                                                                                 | ព្រភា                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t                                                     | 81,2                                    | 81,6                 | 78,8                | 80,0                 | Mittelwert: 34,90 * 10-5 m/                                                                                                                     |
| WD  |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l                                                     |                                         |                      |                     |                      |                                                                                                                                                 |
| WD  | Rohdichte                                                                                                                                                  | kg/m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | 2081                                    | 2079                 | 2200                | 2079                 |                                                                                                                                                 |
| wD  |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | k <sub>f</sub> *10 <sup>-5</sup>                      | <b>2081</b><br>43,37                    | <b>2079</b><br>23,35 | <b>2200</b><br>5,22 | <b>2079</b><br>67,66 | Anforderung Bauartzulassung:                                                                                                                    |
| WD  | Rohdichte                                                                                                                                                  | kg/m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | k <sub>r</sub> *10 <sup>-5</sup>                      |                                         |                      |                     |                      | Einzelwerte: nicht erfüllt                                                                                                                      |
| wD  | Rohdichte<br>Wasserdurchfluss                                                                                                                              | kg/m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | k <sub>r</sub> *10 <sup>-5</sup><br>G                 |                                         |                      |                     |                      | Einzelwerte: nicht erfüllt  1,0 < kf < 25 * 10 <sup>-5</sup> m/s                                                                                |
|     | Rohdichte<br>Wasserdurchfluss<br>Probenummer                                                                                                               | kg/m²<br>m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                         |                      |                     |                      | Einzelwerte: nicht erfüllt                                                                                                                      |
|     | Rohdichte<br>Wasserdurchfluss<br>Probenummer<br>Gewicht                                                                                                    | kg/m²<br>m/s<br>kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G                                                     |                                         |                      |                     |                      | Einzelwerte: nicht erfüllt  1,0 < kf < 25 * 10 <sup>-5</sup> m/s                                                                                |
|     | Robdichte Wasserdurchfluss Probenummer Gewicht Steindicke Robdichte                                                                                        | kg/m²<br>m/s<br>kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G                                                     |                                         |                      |                     |                      | Einzelwerte: nicht erfüllt  1,0 < kf < 25 * 10 <sup>-5</sup> m/s  Mittelwert: nicht erfüllt                                                     |
| WD  | Rohdichte  Wasserdurchfluss  Probenummer  Gewicht  Steindicke  Rohdichte                                                                                   | kg/m²<br>m/s<br>kg<br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G<br>t                                                |                                         |                      |                     |                      | Einzelwerte: nicht erfüllt<br>1,0 < kf < 25 * 10 <sup>-5</sup> m/s<br>Mittelwert: nicht erfüllt                                                 |
|     | Rohdichte Wasserdurchfluss Probenummer Gewicht Steindicke Rohdichte Wasserdurchfluss                                                                       | kg/m²<br>m/s<br>kg<br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G<br>t                                                |                                         |                      |                     |                      | Einzelwerte: nicht erfüllt  1,0 < kf < 25 * 10 <sup>-5</sup> m/s  Mittelwert: nicht erfüllt                                                     |
| wb  | Rohdichte  Wasserdurchfluss  Probenummer  Gewicht  Steindicke  Rohdichte  Wasserdurchfluss  Probenummer  Gewicht  Steindicke                               | kg/m² mn/s kg mm kg/m³ mr/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G<br>t<br>k <sub>i</sub> *10 -5                       |                                         |                      |                     |                      | Einzelwerte: nicht erfüllt  1,0 < kf < 25 * 10 <sup>-5</sup> m/s  Mittelwert: nicht erfüllt                                                     |
| wb  | Rohdichte  Wasserdurchfluss  Probenummer  Gewicht  Steindicke  Rohdichte  Wasserdurchfluss  Probenummer  Gewicht  Steindicke  Rohdlichte                   | kg/m² kg mm kg/m² m/s kg mm kg/m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G<br>t<br>k <sub>f</sub> *10 * <sup>5</sup><br>G      |                                         |                      |                     |                      | Einzelwerte: nicht erfüllt  1,0 < kf < 25 * 10 <sup>-5</sup> m/s  Mittelwert: nicht erfüllt                                                     |
| wb  | Rohdichte  Wasserdurchfluss  Probenummer  Gewicht  Steindicke  Rohdichte  Wasserdurchfluss  Probenummer  Gewicht  Steindicke  Rohdlichte                   | kg/m² m/s kg mm kg/m³ m/s kg mm kg/m² m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G<br>t<br>k <sub>1</sub> *10 <sup>-5</sup>            | 43,37                                   |                      |                     |                      | Einzelwerte: nicht erfüllt  1,0 < kf < 25 * 10 <sup>-5</sup> m/s  Mittelwert: nicht erfüllt                                                     |
| WD  | Rohdichte Wasserdurchfluss Probenummer Gewicht Steindicke Rohdichte Wasserdurchfluss Probenummer Gewicht Steindicke Rahdichte Wasserdurchfluss Bemerkungen | kg/m² m/s kg mm kg/m² m/s chine in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of t | G t k <sub>f</sub> *10 * 5 G t k <sub>f</sub> *10 * 5 | 43,37                                   | 23,35                | 5,22                |                      | Einzelwerte: nicht erfüllt  1,0 < kf < 25 * 10 <sup>-5</sup> m/s  Mittelwert: nicht erfüllt  < 10 * 10 <sup>-5</sup> m/s  Anforderung BDB RILI: |
| wb  | Rohdichte Wasserdurchfluss Probenummer Gewicht Steindicke Rohdichte Wasserdurchfluss Probenummer Gewicht Steindicke Rahdichte Wasserdurchfluss Bemerkungen | kg/m² m/s kg mm kg/m² m/s kg mm kg/m² m/s Druckplat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G t k <sub>f</sub> *10 * 5 G t k <sub>f</sub> *10 * 5 | 43,37<br>m                              | 23,35                | 5,22                |                      | Einzelwerte: nicht erfüllt  1,0 < kf < 25 * 10 <sup>-5</sup> m/s  Mittelwert: nicht erfüllt  < 10 * 10 <sup>-5</sup> m/s                        |

## Pflastersteine gem. EN 1338

Abschlussbericht "Evaporation von Pflasterstein-Belägen" (Az: 23277)

Prüfnummer:

359 / 2010

Werk:

14

Maschine:

1200

Produkt:

drainSTON linear Abmessungen:

21/14/8 Farbe:

**Anthrazit** 

**KLOSTERMANN** 

Herstelldatum:

19.07.2010

Prüfalter:

28 Tage

Prüftag:

16.08.2010

Nennmaße (mm): Länge 209 Breite:

139

Dicke:

80

Abstandhalter: ohne Fase: 2/2

|                                    |                          |                          | 1                                                              | ] 2                 | 3            | 4            | 1                                    |
|------------------------------------|--------------------------|--------------------------|----------------------------------------------------------------|---------------------|--------------|--------------|--------------------------------------|
| Länge                              |                          | L <sub>1</sub>           |                                                                | Steinabmes          | sungen       |              | Anforderungen                        |
| 9-                                 | mm                       |                          | 208,0                                                          | 209,1               | 209,1        | 207,4        | t < 100mm: L <sub>nom</sub> ± 2mm    |
| Mittel                             | mm                       | L <sub>2</sub>           | 208,2                                                          | 208,9               | 209,0        | 207,6        | t ≥ 100mm: L <sub>nom</sub> ± 3mm    |
| Breite                             | mm                       |                          | 208,1                                                          | 209,0               | 209,1        | 207,5        |                                      |
| Breite                             | mm                       | B <sub>1</sub>           | 138,2                                                          | 138,3               | 138,1        | 137,8        | t < 100mm: B <sub>nom</sub> ± 2mm    |
|                                    | mm                       | B <sub>2</sub>           | 138,2                                                          | 138,3               | 138,1        | 138,1        | t ≥ 100mm: B <sub>nom</sub> ± 3mm    |
| Hittel                             | mm                       |                          | 138,2                                                          | 138,3               | 138,1        | 138,0        |                                      |
| Dicke                              | mm                       | t <sub>1</sub>           | 80,5                                                           | 80,4                | 80,5         | 80,6         | t < 100mm: D <sub>nom</sub> ± 3mm    |
|                                    | ៣៣                       | t <sub>2</sub>           | 80,3                                                           | 80,5                | 80,3         | 80,3         | t ≥ 100mm: D <sub>nom</sub> ± 4mm    |
|                                    | mm                       | t <sub>3</sub>           | 80,5                                                           | 80,3                | 80,5         | 80,5         |                                      |
|                                    | mm                       | t₄                       | 80,3                                                           | 80,5                | 80,3         | 80,3         |                                      |
| Mittel                             | mm                       |                          | 80,4                                                           | 80,4                | 80,4         | 80,4         |                                      |
| Abweichung                         | mm                       |                          | 0,2                                                            | 0,2                 | 0,2          | 0,3          | ≤ 3mm                                |
| Diagonalen                         | mm                       | D <sub>1</sub>           | 249,5                                                          | 250,7               | 249,1        | 248,1        |                                      |
| (wenn > 300mm)                     |                          | D <sub>2</sub>           | 248,9                                                          | 249,1               | 249,7        | 248,7        | ~                                    |
| Abweichung                         | mm                       |                          | 0,6                                                            | 1,6                 | 0,6          | 0,6          | ≤ 3mm                                |
| Ebenhalt (D > 300 m                |                          | V <sub>1</sub>           | <0,5                                                           | <0,5                | <0,5         | <0,5         |                                      |
| (über die Diagonale                |                          | V <sub>2</sub>           | <0,5                                                           | <0,5                | <0,5         | <0,5         | <sup>2</sup> ) siehe Tabelle EN 1338 |
| messen)<br>Vorsatz (kielnste Dicke | a lu mui                 | 72                       |                                                                |                     | -            | einschichtig |                                      |
| der Bruchfläche)<br>Abstandhalter  | mm                       |                          | einschichtig                                                   | einschichtig        | einschichtig |              | -                                    |
|                                    |                          | t                        | ohne                                                           | ohne                | ohne         | ahne         | v <sub>nom</sub> ± 2 mm              |
| Fase                               | mm                       | V                        | 2/2                                                            | 2/2                 | 2/2          | 2/2          | Rohdichte:                           |
| Trackengewicht<br>Volumen durch    | 9                        | G                        | 5018                                                           | 5046                | 5024         | 4951         |                                      |
| Unterwasserwägung                  | EIII3                    | Val                      | 2136                                                           | 2147                | 2149         | 2124         | Mittelwert: 2342 kg/m                |
| Rohdichte                          | kg / m³                  |                          | 2349                                                           | 2350<br>Bruchfläche | 2338         | 2331         | Abwelchung: 19 kg/m                  |
| Dicke                              |                          | T                        |                                                                | T                   | 1            |              |                                      |
| 1 Bruchlänge                       | mm                       | t <sub>1</sub>           | 76,2                                                           | 76,2                | 76,4         | 75,9         | Spaltzugfestigkeit:                  |
|                                    | mm                       | J <sub>1</sub>           | 201,7                                                          | 202,5               | 203,0        | 200,9        | T Hittel = 6,4 MP                    |
| Dicke<br>2                         | mm                       | t <sub>2</sub>           |                                                                |                     |              |              | T char > 3,6 MPa                     |
| Bruchlänge                         | mm                       | 12                       |                                                                |                     |              |              | T <sub>Min</sub> > 3,6 MPa           |
| Bruchlast                          | N                        | Р                        | 168840                                                         | 151950              | 150650       | 158750       | Anforderung erfüllt                  |
| 1 längenbezogene Bruchl            | ast N/mm                 | F                        | 840                                                            | 750                 | 740          | 790          |                                      |
| k-Faktor                           |                          | k                        | 0,98                                                           | 0,98                | 0,98         | 0,97         | slehe Tabelle EN 1338                |
| Spaltzugfestigkelt                 | МРа                      | Т                        | 6,8                                                            | 6,1                 | 6,1          | 6,5          | Einzelwerte ≥ 3,6 MPa                |
| Bruchlast                          | N                        | Р                        |                                                                |                     |              |              |                                      |
| längenhezonene Bruchl              |                          | F                        |                                                                |                     |              |              |                                      |
| k-Faktor                           |                          | k                        |                                                                |                     |              | ·            | siehe Tabelle EN 1338                |
| Spaltzugfestigkeit                 | MPa                      | т                        |                                                                |                     |              |              |                                      |
| längenbezogene<br>Bruchlast        | B1 (m)                   | F F                      | 840                                                            | 750                 | 740          | 790          | F ≥ 250 N/mm                         |
| Spaltzugfestigkelt                 | N/mm<br>MPa              | Т                        |                                                                |                     | 6,1          | 6,5          | Einzelwerte ≥ 3,6 MPa                |
| Bemerkungen                        | Stelne wur<br>Kanaltlefe | den ohne Wasserla<br>4mm | 6,8<br>gerung ,geschllffen geprü<br>uktion für die Versuchsflä |                     | 6,1          | <b>G,</b> B  |                                      |
| Prüfer:                            | J.Wildenhu               | les                      |                                                                |                     |              |              |                                      |
| Prüfstellenleiter:                 | J.Wildenhu               | les                      |                                                                |                     |              |              |                                      |

## Pflastersteine gem. EN 1338

Abschlussbericht "Evaporation von Pflasterstein-Belägen" (Az: 23277)

Prüfnummer:

417 / 2009

Werk:

14

Maschine: 1200

Produkt:

greenSTON

combi Vollstein Abmessungen: 20/20/8 Farbe:

**Anthrazit** 

KLOSTERMANN

Herstelldatum:

20.07.2009

Prüfalter:

28 Tage

Prüftag:

17.08.2009

Nennmaße (mm): Länge: 196

Breite:

196

Dicke:

80

Abstandhalter: 4 Fase:

2/2

|                                             |                 |                                       | i                                            | 2           | 3                                      | 4       |                                      |
|---------------------------------------------|-----------------|---------------------------------------|----------------------------------------------|-------------|----------------------------------------|---------|--------------------------------------|
| Llinge                                      | T               | 7                                     | ***************************************      | Steinabmes  | ssungen                                | ı       | Anforderungen                        |
| Lunge                                       | mm              | L <sub>1</sub>                        | 195,6                                        | 196,0       | 195,8                                  | 195,3   | t < 100mm: L <sub>nom</sub> ± 2mm    |
|                                             | mm              | L <sub>2</sub>                        | 195,6                                        | 196,5       | 196,0                                  | 195,5   | t ≥ 100mm: L <sub>nom</sub> ± 3mm    |
| (Mitte)                                     | mm              |                                       | 195,6                                        | 196,3       | 195,9                                  | 195,4   |                                      |
| Breite                                      | mm              | B <sub>1</sub>                        | 195,5                                        | 196,5       | 195,9                                  | 195,5   | t < 100mm: B <sub>nom</sub> ± 2mm    |
|                                             | mm              | B <sub>2</sub>                        | 195,8                                        | 196,1       | 196,1                                  | 195,6   | t ≥ 100mm: B <sub>nom</sub> ± 3mm    |
| Mittel                                      | mm              |                                       | 195,7                                        | 196,3       | 196,0                                  | 195,6   | 7                                    |
| Dicke                                       | mm              | t <sub>1</sub>                        | 80,4                                         | 80,2        | 80,3                                   | 79,5    | t < 100mm: D <sub>nom</sub> ± 3mm    |
|                                             |                 | t <sub>2</sub>                        | 81,1                                         | 79,7        | 79,9                                   | 79,3    | t ≥ 100mm: D <sub>nom</sub> ± 4mm    |
|                                             | mm              | t <sub>3</sub>                        | 80,5                                         | 79,8        | 79,3                                   | 79,0    |                                      |
|                                             | mm              | t.,                                   | •                                            |             |                                        |         |                                      |
| Mittel                                      | mm              |                                       | 80,3                                         | 80,3        | 79,9                                   | 79,3    |                                      |
| Abwelchung                                  | mm              |                                       | 80,6                                         | 80,0        | 79,9                                   | 79,3    | ≤ 3mm                                |
| Diagonalen                                  | mm              | D <sub>1</sub>                        | 0,8                                          | 0,6         | 1,0                                    | 0,5     |                                      |
| (wenn > 300mm)                              |                 | D <sub>2</sub>                        | 273,3                                        | 273,7       | 273,6                                  | 272,5   | $\dashv$                             |
| Abweichung                                  |                 | +                                     | 272,5                                        | 273,5       | 273,3                                  | 273,1   |                                      |
| Ebenheit (D > 300 mm)                       | mm<br>mm        |                                       | 0,8                                          | 0,2         | 0,3                                    | 0,6     | ≤ 3mm                                |
| (über die Diagonale messen)                 |                 | V <sub>1</sub>                        | 0,5                                          | 0,5         | 0,5                                    | 0,5     | <sup>2</sup> ) siehe Tabelle EN 1338 |
| Vorsatz (kleinste Dicke In                  | mm              | V <sub>2</sub>                        | 0,5                                          | 0,5         | 0,5                                    | 0,5     |                                      |
| der Bruchfläche)                            | ,               |                                       | 9                                            | 6           | 6                                      | 7       | ≥ 4mm                                |
| Abstandhalter                               | mm              | t                                     | 4                                            | 4           | 4                                      | 4       |                                      |
| Fasc                                        | mm              | v                                     | 2/3                                          | 2/3         | 2/3                                    | 2/3     | v <sub>nom</sub> ± 2mm               |
| Trockengewicht                              | g               | G                                     | 6969                                         | 6923        | 6960                                   | 6969    | Rohdichte:                           |
| Volumen aus Abmessungen                     | cm <sup>3</sup> | Vol                                   | 3084                                         | 3082        | 3066                                   | 3029    | Mittelwert: 2269 kg/n                |
| Rohdichte                                   | kg/m³           |                                       | 2260                                         | 2246        | 2270                                   | 2301    | Abweichung: <b>54 kg/r</b>           |
|                                             |                 |                                       |                                              | Bruchfläche |                                        |         |                                      |
| Dicke                                       | mm              | t <sub>i</sub>                        | 80,6                                         | 79,2        | 79,8                                   | 79,6    | Spaltzugfestigkeit:                  |
| 1 Bruchlänge                                | mm              | l <sub>1</sub>                        | 196,0                                        | 196,2       | 196,2                                  | 195,3   | T Mittel = 4,9 MF                    |
| Dicke                                       | mm              | t <sub>2</sub>                        |                                              |             | ······································ | ·       | T char > 3,6 MPa                     |
| 2 Bruchlänge                                | mm              | l <sub>2</sub>                        |                                              |             |                                        |         | T Min > 3,6 MPa                      |
| Bruchlast                                   |                 | P                                     | 100940                                       | 111580      | 140110                                 | 129400  | Anforderung erfüllt                  |
| längenbezogene Bruchlast                    | N               | 1                                     |                                              |             |                                        | 660     | F ≥ 250 N/mm                         |
| 1                                           | N/mm            | F .                                   | 520                                          | 570         | 710                                    |         | siehe Tabelle EN 1338                |
| k-Faktor  Spaltzugfestigkeit                | MPa             | k                                     | 1,00                                         | 1,00        | 1,00                                   | 1,00    | Einzelwerte ≥ 3,6 MPa                |
|                                             |                 | τ                                     | 4,1                                          | 4,6         | 5,7                                    | 5,3     |                                      |
| Bruchlast                                   | N               | P                                     |                                              | -           |                                        |         | -                                    |
| 2 längenbezogene Bruchlast                  | N/mm            | F                                     |                                              | -           | = 1 1111                               | <u></u> | siehe Tabelle EN 1338                |
| k-Faktor                                    |                 | k                                     |                                              |             |                                        |         | State tapelle CN 1330                |
| Spaltzugfestigkeit<br>Mittel längenbezagene | MPa             | T                                     |                                              |             |                                        |         | E > 250 N/mms                        |
| Bruchlast                                   | N/mm            | F                                     | 520                                          | 570         | 710                                    | 660     | F ≥ 250 N/mm                         |
| Mittel Spaltzug-festigkeit                  | MPa             | T                                     | 4,1                                          | 4,6         | 5,7                                    | 5,3     | Einzelwerte ≥ 3,6 MPa                |
| Bemerkungen                                 |                 |                                       | lagerung geprüft.<br>Isfläche DBU eingebaut. |             |                                        |         |                                      |
| Prüfer:                                     | J.Wildenhue     |                                       |                                              |             |                                        |         |                                      |
| Prüfstellenlelter:                          | J.Wildenhue     | 25                                    |                                              |             |                                        |         |                                      |
|                                             |                 | · · · · · · · · · · · · · · · · · · · |                                              |             |                                        |         |                                      |

|                   | <u> -</u>               |                         | ÄLISCHE<br>LMS-UNI | VERSITÄ <sup>.</sup> | т    | Ern           | nittlung d              | des Por                 | renan | teils |      |                         | Labo                    | ranter                 | า:    |                |                         |                         |       |
|-------------------|-------------------------|-------------------------|--------------------|----------------------|------|---------------|-------------------------|-------------------------|-------|-------|------|-------------------------|-------------------------|------------------------|-------|----------------|-------------------------|-------------------------|-------|
| Proto-<br>typ     | <i>n</i><br>(Vol%)      | Ø                       | σ                  | ø                    | σ    | Proto-<br>typ | <i>n</i><br>(Vol%)      | Ø                       | σ     | ø     | σ    | Proto-<br>typ           | <i>n</i><br>(Vol%)      | Ø                      | σ     | ø              | σ                       |                         |       |
| A4<br>A5<br>A6    | 24,14<br>25,32<br>28,01 | 24,14<br>25,32<br>28,01 |                    | 7                    | ,    | Fr3           | 23,05<br>18,60<br>18,08 | 19,91                   | 2,73  | 21,28 | 2,97 | J1                      | 29,22<br>33,78<br>33,27 | 32,09                  | 2,50  |                |                         |                         |       |
| A7                | 34,42<br>30,41<br>29,74 | 31,52                   | 2,53               | 26,97                | 5,64 | Fr4           | 24,88<br>28,04<br>24,55 | 25,82                   | 1,93  |       |      | J2                      | 33,93<br>37,38<br>35,08 | 35,46                  | 1,76  |                |                         |                         |       |
| A8<br>B4<br>B5    | 16,76<br>13,28<br>17,89 | 16,76<br>13,28<br>17,89 | -                  | 2                    |      | Fr5           | 20,64<br>22,35<br>21,67 | 21,55                   | 0,86  |       |      | J3                      | 28,12<br>33,79<br>31,79 | 31,23                  | 2,88  | 33,20          | 2,53                    |                         |       |
| B6<br>B7<br>B8    | 12,82<br>17,60<br>21,68 | 12,82<br>17,60<br>21,68 | -<br>-<br>-        | 16,65                | 3,67 | G1            | 25,68<br>29,34<br>29,34 | 28,12                   | 2,11  |       |      | J4                      | 32,6<br>33,19<br>30,09  | 31,96                  | 1,65  |                |                         |                         |       |
| C4                | 20,38<br>21,97<br>20,88 | 21,08                   | 0,81               |                      |      | G2            | 30,62<br>29,96<br>28,31 | 29,63                   | 1,19  |       |      | J5                      | 35,01<br>36,08<br>34,68 | 35,26                  | 0,73  |                |                         |                         |       |
| C5                | 33,99<br>23,49<br>23,49 | 26,99                   | 6,06               | 8                    |      | G3            | 27,95<br>27,44<br>27,10 | 27,50                   | 0,43  | 28,98 | 1,97 | K4                      | 23,13<br>22,96<br>30,15 | 25,41                  | 4,10  |                |                         |                         |       |
| C6                | 22,71<br>18,37<br>19,77 | 22,71<br>18,97          | 0,72               | 21,78                | 4,05 | G4            | 30,04<br>28,56<br>26,75 | 28,45                   | 1,65  |       |      | K6                      | 22,69<br>27,42<br>24,72 | 24,94                  | 2,37  |                |                         |                         |       |
| C8                | 18,78<br>19,24<br>20,57 | 19,77                   | 0,71               |                      |      |               | G5                      | 28,54<br>32,48<br>32,60 | 31,22 | 2,32  |      |                         | K7                      | 25,2<br>29,77<br>26,34 | 27,10 | 2,38           | 26,08                   | 2,42                    |       |
| D1                | 19,49<br>32,73<br>29,37 | 30,00                   | 2,48               |                      |      | H1            | 26,97<br>27,49<br>29,03 | 27,83                   | 1,07  |       |      | K8                      | 25,71<br>27,74<br>29,09 | 27,51                  | 1,70  |                |                         |                         |       |
| D2<br>D3          | 27,89<br>20,69<br>18,53 | 20,69                   | -                  | 26,73                | 5,95 | H2            | 32,4<br>33,41<br>29,89  | 31,90                   | 1,81  |       |      | K10                     | 25,98<br>26,48<br>23,84 | 25,43                  | 1,40  |                |                         |                         |       |
| D4<br>D5<br>D7    | 24,76<br>31,42<br>34,93 | 24,76<br>31,42<br>34,93 | -<br>-<br>-        |                      | 26   | 26            | 26                      | 26                      | 26    | ,5    | H3   | 28,96<br>30,83<br>28,62 | 29,47                   | 1,19                   | 92 0  | M1<br>M2<br>M3 | 14,63<br>12,25<br>15,25 | 14,63<br>12,25<br>15,25 | 12,49 |
| D8<br>E1<br>E2    | 20,23<br>13,82<br>16,46 | 20,23<br>13,82<br>16,46 | -<br>-             |                      |      | H4            | 24,44<br>29,87<br>28,68 | 27,66                   | 2,85  |       |      | M4<br>M5<br>N1          | 8,13<br>12,18<br>2,94   | 8,13<br>12,18<br>2,94  | -     | 12             | 2,                      |                         |       |
| E3<br>E4<br>E5    | 10,73<br>10,30<br>22,84 | 10,73<br>10,30<br>22,84 | -                  | 14,64                | 4,21 | H5            | 35,06<br>30,69<br>28,85 | 31,53                   | 3,19  |       |      | N2<br>N3<br>N4          | 4,78<br>5,17<br>2,92    | 4,78<br>5,17<br>2,92   | -     | 4,93           | 2,42                    |                         |       |
| E6<br>E7<br>Ff1   | 13,54<br>14,80<br>22,78 | 13,54<br>14,80<br>22,78 | -                  |                      |      | I1            | 28,39<br>30,94<br>27,86 | 29,06                   | 1,65  |       |      | N5<br>O1                | 8,85<br>9,30<br>10,52   | 8,85<br>9,33           | 1,17  |                | H                       |                         |       |
| Ff2<br>Ff3<br>Ff4 | 19,71<br>30,32<br>16,61 | 19,71<br>30,32<br>16,61 | -                  | 22,46                | 5,67 | 12            | 30,10<br>32,18<br>29,76 | 30,68                   | 1,31  |       |      | 02                      | 8,18<br>15,12<br>14,67  | 16,19                  |       |                |                         |                         |       |
| Ff5<br>Ff6        | 16,14<br>29,49          | 16,14<br>29,49          | -                  | 22,                  | 5,(  | 13            | 34,21<br>32,80          | 32,63                   | 1,67  | 30,15 | 2,77 |                         | 18,78<br>13,87          | 13,06                  |       | 02             | 39                      |                         |       |
| Ff7<br>Fr1        | 22,18<br>19,39<br>18,86 | 19,39                   | 0,53               |                      |      | 14            | 30,88<br>24,55<br>26,59 | 26,05                   | 1,32  |       |      | 03                      | 14,86<br>10,44<br>12,38 |                        |       | 13,02          | 2,89                    |                         |       |
| Fr2               | 19,91<br>22,51<br>19,07 | 19,70                   | 2,55               |                      |      | 15            | 27,01<br>33,45<br>31,44 | 32,30                   | 1,03  |       |      | 04                      | 15,01<br>11,03<br>15,86 | 12,81                  |       |                |                         |                         |       |
|                   | 17,53                   |                         |                    |                      |      |               | 32,02                   |                         |       |       |      | O5                      | 14,33<br>11,02          | 13,74                  | 2,47  |                |                         |                         |       |

|               | <u>-</u>                |       | FÄLISCHE<br>ELMS-UNI<br>ITER |       | iт    | Ern           | nittlung o              | des Por | enan  | teils  |                        |                 | Labo                    | ranter         | 1:   |        |                      |        |                     |      |      |  |  |
|---------------|-------------------------|-------|------------------------------|-------|-------|---------------|-------------------------|---------|-------|--------|------------------------|-----------------|-------------------------|----------------|------|--------|----------------------|--------|---------------------|------|------|--|--|
| Proto-<br>typ | <i>n</i><br>(Vol%)      | Ø     | σ                            | Ø     | σ     | Proto-<br>typ | <i>n</i><br>(Vol%)      | Ø       | σ     | Ø      | σ                      | Proto-<br>typ   | <i>n</i><br>(Vol%)      | Ø              | σ    | Ø      | σ                    |        |                     |      |      |  |  |
| R             | 23,36<br>21,60<br>25,04 | 23,33 | 1,72                         | 23,33 | 1,72  | X2            | 21,95<br>26,10<br>28,90 | 25,65   | 3,50  |        |                        | Gefdg1          | 8,80<br>10,20<br>7,97   | 8,99           | 1,13 |        |                      |        |                     |      |      |  |  |
| S             | 25,30<br>24,48<br>28,73 | 26,17 | 2,25                         | 26,17 | 2,25  | Х3            | 19,71<br>24,63<br>28,12 | 24,15   | 4,23  | 24,59  | 3,14                   | Gefdg2          | 6,70<br>8,54<br>8,14    | 7,79           | 0,97 |        |                      |        |                     |      |      |  |  |
| T1            | 17,41<br>17,23<br>20,76 | 18,47 | 1,99                         |       |       | X4            | 24,95<br>26,27<br>29,27 | 26,83   | 2,21  |        |                        | Gefdg3          | 6,32<br>8,28<br>7,38    | 7,33           | 0,98 | 7,65   | 1,43                 |        |                     |      |      |  |  |
| T2            | 14,46<br>15,64<br>17,37 | 15,82 | 1,46                         |       |       | X5            | 23,13<br>22,00<br>24,61 | 23,25   | 1,31  |        |                        | Gefdg4          | 4,23<br>8,25<br>7,21    | 6,56           | 2,09 |        |                      |        |                     |      |      |  |  |
| Т3            | 16,90<br>15,79<br>16,34 | 16,34 | 0,56                         | 17,82 | 2,11  | Y1            | 21,04<br>23,02<br>24,13 | 22,73   | 1,57  |        |                        | Gefdg5          | 5,86<br>8,29<br>8,53    | 7,56           | 1,48 |        |                      |        |                     |      |      |  |  |
| T4            | 19,16<br>15,98<br>20,25 | 18,46 | 2,22                         |       |       | Y2            | 23,68<br>26,08<br>28,21 | 25,99   | 2,27  |        |                        | Gefda1          | 6,04<br>7,76<br>7,02    | 6,94           | 0,86 |        |                      |        |                     |      |      |  |  |
| T5            | 18,60<br>20,08<br>21,38 | 20,02 | 1,39                         |       |       | Y3            | 17,31<br>21,80<br>19,31 | 19,47   | 2,25  | 22,426 | 2,70                   | Gefda2          | 9,96<br>10,69<br>10,12  | 10,26          | 0,38 |        |                      |        |                     |      |      |  |  |
| U1            | 16,33<br>17,11<br>19,55 | 17,66 | 1,68                         |       |       | Y4            | 22,22<br>21,71<br>20,84 | 21,59   | 0,70  |        |                        | Gefda3          | 7,39<br>6,19<br>6,91    | 6,83           | 0,60 | 7,78   | 1,56                 |        |                     |      |      |  |  |
| U2            | 12,73<br>16,78<br>18,03 | 15,85 | 2,77                         |       |       |               |                         |         |       | Y5     | 24,5<br>22,29<br>20,25 | 22,35           | 2,13                    |                |      | Gefda4 | 5,95<br>8,88<br>7,41 | 7,41   | 1,47                |      |      |  |  |
| U3            | 22,22<br>21,20<br>25,55 | 22,99 | 2,27                         | 19,04 | 19,04 | 19,04         | 19,04                   | 19,04   | 19,04 | 3,92   | 3,92                   | Z1              | 27,58<br>25,32<br>26,28 | 26,39          | 1,13 |        |                      | Gefda5 | 6,19<br>8,76<br>7,4 | 7,45 | 1,29 |  |  |
| U4            | 25,61<br>22,61<br>18,43 | 22,22 | 3,61                         |       |       | Z2            | 22,91<br>25,02<br>23,52 | 23,82   | 1,09  |        |                        | Geog3           | 13,82<br>11,36<br>13,55 | 12,90          | 1,35 |        |                      |        |                     |      |      |  |  |
| U5            | 13,38<br>20,25<br>15,79 | 16,47 | 3,49                         |       |       | Z3            | 22,30<br>22,57<br>21,23 | 22,03   | 0,71  | 23,64  | 1,97                   | Geog6           | 14,25<br>12,30<br>14,25 | 13,60          | 1,13 |        |                      |        |                     |      |      |  |  |
| V1            | 7,68<br>12,40<br>12,91  | 11,00 | 2,88                         |       |       | Z4            | 23,36<br>22,07<br>20,00 | 21,81   | 1,70  |        |                        | Geog7           | 14,45<br>16,1<br>14,45  | 15             | 0,95 | 15,50  | 2,53                 |        |                     |      |      |  |  |
| V2            | 10,21<br>10,47<br>12,56 | 11,08 | 1,29                         |       |       | Z5            | 24,12<br>24,90<br>23,43 | 24,15   | 0,74  |        |                        | Geog8           | 15,96<br>14,86<br>15,96 | 15,59          | 0,64 |        |                      |        |                     |      |      |  |  |
| V3            | 13,25<br>13,34<br>13,16 | 13,25 | 0,09                         | 12,21 | 1,90  | AA1           | 18,87<br>18,52<br>22,23 | 19,873  | 2,05  |        |                        | Geog9<br>Geog10 | 18,64<br>19,40<br>19,40 | 18,64<br>19,40 | 0,00 |        |                      |        |                     |      |      |  |  |
| V4            | 10,61<br>12,94<br>14,75 | 12,77 | 2,08                         |       |       | AA2           | 17,74<br>20,34<br>16,71 | 18,26   | 1,87  |        |                        |                 | 19,40                   |                |      |        | Н                    |        |                     |      |      |  |  |
| V5            | 10,60<br>14,06<br>14,15 | 12,94 | 2,02                         |       |       | AA3           | 18,01<br>18,73<br>19,80 | 18,85   | 0,90  | 19,60  | 1,98                   |                 |                         |                |      |        |                      |        |                     |      |      |  |  |
| W             | 37,70<br>40,44<br>36,06 | 38,07 | 2,21                         | 38,07 | 2,21  | AA4           | 21,59<br>19,65<br>24,69 | 21,98   | 2,54  |        |                        |                 |                         |                |      |        |                      |        |                     |      |      |  |  |
| X1            | 19,16<br>22,69<br>27,31 | 23,05 | 4,09                         |       |       | AA5           | 19,18<br>18,82<br>19,18 | 19,06   | 0,21  |        |                        |                 |                         |                |      |        |                      |        |                     |      |      |  |  |

|               | <u>-</u>                | WEST  | FÄLISCH<br>ELMS-UN<br>STER | E<br>NIVERS | ITÄT | Ern           | nittlung           | des Po | renan | teils |   |               | Labo               | rante | n: |   |   |
|---------------|-------------------------|-------|----------------------------|-------------|------|---------------|--------------------|--------|-------|-------|---|---------------|--------------------|-------|----|---|---|
| Proto-<br>typ | n<br>(Vol%)             | ø     | σ                          | ø           | σ    | Proto-<br>typ | <i>n</i><br>(Vol%) | Ø      | σ     | Ø     | σ | Proto-<br>typ | <i>n</i><br>(Vol%) | Ø     | σ  | ø | σ |
| Geoa1         | 12,83<br>13,93<br>14,20 | 13,65 | 0,73                       |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
| Geoa4         | 15,55<br>14,19          | 14,87 | 0,96                       |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
| Geoa5         | 17,10<br>16,56<br>14,38 | 16,01 | 1,44                       | 6           |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
| Geoa7         | 9,31<br>11,54<br>11,82  | 10,89 | 1,38                       | 13,49       | 1,94 |               |                    |        |       |       |   |               |                    |       |    |   |   |
| Geoa8         | 14,53<br>13,15<br>13,70 | 13,79 | 0,69                       |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
| Geoa10        | 11,89                   | 12,16 | 0,47                       |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
|               |                         |       |                            |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
|               |                         |       |                            |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
|               |                         |       |                            |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
|               |                         |       |                            |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
|               |                         |       |                            |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
|               |                         |       |                            |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
|               |                         |       |                            |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
|               |                         |       |                            |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
|               |                         |       |                            |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
|               |                         |       |                            |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
|               |                         |       |                            |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
|               |                         |       |                            |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
|               |                         |       |                            |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |
|               |                         |       |                            |             |      |               |                    |        |       |       |   |               |                    |       |    |   |   |

|                   | <u> </u>                |                         | ÄLISCHE<br>LMS-UNIV<br>TER | ERSI  | ΓÄΤ   | Err           | nittlung (              | der Poi | renza | ıhl                     |       |                | Labo                             | anten                  | :           |                          |                |      |       |      |
|-------------------|-------------------------|-------------------------|----------------------------|-------|-------|---------------|-------------------------|---------|-------|-------------------------|-------|----------------|----------------------------------|------------------------|-------------|--------------------------|----------------|------|-------|------|
| Proto-<br>typ     | e<br>(Vol%)             | Ø                       | σ                          | ø     | σ     | Proto-<br>typ | e<br>(Vol%)             | Ø       | σ     | ø                       | σ     | Proto-<br>typ  | e<br>(Vol%)                      | Ø                      | σ           | ø                        | σ              |      |       |      |
| A4<br>A5          | 31,81<br>33,91          | 31,81<br>33,91          | -                          |       |       | Fr3           | 29,96<br>22,85          | 24,96   | 4,34  | 27,20                   | 4,94  | J1             | 41,28<br>51,01                   | 47,38                  | 5,32        |                          |                |      |       |      |
| A6<br>A7          | 38,91<br>52,49<br>43,70 | 38,91<br>46,17          | -<br>5,51                  | 37,61 | 10,29 | Fr4           | 22,08<br>33,13<br>38,97 | 34,88   | 3,55  | ``                      |       | J2             | 49,86<br>51,35<br>59,69          | 55,02                  | 4,26        |                          |                |      |       |      |
| A8                | 42,33<br>20,14          | 20,14                   | -                          | •     |       |               | 32,54<br>26,01          |         |       |                         |       |                | 54,03<br>39,13                   | ,                      |             | 3                        | 59             |      |       |      |
| B4<br>B5          | 15,32<br>21,79          | 15,32<br>21,79          | -                          | 17    | 5,34  | Fr5           | 28,79<br>27,66          | 27,49   | 1,40  |                         |       | J3             | 51,5<br>46,61                    | 45,75                  | 6,23        | 49,93                    | 5,5            |      |       |      |
| B6<br>B7<br>B8    | 14,70<br>21,35<br>27,68 | 14,70<br>21,35<br>27,68 | -                          | 20,17 | 5,3   | G1            | 34,56<br>41,53<br>41,53 | 39,21   | 4,02  |                         |       | J4             | 48,37<br>49,67<br>43,05          | 47,03                  | 3,51        |                          |                |      |       |      |
| C4                | 25,59<br>28,16<br>26,39 | 26,71                   | 1,32                       |       |       | G2            | 44,14<br>42,78<br>39,49 | 42,14   | 2,39  |                         |       | J5             | 53,88<br>56,44<br>53,1           | 54,47                  | 1,75        |                          |                |      |       |      |
| C5                | 51,49<br>30,70<br>30,70 | 37,63                   | 12,00                      | 0     |       | G3            | 38,78<br>37,82<br>37,18 | 37,93   | 0,81  | 40,92                   | 3,96  | K4             | 30,08<br>29,8<br>43,17           | 34,35                  | 7,64        |                          |                |      |       |      |
| C6<br>C7          | 29,39<br>22,51<br>24,63 | 29,39                   | 1,09                       | 28,20 | 7,51  | G4            | 42,94<br>39,97<br>36,51 | 39,81   | 3,22  |                         |       | K6             | 29,34<br>37,79<br>32,83          | 33,32                  | 4,25        |                          |                |      |       |      |
| C8                | 23,13<br>23,83<br>25,89 | 24,64                   | 1,10                       | r     |       |               |                         |         | G5    | 39,93<br>48,10<br>48,47 | 45,50 | 4,83           |                                  |                        | K7          | 33,683<br>42,39<br>35,76 | 37,28          | 4,55 | 35,42 | 4,47 |
| D1                | 24,21<br>48,66<br>41,58 | 42,97                   | 5,13                       |       |       | H1            | 36,94<br>37,91<br>40,9  | 38,58   | 2,06  |                         |       | K8             | 34,61<br>38,39<br>41,02          | 38,01                  | 3,22        |                          |                |      |       |      |
| D2<br>D3          | 38,68<br>26,09<br>22,74 | 26,09<br>22,74          | -                          | 37,28 | 12    | H2            | 47,93<br>50,16<br>42,64 | 46,91   | 3,86  |                         |       | K10            | 35,1<br>36,01<br>31,31           | 34,14                  | 2,49        |                          |                |      |       |      |
| D4<br>D5          | 32,91<br>45,82          | 32,91<br>45,82          | -<br>-<br>-                | 37    | 11,12 | 7,            | 17,                     | 17,     | Н3    | 40,76<br>44,58          | 51,81 | 2,42           | 42,39                            | 5,36                   | M1<br>M2    | 17,14<br>13,96           | 17,14<br>13,96 | -    | 37    | ,60  |
| D7<br>D8<br>E1    | 53,68<br>25,36<br>16,04 | 53,68<br>25,36<br>16,04 | -                          |       |       | H4            | 40,09<br>32,35<br>42,60 | 38,39   | 5,36  |                         |       | M3<br>M4<br>M5 | 18,00<br>8,85<br>13,88           | 18,00<br>8,85<br>13,88 | -<br>-      | 14,37                    | 3,6            |      |       |      |
| E2<br>E3          | 19,71<br>12,02          | 19,71<br>12,02          | -                          | 14    | 6(    |               | 40,22<br>53,98          | 40.07   | 0.04  |                         |       | N1<br>N2       | 3,02<br>5,02                     | 3,02<br>5,02           | -           | 4.                       | 4              |      |       |      |
| E4<br>E5<br>E6    | 11,48<br>29,59<br>15,66 | 11,48<br>29,59<br>15,66 | -                          | 17,41 | 60'9  | H5            | 44,28<br>40,54<br>39,64 | 46,27   | 6,94  |                         |       | N3<br>N4<br>N5 | 5,45<br>3,00<br>9,71             | 5,45<br>3,00<br>9,71   | -<br>-<br>- | 5,24                     | 2,74           |      |       |      |
| E7<br>Ff1         | 17,37<br>29,50          | 17,37<br>29,50          | -                          |       |       | I1            | 44,81<br>38,61          | 41,02   | 3,32  |                         |       | O1             | 10,26<br>11,76                   | 10,31                  | 1,43        |                          |                |      |       |      |
| Ff2<br>Ff3<br>Ff4 | 24,55<br>43,51<br>19,92 | 24,55<br>43,51<br>19,92 | -                          | 29,58 | 9,75  | I2            | 43,07<br>47,46<br>42,36 | 44,30   | 2,76  |                         |       | O2             | 8,90<br>17,82<br>17,20           | 19,38                  | 3,26        |                          |                |      |       |      |
| Ff5<br>Ff6<br>Ff7 | 19,25<br>41,83<br>28,49 | 19,25<br>41,83<br>28,49 | -                          | 2     | 3,    | 13            | 52,00<br>48,80<br>44,68 | 48,49   | 3,67  | 43,36                   | 5,60  | O3             | 23,13<br>16,10<br>17,45          | 15,07                  | 3,03        | 15,09                    | 3,84           |      |       |      |
| Fr1               | 24,05<br>23,25<br>24,86 | 24,05                   | 0,81                       |       |       | 14            | 32,53<br>36,22<br>37,01 | 35,25   | 2,39  |                         |       | 04             | 11,66<br>14,13<br>17,66          | 14,73                  |             | 1                        | 3              |      |       |      |
| Fr2               | 29,05<br>23,57<br>21,25 | 24,62                   | 4,01                       |       |       | 15            | 50,27<br>45,85<br>47,11 | 47,74   | 2,28  |                         |       | O5             | 12,39<br>18,85<br>16,73<br>12,38 | 15,99                  | 3,30        | <u> </u>                 |                |      |       |      |

|               | <u>-</u>                |       | -ÄLISCHE<br>LMS-UNI<br>TER |       | ITÄT  | Err           | nittlung (              | der Por                 | enza                    | hl    |      |                         | Laboi                   | ranten               | •                      |       |        |                     |                         |       |      |  |
|---------------|-------------------------|-------|----------------------------|-------|-------|---------------|-------------------------|-------------------------|-------------------------|-------|------|-------------------------|-------------------------|----------------------|------------------------|-------|--------|---------------------|-------------------------|-------|------|--|
| Proto-<br>typ | e<br>(Vol%)             | Ø     | σ                          | ø     | σ     | Proto-<br>typ | e<br>(Vol%)             | Ø                       | σ                       | ø     | σ    | Proto-<br>typ           | e<br>(Vol%)             | Ø                    | σ                      | ø     | σ      |                     |                         |       |      |  |
| R             | 30,47<br>27,55<br>33,40 | 30,47 | 2,93                       |       |       | X2            | 28,12<br>35,32<br>40,64 | 34,69                   | 6,28                    |       |      | Gefdg1                  | 9,65<br>11,36<br>8,67   | 9,89                 | 1,36                   |       |        |                     |                         |       |      |  |
| S             | 33,86<br>32,42<br>40,31 | 35,53 | 4,20                       |       |       | Х3            | 24,55<br>32,69<br>39,12 | 32,12                   | 7,30                    | 32,82 | 5,51 | Gefdg2                  | 7,18<br>9,34<br>8,86    | 8,46                 | 1,13                   |       |        |                     |                         |       |      |  |
| T1            | 21,08<br>20,82<br>26,20 | 22,70 | 3,03                       |       |       | X4            | 33,24<br>35,63<br>41,38 | 36,75                   | 4,18                    |       |      | Gefdg3                  | 6,75<br>9,03<br>7,97    | 7,92                 | 1,14                   | 8,31  | 1,66   |                     |                         |       |      |  |
| T2            | 16,91<br>18,55<br>21,03 | 18,83 | 2,07                       |       |       |               | X5                      | 30,09<br>28,21<br>32,65 | 30,32                   | 2,23  |      |                         | Gefdg4                  | 4,42<br>8,99<br>7,77 | 7,06                   | 2,37  |        |                     |                         |       |      |  |
| Т3            | 20,34<br>18,74<br>19,54 | 19,54 | 0,80                       | 21,77 | 3,14  | Y1            | 26,65<br>29,90<br>31,81 | 29,45                   | 2,61                    |       |      | Gefdg5                  | 6,22<br>9,04<br>9,33    | 8,20                 | 1,72                   |       |        |                     |                         |       |      |  |
| T4            | 23,70<br>19,02<br>25,39 | 22,70 | 3,30                       |       |       | Y2            | 31,04<br>35,28<br>39,30 | 35,21                   | 4,13                    |       |      | Gefda1                  | 6,43<br>8,41<br>7,55    | 7,46                 | 0,99                   |       |        |                     |                         |       |      |  |
| T5            | 22,85<br>25,13<br>27,19 | 25,06 | 2,17                       |       |       | Y3            | 20,93<br>27,88<br>23,93 | 24,25                   | 3,49                    | 29,06 | 4,55 | Gefda2                  | 11,06<br>11,97<br>11,26 | 11,43                | 0,48                   |       |        |                     |                         |       |      |  |
| U1            | 19,51<br>20,64<br>24,30 | 21,48 | 2,50                       |       |       | Y4            | 28,58<br>27,73<br>26,33 | 27,55                   | 1,14                    |       |      | Gefda3                  | 7,98<br>6,6<br>7,42     | 7,33                 | 0,69                   | 8,46  | 1,85   |                     |                         |       |      |  |
| U2            | 14,59<br>20,16<br>22,00 | 18,92 | 3,86                       |       |       |               | Y5                      | 32,46<br>28,69<br>25,40 | 28,85                   | 3,53  |      |                         | Gefda4                  | 6,33<br>9,74<br>8,01 | 8,03                   | 1,71  |        |                     |                         |       |      |  |
| U3            | 28,56<br>26,90<br>34,33 | 29,93 | 3,90                       | 23,79 | 23,79 | <u>-</u>      | 23,79                   | 23,79                   | 23,79                   | 90'9  | Z1   | 38,08<br>33,91<br>35,64 | 35,88                   | 2,10                 |                        |       | Gefda5 | 6,6<br>9,61<br>7,99 | 8,07                    | 1,51  |      |  |
| U4            | 34,42<br>29,22<br>22,59 | 28,74 | 5,93                       |       |       |               |                         |                         |                         |       |      | <b>Z</b> 2              | 29,72<br>33,37<br>30,76 | 31,28                | 1,88                   |       |        | Geog3               | 16,00<br>12,80<br>15,70 | 14,80 | 1,77 |  |
| U5            | 15,45<br>25,39<br>18,76 | 19,87 | 5,06                       |       |       |               |                         | Z3                      | 28,70<br>29,14<br>26,96 | 28,27 | 1,15 | 31,04                   | 3,40                    | Geog6                | 16,60<br>14,00<br>16,6 | 15,75 | 1,49   |                     |                         |       |      |  |
| V1            | 8,32<br>14,15<br>14,83  | 12,43 | 3,58                       |       |       | Z4            | 30,48<br>28,32<br>25,00 | 27,93                   | 2,76                    |       |      | Geog7                   | 16,9<br>19,2<br>16,9    | 17,66                | 1,33                   | 18,50 | 3,59   |                     |                         |       |      |  |
| V2            | 11,37<br>11,70<br>14,36 | 12,48 | 1,64                       |       |       | Z5            | 31,79<br>33,16<br>30,59 | 31,85                   | 1,29                    |       |      | Geog8                   | 19<br>17,50<br>19,00    | 18,48                | 0,89                   |       |        |                     |                         |       |      |  |
| V3            | 15,27<br>15,39<br>15,16 | 15,27 | 0,12                       | 13,95 | 2,43  | AA1           | 23,26<br>22,72<br>28,58 | 24,85                   | 3,24                    |       |      | Geog9<br>Geog10         | 22,90<br>24,10<br>24,10 | 22,92                | 0,00                   |       |        |                     |                         |       |      |  |
| V4            | 11,87<br>14,86<br>17,30 | 14,68 | 2,72                       |       |       | AA2           | 21,56<br>25,54<br>20,07 | 22,39                   | 2,83                    |       |      |                         | 24,10                   |                      |                        |       |        |                     |                         |       |      |  |
| V5            | 11,86<br>16,37<br>16,48 | 14,90 | 2,64                       |       |       | AA3           | 21,97<br>23,04<br>24,69 | 23,23                   | 1,37                    | 24,46 | 3,16 |                         |                         |                      |                        |       |        |                     |                         |       |      |  |
| W             | 60,52<br>67,89<br>56,40 | 61,60 | 5,82                       | 61,60 | 5,82  | AA4           | 27,54<br>24,45<br>32,79 | 28,26                   | 4,22                    |       |      |                         |                         |                      |                        |       |        |                     |                         |       |      |  |
| X1            | 23,71<br>29,36<br>37,57 | 30,21 | 6,97                       |       |       | AA5           | 23,74<br>23,18<br>23,74 | 23,55                   | 0,32                    |       |      |                         |                         |                      |                        |       |        |                     |                         |       |      |  |

#### Materials and Methods, June 1, 2011

#### **MicroCT Measurements:**

The sample was measured with a commercially available cabinet cone-beam microCT, (µCT 100, SCANCO Medical AG, Brüttisellen, Switzerland). MicroCT examinations are non-destructive; the samples remain available for other examination techniques afterwards.

It operates with a cone beam originating from a 5 µm focal-spot X-ray tube. The photons are detected by a CCD- based area detector and the projection data are computer-reconstructed into a 1536 x 1536 x 1177 image matrix.

#### **Scan Settings:**

The chosen voxel size was 68.4 µm in all three spatial dimensions. FOV= 105.062 mm, 1177 slices were scanned, covering a total of 80.50 mm, Image Matrix 1536 x 1536 x 1177 pixels, X-ray voltage was 90 kVp, Intensity 200 μA, Integration Time 1.08 seconds.

#### **Evaluation:**

The concrete was automatically segmented, based on its gray scale value in the CT slices.

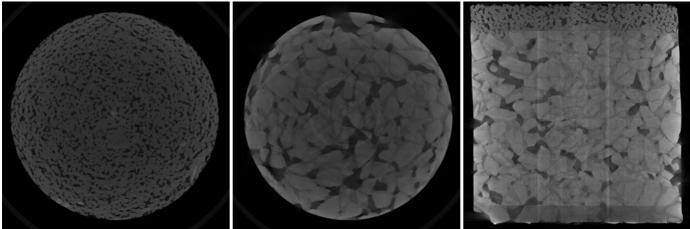



Figure 1: grey scale image of the sample, in horizontal (from the top and the lower part) and in vertical direction.

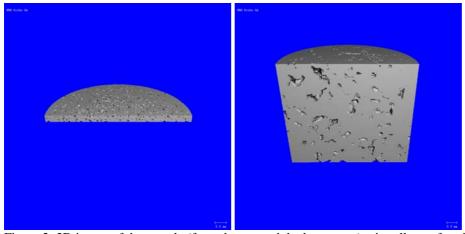



Figure 2: 3D image of the sample (from the top and the lower part), virtually cut face in vertical direction.

#### **References:**

HILDEBRAND, T., LAIB, A., MÜLLER, R., DEQUEKER, J., and RÜEGSEGGER, P. (1999): ,Direct 3D morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest and calcaneus', J. Bone Miner. Res., 14, pp. 1167-1174

# Explanation of Structural Indices

more info: See user's manual, Appendix E, including literature references. http://www.scanco.ch/download/uct40\_manual.pdf

#### **Prefixes:**

VOX: based on counting voxels

DT: based on distance transformation (filling structure with spheres)

TRI: based on triangularization of surface (thus one more interpolation step in

comparison to VOX)

#### **Indices:**

TV: total volume [mm^3] BV: bone volume [mm^3]

BV/TV: relative bone volume [1] ('Percent')

Conn.D.: connectivity density, normed by TV [1/mm^3]

SMI: structure model index: 0 for parallel plates, 3 for cylindrical rods

DT-Tb.N: trabecular number [1/mm] DT-Tb.Th: trabecular thickness [mm]

DT-Tb.Sp: trabecular separation = marrow thickness [mm]
DT-Tb.1/N.SD: standard deviation of local inverse number [mm]
DT-Tb.Th.SD: standard deviation of local thicknesses [mm]
DT.Tb.Sp.SD: standard deviation of local separations [mm]

These DT indices are calculated without assuming anything about the shape of the bone (i.e. without plate model assumption). SDs: with the DT operation, a local thickness/separation for every voxel within bone is calculated. A histogram of local thickness/separation values can be obtained, and a mean and SD of this distribution is calculated. [Explanation for Tb.1/N.SD: First answer: forget about it, take Tb.Sp.SD. Detailed answer: For DT-Tb.N, the histogram is actually of the local separation of the skeletonized structure, thus 1/N. The mean value can be inverted to give Tb.N, but the SD only makes sense as Tb.1/N.SD]

Mean1: Mean Voxel values of everything within

volume of interest (mixture of bone and background) if scan was calibrated for bone: in units of [mg HA/ccm]

otherwise: in Lin.Att. units [1/cm]; or: HU units

Mean of segmented region, thus mean only of what was

considered bone (in [mg HA/ccm] or [1/cm])

Mean of additional region (if applicable)

TRI-BS: bone surface [mm<sup>2</sup>]

TRI-Tb.N,Th,Sp: trab. number, thickness, separation, this time derived from the surface ratio, assuming that the bone is made of parallel plates ('MIL method'). Corresponds to traditional 2D histomorphometry, but this plate-model assumption leads to a bias in most cases. Scanco recommends to use DT-Tb.N,Th,Sp for truly 3D results.

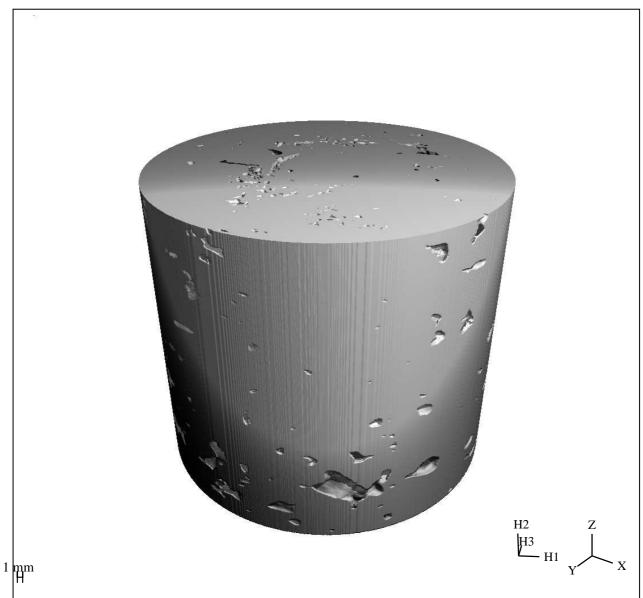
TRI-DA: degree of anisotropy, 1= isotropic, >1 anisotropic

by definition DA = length of longest divided by shortest H-vector

TRI-H1: shortest vector of the MIL tensor, H1x, H1y H1z its components.

TRI-H2: longest vector of the MIL tensor TRI-H3: intermediate vector of the MIL tensor

TRI-|H1| etc: length of these vectors in [mm]


El-Size-mm: voxelsize in mm, in x, y and z direction

### **WWU Probe GG**

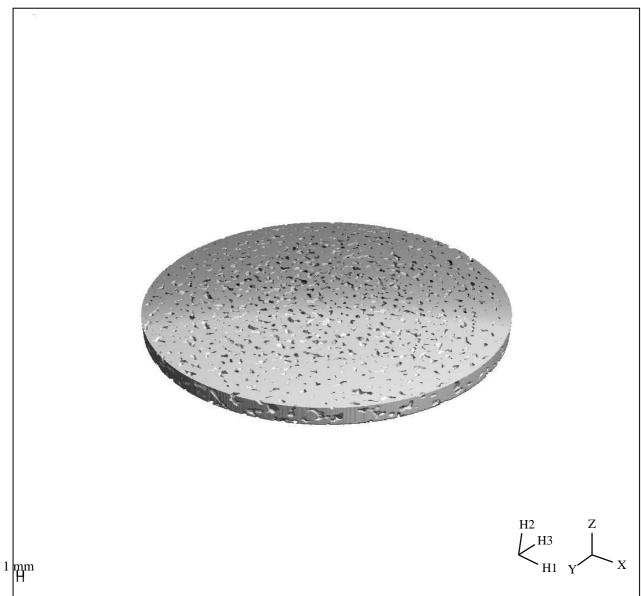
# **SCANCO** MEDICAL

S-No.: 6280 Filename: C0048614

M-No.: 11820 Date: 09–MAY–2011 12:38



| VOI                        | X           | Υ           | Z          | Mean/Density [m                      | g HA/ccm]                               |
|----------------------------|-------------|-------------|------------|--------------------------------------|-----------------------------------------|
| Position [p] Dimension [p] | 187<br>1128 | 207<br>1128 | 164<br>900 | of TV (Apparent)<br>of BV (Material) | 748.9750<br>793.9493                    |
| Element Size [mm]          | _           | 0.0684      | 0.0684     |                                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |


|          | Direct (N            | lo Model)  |       | TRI (Pla           | te Model) |     | Anisotropy                      |           |               |  |
|----------|----------------------|------------|-------|--------------------|-----------|-----|---------------------------------|-----------|---------------|--|
| TV       | [mm <sup>3</sup> ]   | 237200.375 | TV    | [mm <sup>3</sup> ] | 236783.3  | 28  | H1                              | [mm]      | 6.9077        |  |
| BV       | $[mm^3]$             | 213413.203 | BV    | [mm <sup>3</sup> ] | 213626.0  | 94  | H2                              | [mm]      | 8.3322        |  |
| BV/TV    | [1]                  | 0.8997     | BV/TV | [1]                | 0.90      | 22  | H3                              | [mm]      | 6.9749        |  |
| Conn. D. | [1/mm <sup>3</sup> ] | 0.0027     | BS    | [mm <sup>2</sup> ] | 64645.04  | :69 | DA                              | [1]       | 1.2062        |  |
| SMI      | [1]                  | -19.6534   | BS/BV | [1/mm]             | 0.30      | 26  |                                 |           |               |  |
| Tb.N*    | [1/mm]               | 0.2795     | Tb.N  | [1/mm]             | 0.13      | 65  | Segm                            | entation: | 2.0 / 3 / 185 |  |
| Tb.Th*   | [mm]                 | 5.4755     | Tb.Th | [mm]               | 6.60      | 92  | Operator Meas.: Burkhart Markus |           |               |  |
| Tb.Sp*   | [mm]                 | 1.7010     | Tb.Sp | [mm]               | 0.71      | .64 | Operat                          | or Eval.: |               |  |

### **WWU Probe GG**

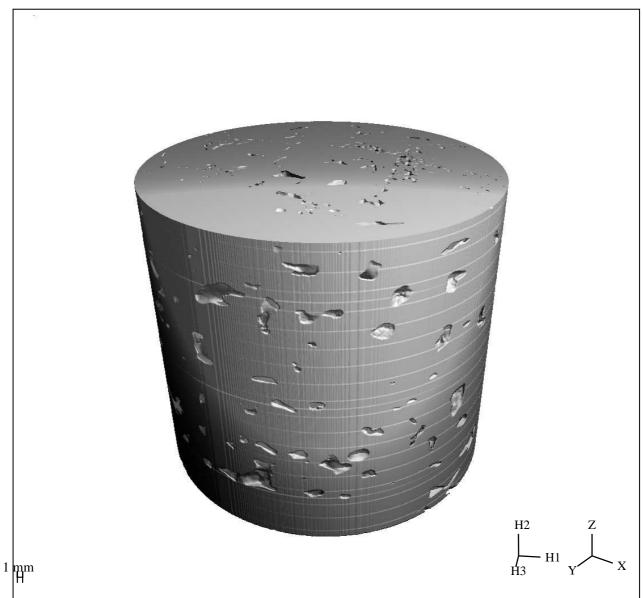
# **SCANCO** MEDICAL

S-No.: 6280 Filename: C0048614

M-No.: 11820 Date: 09–MAY–2011 12:38



| VOI               | Х      | Y      | Z      | Mean/Density [m  | ng HA/ccm] |
|-------------------|--------|--------|--------|------------------|------------|
| Position [p]      | 184    | 193    | 54     | of TV (Apparent) | 522.1379   |
| Dimension [p]     | 1152   | 1176   | 50     | of BV (Material) | 628.0608   |
| Element Size [mm] | 0.0684 | 0.0684 | 0.0684 |                  |            |


|          | Direct (N            | lo Model)  |       | TRI (Pla           | te Mode | el)  | Anisotropy |              |                |  |
|----------|----------------------|------------|-------|--------------------|---------|------|------------|--------------|----------------|--|
| TV       | [mm³]                | 13177.7988 | TV    | [mm <sup>3</sup> ] | 13154.  | 6289 | H1         | [mm]         | 1.7622         |  |
| BV       | $[mm^3]$             | 10118.5752 | BV    | $[mm^3]$           | 10041.  | 7617 | H2         | [mm]         | 1.8249         |  |
| BV/TV    | [1]                  | 0.7679     | BV/TV | [1]                | 0.      | 7634 | H3         | [mm]         | 1.7718         |  |
| Conn. D. | [1/mm <sup>3</sup> ] | 0.1496     | BS    | [mm <sup>2</sup> ] | 14740.  | 7432 | DA         | [1]          | 1.0356         |  |
| SMI      | [1]                  | -7.7261    | BS/BV | [1/mm]             | 1.      | 4679 |            |              |                |  |
| Tb.N*    | [1/mm]               | 0.7944     | Tb.N  | [1/mm]             | 0.      | 5603 | Segm       | nentation:   | 2.0 / 3 / 160  |  |
| Tb.Th*   | [mm]                 | 1.1916     | Tb.Th | [mm]               | 1.      | 3624 | Operat     | tor Meas.: B | urkhart Markus |  |
| Tb.Sp*   | [mm]                 | 0.6309     | Tb.Sp | [mm]               | 0.      | 4223 | Operat     | tor Eval.:   |                |  |

### **WWU Probe GA**

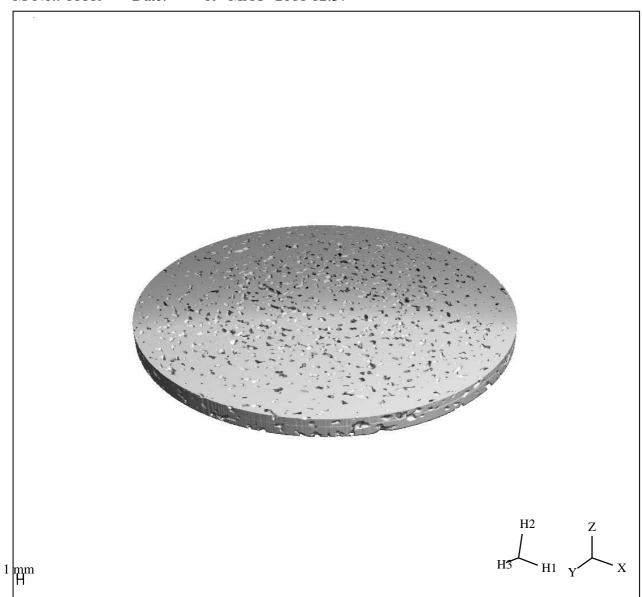
# **SCANCO** MEDICAL

S-No.: 6279 Filename: C0048609

M-No.: 11819 Date: 09–MAY–2011 12:37



| VOI               | Х      | Y      | Z      | Mean/Density [m  | ng HA/ccm] |
|-------------------|--------|--------|--------|------------------|------------|
| Position [p]      | 210    | 217    | 164    | of TV (Apparent) | 745.0429   |
| Dimension [p]     | 1140   | 1132   | 900    | of BV (Material) | 800.2162   |
| Element Size [mm] | 0.0684 | 0.0684 | 0.0684 |                  |            |


|                          | Direct (N                          | lo Model)                    |                        | TRI (Pla                      | ite Model)                     |            | Anisotropy                                                                        |                  |  |  |
|--------------------------|------------------------------------|------------------------------|------------------------|-------------------------------|--------------------------------|------------|-----------------------------------------------------------------------------------|------------------|--|--|
| TV<br>BV                 | [mm <sup>3</sup> ]                 | 237200.375<br>209159.078     | TV<br>BV               | [mm <sup>3</sup> ]            | 236783.328<br>209402.359       | H1 <br> H2 | [mm]<br>[mm]                                                                      | 6.4560<br>7.4385 |  |  |
| BV/TV<br>Conn. D.<br>SMI | [1]<br>[1/mm <sup>3</sup> ]<br>[1] | 0.8818<br>0.0034<br>-16.7501 | BV/TV<br>BS<br>BS/BV   | [1] [mm <sup>2</sup> ] [1/mm] | 0.8844<br>70003.2578<br>0.3343 | DA         | [mm]<br>[1]                                                                       | 6.5314<br>1.1522 |  |  |
| Tb.N* Tb.Th* Tb.Sp*      | [1/mm]<br>[mm]<br>[mm]             | 0.2715<br>5.2417<br>1.8133   | Tb.N<br>Tb.Th<br>Tb.Sp | [1/mm]<br>[mm]<br>[mm]        | 0.1478<br>5.9826<br>0.7823     | Operat     | Segmentation: 2.0 / 3 / 185<br>Operator Meas.: Burkhart Markus<br>Operator Eval.: |                  |  |  |

### **WWU Probe GA**

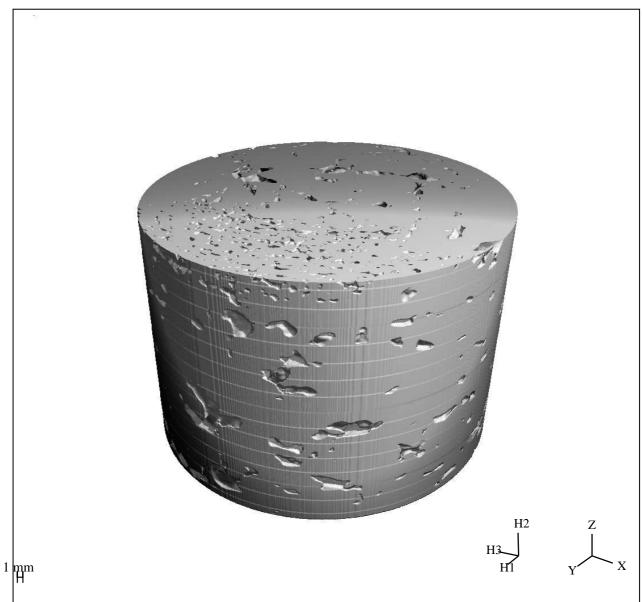
# **SCANCO** MEDICAL

S-No.: 6279 Filename: C0048609

M-No.: 11819 Date: 09–MAY–2011 12:37



| VOI                                          | X                     | Y                     | Z | Mean/Density [m                      | g HA/ccm]            |
|----------------------------------------------|-----------------------|-----------------------|---|--------------------------------------|----------------------|
| Position [p] Dimension [p] Element Size [mm] | 201<br>1128<br>0.0684 | 210<br>1136<br>0.0684 |   | of TV (Apparent)<br>of BV (Material) | 531.9683<br>623.2684 |


|                           | Direct (N              | lo Model)                  |                        | TRI (Pla                                 | te Mode          | el)                  | Anisotropy                                                                  |      |                  |  |
|---------------------------|------------------------|----------------------------|------------------------|------------------------------------------|------------------|----------------------|-----------------------------------------------------------------------------|------|------------------|--|
| TV<br>BV                  | [mm <sup>3</sup> ]     | 13177.7988<br>10469.2812   | TV<br>BV               | [mm <sup>3</sup> ]<br>[mm <sup>3</sup> ] | 13154.<br>10394. |                      | H1 <br> H2                                                                  | [mm] | 1.8145<br>1.8710 |  |
| BV/TV                     | [1]                    | 0.7945                     | BV/TV                  |                                          |                  | 7902                 | H3                                                                          | [mm] | 1.8285           |  |
| Conn. D.<br>SMI           | [1/mm <sup>3</sup> ]   | 0.1235<br>-10.0869         | BS<br>BS/BV            | [mm <sup>2</sup> ]<br>[1/mm]             | 14323.<br>1.     | 8730<br>3780         | DA                                                                          | [1]  | 1.0311           |  |
| Tb.N*<br>Tb.Th*<br>Tb.Sp* | [1/mm]<br>[mm]<br>[mm] | 0.8445<br>1.1785<br>0.5948 | Tb.N<br>Tb.Th<br>Tb.Sp | [1/mm]<br>[mm]<br>[mm]                   | 1.               | 5444<br>4514<br>3854 | Segmentation: 2.0 / 3 / 160 Operator Meas.: Burkhart Markus Operator Eval.: |      |                  |  |

### **WWU Probe TM**

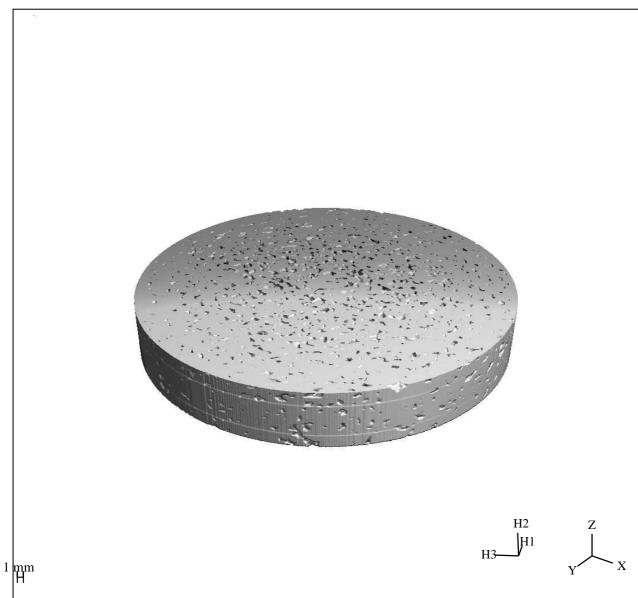
# **SCANCO** MEDICAL

S-No.: 6282 Filename: C0048662

M-No.: 11822 Date: 09–MAY–2011 14:43



| VOI                                          | X                     | Y                     | Z                    | Mean/Density [m                      | g HA/ccm]            |
|----------------------------------------------|-----------------------|-----------------------|----------------------|--------------------------------------|----------------------|
| Position [p] Dimension [p] Element Size [mm] | 189<br>1148<br>0.0684 | 187<br>1132<br>0.0684 | 364<br>700<br>0.0684 | of TV (Apparent)<br>of BV (Material) | 724.1533<br>777.6062 |


|                           | Direct (N                                | lo Model)                  |                        | TRI (Pla                                 | te Model         | l)                   |            | Ani          | sotropy                         |
|---------------------------|------------------------------------------|----------------------------|------------------------|------------------------------------------|------------------|----------------------|------------|--------------|---------------------------------|
| TV<br>BV                  | [mm <sup>3</sup> ]<br>[mm <sup>3</sup> ] | 184489.203<br>162256.953   | TV<br>BV               | [mm <sup>3</sup> ]<br>[mm <sup>3</sup> ] | 184164<br>162500 |                      | H1 <br> H2 | [mm]<br>[mm] | 5.4177<br>6.1065                |
| BV/TV                     | [1]                                      | 0.8795                     | BV/TV                  | [1]                                      | 0.               | 8824                 | H3         | [mm]         | 5.5536                          |
| Conn. D.<br>SMI           | [1/mm <sup>3</sup> ]                     | 0.0096<br>-17.5811         | BS<br>BS/BV            | [mm <sup>2</sup> ]<br>[1/mm]             | 64990.           | 4102<br>3999         | DA         | [1]          | 1.1271                          |
| Tb.N*<br>Tb.Th*<br>Tb.Sp* | [1/mm]<br>[mm]<br>[mm]                   | 0.3167<br>4.7198<br>1.4617 | Tb.N<br>Tb.Th<br>Tb.Sp | [1/mm]<br>[mm]<br>[mm]                   | 5.               | 1764<br>0007<br>6667 | Operat     |              | 2.0 / 3 / 185<br>urkhart Markus |

### **WWU Probe TM**

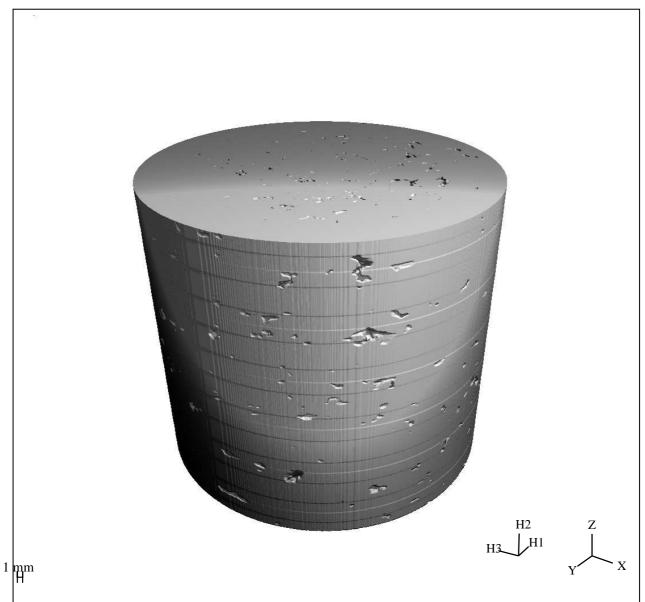
# **SCANCO** MEDICAL

S-No.: 6282 Filename: C0048662

M-No.: 11822 Date: 09–MAY–2011 14:43



| VOI                                          | X                     | Y                     | Z | Mean/Density [m                      | g HA/ccm]            |
|----------------------------------------------|-----------------------|-----------------------|---|--------------------------------------|----------------------|
| Position [p] Dimension [p] Element Size [mm] | 198<br>1136<br>0.0684 | 189<br>1136<br>0.0684 |   | of TV (Apparent)<br>of BV (Material) | 549.1716<br>629.5353 |


|          | Direct (N          | lo Model)  |       | TRI (Pla           | te Mode | el)  |        | Ani       | isotropy       |
|----------|--------------------|------------|-------|--------------------|---------|------|--------|-----------|----------------|
| TV       | [mm³]              | 39533.3945 | TV    | [mm³]              | 39463.  |      | H1     | [mm]      | 2.1691         |
| BV       | [mm <sup>3</sup> ] | 34155.7578 | BV    | [mm <sup>3</sup> ] | 34329.  |      | H2     | [mm]      | 2.3113         |
| BV/TV    | [1]                | 0.8640     | BV/TV | [1]                | 0.      | 8699 | H3     | [mm]      | 2.2040         |
| Conn. D. |                    | 0.0771     | BS    | [mm <sup>2</sup> ] | 35474.  |      | DA     | [1]       | 1.0656         |
| SMI      | [1]                | -18.8668   | BS/BV | [1/mm]             | 1.      | 0334 |        |           |                |
| Tb.N*    | [1/mm]             | 0.7928     | Tb.N  | [1/mm]             |         | 4495 | Segm   | entation: | 2.0 / 3 / 145  |
| Tb.Th*   | [mm]               | 1.4032     | Tb.Th | [mm]               |         | 9354 |        |           | urkhart Markus |
| Tb.Sp*   | [mm]               | 0.5025     | Tb.Sp | [mm]               | 0.      | 2895 | Operat | or Eval.: |                |

### **WWU Probe MM**

# **SCANCO** MEDICAL

S-No.: 6281 Filename: C0048635

M-No.: 11821 Date: 09–MAY–2011 14:07



| VOI               | Х      | Y      | Z      | Mean/Density [m  | ng HA/ccm] |
|-------------------|--------|--------|--------|------------------|------------|
| Position [p]      | 220    | 205    | 164    | of TV (Apparent) | 761.1402   |
| Dimension [p]     | 1132   | 1140   | 900    | of BV (Material) | 793.3349   |
| Element Size [mm] | 0.0684 | 0.0684 | 0.0684 |                  |            |

|          | Direct (N            | lo Model)  |       | TRI (Pla           | te Model | l)   |        | Ani         | sotropy        |
|----------|----------------------|------------|-------|--------------------|----------|------|--------|-------------|----------------|
| TV       | [mm³]                | 237200.375 | TV    | [mm <sup>3</sup> ] | 236783   | .328 | H1     | [mm]        | 5.1360         |
| BV       | $[mm^3]$             | 221393.141 | BV    | [mm <sup>3</sup> ] | 221975   | .734 | H2     | [mm]        | 5.8591         |
| BV/TV    | [1]                  | 0.9334     | BV/TV | [1]                | 0.       | 9375 | H3     | [mm]        | 5.2172         |
| Conn. D. | [1/mm <sup>3</sup> ] | 0.0116     | BS    | $[mm^2]$           | 88094.   | 6484 | DA     | [1]         | 1.1408         |
| SMI      | [1]                  | -34.4515   | BS/BV | [1/mm]             | 0.       | 3969 |        |             |                |
| Tb.N*    | [1/mm]               | 0.4654     | Tb.N  | [1/mm]             | 0.1      | 1860 | Segm   | entation:   | 2.0 / 3 / 185  |
| Tb.Th*   | [mm]                 | 3.6720     | Tb.Th | [mm]               | 5.       | 0395 | Operat | or Meas.: B | urkhart Markus |
| Tb.Sp*   | [mm]                 | 0.7197     | Tb.Sp | [mm]               | 0.       | 3362 | Operat | or Eval.:   |                |

|           |                          | WESTFÄLISG<br>WILHELMS-<br>MÜNSTER | .HE<br>Universität | Ermi      | _                        | er maxim<br>igkeit | alen |           |                          | anten:<br>ölver |      |
|-----------|--------------------------|------------------------------------|--------------------|-----------|--------------------------|--------------------|------|-----------|--------------------------|-----------------|------|
| Proto-typ | R <sub>max</sub><br>(mm) | Ø                                  | σ                  | Proto-typ | R <sub>max</sub><br>(mm) | Ø                  | σ    | Proto-typ | R <sub>max</sub><br>(mm) | Ø               | σ    |
| A5        | 2,75                     | 3,20                               | 0,63               | 12        | 2,73                     |                    |      | V2        | 3,26                     |                 |      |
| A7        | 3,64                     | 5,20                               | 0,00               | 13        | 3,04                     | 2,91               | 0,18 | V3        | 3,18                     | 3,30            | 0,10 |
| B8        | 12,78                    | 12,78                              | -                  | 14        | 3,08                     | 2,51               | 0,10 | V4        | 3,34                     | 3,50            | 0,10 |
| C4        | 8,70                     |                                    |                    | 15        | 2,77                     |                    |      | V5        | 3,42                     |                 |      |
| C5        | 8,98                     | 8,43                               | 0,96               | J2        | 6,71                     |                    |      | W         | 3,97                     | 3,97            | -    |
| C7        | 9,03                     | 0,40                               | 0,50               | J3        | 6,24                     | 5,55               | 1,10 | X2        | 3,13                     |                 |      |
| C8        | 7,01                     |                                    |                    | J4        | 4,78                     | 0,00               | 1,10 | Х3        | 3,35                     | 3,08            | 0,23 |
| D2        | 5,03                     |                                    |                    | J5        | 4,46                     |                    |      | X4        | 3,06                     | 3,00            | 0,20 |
| D4        | 5,95                     |                                    |                    | K6        | 6,45                     |                    |      | X5        | 2,79                     |                 |      |
| D5        | 4,33                     | 4,83                               | 0,69               | K7        | 6,43                     | 6,50               | 0,07 | Y2        | 2,96                     |                 |      |
| D7        | 4,39                     |                                    |                    | K8        | 6,59                     | 0,50               | 0,07 | Y3        | 3,24                     | 3,18            | 0,17 |
| D8        | 4,44                     |                                    |                    | K10       | 6,51                     |                    |      | Y4        | 3,13                     | 3,10            | 0,17 |
| E2        | 6,72                     |                                    |                    | M1        | 2,17                     |                    |      | Y5        | 3,37                     |                 |      |
| E3        | 5,53                     |                                    |                    | M2        | 1,93                     | 2,08               | 0,11 | Z2        | 4,21                     |                 |      |
| E4        | 5,95                     | 6,11                               | 0,46               | M3        | 2,07                     | 2,00               | 0,11 | Z3        | 4,05                     | 4,28            | 0,19 |
| E5        | 6,28                     | 0,11                               | 0,40               | M5        | 2,13                     |                    |      | Z4        | 4,37                     | 4,20            | 0,13 |
| E6        | 6,46                     |                                    |                    | N1        | 1,68                     |                    |      | Z5        | 4,49                     |                 |      |
| E7        | 5,71                     |                                    |                    | N2        | 2,31                     | 2,04               | 0,28 | AA2       | 3,14                     |                 |      |
| Ff2       | 15,90                    |                                    |                    | N3        | 2,19                     | 2,04               | 0,20 | AA3       | 3,14                     | 3,14            | 0,04 |
| Ff3       | 10,64                    |                                    |                    | N5        | 1,99                     |                    |      | AA4       | 3,10                     | 5,14            | 0,04 |
| Ff4       | 12,58                    | 12,96                              | 1,73               | 02        | 6,61                     |                    |      | AA5       | 3,19                     |                 |      |
| Ff5       | 12,46                    | 12,30                              | 1,73               | O3        | 6,66                     | 6,63               | 0,02 | Gefdg2    | 2,02                     |                 |      |
| Ff6       | 12,55                    |                                    |                    | 04        | 6,64                     | 0,03               | 0,02 | Gefdg3    | 2,38                     | 2,16            | 0,16 |
| Ff7       | 13,62                    |                                    |                    | O5        | 6,62                     |                    |      | Gefdg4    | 2,16                     | 2,10            | 0,10 |
| Fr2       | 14,15                    |                                    |                    | R         | 3,24                     | 3,24               | -    | Gefdg5    | 2,09                     |                 |      |
| Fr3       | 11,26                    | 11,92                              | 1,56               | S         | 4,88                     | 4,88               | -    | Gefda2    | 2,26                     |                 |      |
| Fr4       | 11,72                    | 11,52                              | 1,50               | T1        | 3,35                     |                    |      | Gefda3    | 2,10                     | 2,21            | 0,11 |
| Fr5       | 10,55                    |                                    |                    | T2        | 3,28                     | 3,28               | 0,17 | Gefda4    | 2,33                     | 2,21            | 0,11 |
| G2        | 7,10                     |                                    |                    | T3        | 3,44                     | ] 3,20             | 0,17 | Gefda5    | 2,14                     |                 |      |
| G3        | 5,78                     | 6,64                               | 0,59               | T5        | 3,05                     |                    |      | Geog 4    | 2,85                     | 3,22            | 0,52 |
| G4        | 6,79                     | 0,04                               | 0,00               | U1        | 3,14                     |                    |      | Geog 5    | 3,59                     | 5,22            | 0,02 |
| G5        | 6,88                     |                                    |                    | U2        | 3,33                     | 3,23               | 0,08 | Geoa2     | 3,16                     |                 |      |
| H2        | 2,94                     |                                    |                    | U3        | 3,19                     | ] 3,23             | 0,00 | Geoa3     | 3,33                     | 3,23            | 0,19 |
| H3        | 2,71                     | 3,01                               | 0,24               | U4        | 3,26                     |                    |      | Geoa4     | 3,42                     | 3,23            | 0,13 |
| H4        | 3,23                     | 3,01                               | 0,24               |           |                          |                    |      | Geoa5     | 2,99                     |                 |      |
| H5        | 3,17                     |                                    |                    |           |                          |                    |      |           |                          |                 |      |

| :             |                                  | <del></del> \ | Westfälische<br>Wilhelms-Univ<br>Münster | VERS     | ITÄT     |               |                                  | mittlung<br>sigkeits | des<br>beiwerte | s        |          | Labo          |                                  | I. Tielma<br>er, T. Hof | nn, V. Ka<br>erichter | ul,      | B.       |
|---------------|----------------------------------|---------------|------------------------------------------|----------|----------|---------------|----------------------------------|----------------------|-----------------|----------|----------|---------------|----------------------------------|-------------------------|-----------------------|----------|----------|
| Proto-<br>typ | k <sub>f</sub><br>(m/s)          | Ø             | σ                                        | ø        | σ        | Proto-<br>typ | k <sub>f</sub><br>(m/s)          | Ø                    | σ               | ø        | σ        | Proto-<br>typ | k <sub>f</sub><br>(m/s)          | Ø                       | σ                     | ø        | σ        |
| A4            | 1,96E-03<br>1,80E-03<br>1,91E-03 | 1,88E-03      | 1,13E-04                                 |          |          | D3            | 6,49E-04<br>4,49E-04             | 6,28E-04             | 1,69E-04        |          |          | Ff2           | 2,33E-03<br>2,31E-03             | 2,32E-03                | 1,41E-05              |          |          |
| A5            | 1,87E-03<br>1,76E-03             | 1,85E-03      | 7,77E-05                                 |          |          | D4            | 7,86E-04<br>1,26E-03<br>1,26E-03 | 1,29E-03             | 5,77E-05        | 8        | 4        | Ff3           | 2,28E-03<br>2,28E-03<br>2,29E-03 | 2,28E-03                | 5,77E-06              | E-03     | 2,44E-04 |
| A6            | 1,86E-03<br>1,84E-03<br>1,77E-03 | 1,63E-03      | 3,89E-04                                 | 1,72E-03 | 2,25E-04 | D5            | 1,36E-03<br>1,35E-03<br>8,17E-04 | 1,12E-03             | 2,74E-04        | 1,16E-03 | 2,99E-04 | Ff4           | 2,25E-03<br>2,20E-03<br>2,13E-03 | 2,19E-03                | 6,03E-05              | 2,16     | 2,44     |
| A7            | 1,05E-03<br>1,67E-03<br>1,67E-03 | 1,67E-03      | 2,66E-19                                 | _        | 2        | D7            | 1,19E-03<br>1,09E-03<br>1,28E-03 | 1,26E-03             | 1,66E-04        |          |          | Ff5           | 1,63E-03<br>1,66E-03<br>1,72E-03 | 1,67E-03                | 4,58E-05              |          |          |
| A8            | 1,67E-03<br>1,64E-03<br>1,54E-03 | 1,59E-03      | 7,07E-05                                 |          |          | D8            | 1,42E-03<br>1,14E-03<br>1,25E-03 | 1,21E-03             | 6,35E-05        |          |          | Ff6           | 2,40E-03<br>2,30E-03<br>2,36E-03 | _,                      | 2,40E-04              |          |          |
|               | 2,31E-04<br>3,11E-04<br>3,85E-04 |               |                                          |          |          |               | 1,25E-03<br>8,70E-04<br>1,05E-03 |                      |                 |          |          | Ff7           | 2,34E-03<br>1,82E-03<br>2,33E-03 |                         | 0,00E+00              |          |          |
| B4            | 4,01E-04<br>4,13E-04<br>4,12E-04 | 3,59E-04      | 7,33E-05                                 |          |          | E1            | 1,05E-03<br>1,25E-03<br>1,28E-03 | 1,15E-03             | 1,59E-04        |          |          | Fr1           | 9,06E-04<br>1,07E-03<br>1,07E-03 |                         | ·                     |          |          |
| B5            | 5,63E-06<br>7,14E-04<br>6,86E-04 | 5,63E-06      | 0,00E+00                                 |          |          |               | 1,25E-03<br>1,28E-03<br>1,48E-03 |                      |                 |          |          | Fr2           | 1,09E-03<br>1,20E-03<br>1,14E-03 | 1,14E-03                | 5,51E-05              |          |          |
| В6            | 6,60E-04<br>7,77E-04<br>7,47E-04 | 6,36E-04      | 1,85E-04                                 | 4,81E-04 | 2,44E-04 | E2            | 1,52E-03<br>1,47E-03<br>1,66E-03 | 1,53E-03             | 8,77E-05        |          |          | Fr3           | 1,88E-03<br>2,04E-03<br>2,04E-03 | 1,99E-03                | 9,24E-05              | 1,46E-03 | 5,16E-04 |
|               | 5,21E-04<br>7,61E-04<br>7,54E-04 |               |                                          | 4,8      | 2,4      |               | 1,58E-03<br>1,68E-03<br>1,74E-03 |                      |                 |          |          | Fr4           | 2,13E-03<br>2,13E-03<br>2,13E-03 | 2,13E-03                | 0,00E+00              |          |          |
| B6            | 7,54E-04<br>7,52E-04<br>4,50E-04 | 7,53E-04      | 1,15E-06                                 |          |          | E3            | 1,58E-03<br>1,63E-03<br>1,63E-03 | 1,59E-03             | 1,23E-04        |          |          | Fr5           | 1,02E-03<br>9,82E-04<br>1,02E-03 | 1,01E-03                | 2,19E-05              |          |          |
| B7            | 4,13E-04<br>4,34E-04<br>5,00E-05 | 4,32E-04      | 1,86E-05                                 |          |          |               | 1,33E-03<br>1,53E-03<br>1,13E-03 |                      |                 | E-03     | E-04     | G1            | 2,06E-03                         |                         | 0,00E+00              |          |          |
| В8            | 7,45E-05<br>3,61E-04<br>1,62E-03 | 1,62E-04      | 1,73E-04                                 |          |          | E4            | 1,57E-03<br>1,57E-03<br>1,57E-03 | 1,45E-03             | 1,59E-04        | 1,38E-(  | 2,92E-(  | G2            | 1,92E-03                         |                         | 9,24E-05              |          |          |
| C4            | 1,86E-03<br>1,94E-03<br>2,12E-03 | 1,81E-03      | 1,67E-04                                 |          |          | C4            | 1,39E-03<br>1,49E-03<br>1,44E-03 | 1,45E-03             | 1,39E-04        |          |          | G3            | 2,06E-03<br>2,06E-03<br>2,06E-03 | 2,06E-03                | 0,00E+00              | 2,02E-03 | 1,43E-04 |
| C5            | 1,95E-03<br>1,95E-03<br>8,66E-04 | 2,01E-03      | 9,81E-05                                 | 3        | 4        | E5            | 1,60E-03<br>1,47E-03<br>1,65E-03 | 1,46E-03             | 2,49E-04        |          |          | G4            | 1,82E-03<br>2,12E-03<br>1,59E-03 | 1,84E-03                | 2,66E-04              | 2        |          |
| C6            | 8,66E-04<br>8,37E-04             | 8,56E-04      | 1,67E-05                                 | 1,47E-03 | 4,37E-04 |               | 1,10E-03<br>1,17E-03             |                      |                 |          |          | G5            | 2,11E-03<br>2,11E-03             |                         | 0,00E+00              |          |          |
| C7            | 1,49E-03<br>1,41E-03<br>1,54E-03 | 1,48E-03      | 6,56E-05                                 |          |          | E6            | 1,19E-03<br>1,17E-03<br>4,72E-04 | 9,33E-04             | 3,41E-04        |          |          |               | 2,11E-03                         | l                       |                       | <u> </u> |          |
| C8            | 1,31E-03<br>1,16E-03<br>1,11E-03 | 1,19E-03      | 1,04E-04                                 |          |          | E7            | 6,62E-04<br>1,61E-03<br>1,71E-03 | 1,57E-03             | 2,18E-04        |          |          |               |                                  |                         |                       |          |          |
| D1            | 1,41E-03<br>1,49E-03<br>1,59E-03 | 1,50E-03      | 9,02E-05                                 |          |          |               | 1,71E-03<br>1,25E-03<br>2,18E-03 |                      |                 |          |          |               |                                  |                         |                       |          |          |
| D2            | 9,82E-04                         | 9,82E-04      | 0                                        |          |          | Ff1           | 2,18E-03<br>2,18E-03             | 2,18E-03             | 0,00E+00        |          |          |               |                                  |                         |                       |          |          |

|               | <u> </u>                                     | Wii      | STFÄLISCHE<br>LHELMS-UNIVER | RSIT)    | ÄT       |               | Ern<br>Durchläs                              | nittlung<br>sigkeits |                      | s        |             |               |                                              | n: T. Hof<br>1. Meyer, |          |          |          |
|---------------|----------------------------------------------|----------|-----------------------------|----------|----------|---------------|----------------------------------------------|----------------------|----------------------|----------|-------------|---------------|----------------------------------------------|------------------------|----------|----------|----------|
| Proto-<br>typ | k <sub>f</sub><br>(m/s)                      | Ø        | σ                           | ø        | σ        | Proto-<br>typ | k <sub>f</sub><br>(m/s)                      | ø                    | σ                    | ø        | σ           | Proto-<br>typ | 1-                                           | ø                      | σ        |          | σ        |
| H1            | 1,42E-03<br>1,42E-03<br>1,42E-03             | 1,42E-03 | 0,00E+00                    |          |          | K7            | 1,80E-03<br>1,88E-03<br>1,81E-03             | 1,83E-03             | 4,36E-05             | ,69E-03  | 1,19E-04    | T4            | 1,38E-03<br>1,38E-03<br>1,30E-03             | 1,35E-03               | 4,62E-05 |          |          |
| H2            | 1,74E-03<br>1,74E-03<br>1,74E-03             | 1,74E-03 | 0,00E+00                    |          |          | K8            | 1,69E-03<br>1,69E-03<br>1,69E-03             | 1,69E-03             | 2,66E-19             | _        | 1           | T5            | 1,61E-03<br>1,25E-03<br>1,50E-03             | 1,45E-03               | 1,84E-04 |          |          |
| Н3            | 1,76E-03<br>1,76E-03<br>1,76E-03             | 1,76E-03 | 0,00E+00                    | 1,59E-03 | 1,42E-04 | K10           | 1,73E-03<br>1,73E-03<br>1,73E-03             | 1,73E-03             | 0,00E+00             |          |             | U1            | 1,11E-03<br>1,06E-03<br>1,01E-03             | 1,06E-03               | 5,00E-05 |          |          |
| H4            | 1,54E-03<br>1,54E-03<br>1,45E-03             | 1,51E-03 | 5,20E-05                    |          |          | M1            | 7,05E-05<br>1,36E-04<br>2,03E-04             | 1,91E-04             | 1,22E-04             |          |             | U2            | 8,38E-06<br>7,71E-06<br>8,03E-06             | 8,04E-06               | 3,35E-07 |          |          |
| H5            | 1,56E-03<br>1,56E-03<br>1,47E-03             | 1,53E-03 | 5,20E-05                    |          |          | M2            | 3,55E-04<br>8,73E-06<br>9,05E-05             |                      | 0,00E+00             | 1,39E-04 | 1,10E-04    | U3            | 1,99E-04<br>1,66E-04<br>1,83E-04             | 1,83E-04               | 1,65E-05 | 4,89E-04 | 5,26E-04 |
| I1            | 1,59E-03<br>1,59E-03<br>1,49E-03             | 1,56E-03 | 5,77E-05                    |          |          | M3            | 8,79E-05<br>2,67E-04<br>1,53E-04             | 1,48E-04<br>1,53E-04 |                      |          | ,           | U4            | 1,15E-03<br>1,21E-03<br>1,09E-03             | 1,15E-03               | 6,00E-05 |          |          |
| 12            | 1,74E-03<br>1,74E-03<br>1,74E-03             | 1,74E-03 | 0,00E+00                    |          | 4        | M5<br>N1      | 1,75E-05<br>1,28E-08<br>5,77E-05             | 1,75E-05<br>1,28E-08 | 0,00E+00<br>0,00E+00 |          |             | U5            | 4,12E-05<br>5,03E-05<br>4,12E-05             | 4,42E-05               | 5,25E-06 |          |          |
| 13            | 1,81E-03<br>1,81E-03<br>1,81E-03             | 1,81E-03 | 0,00E+00                    | 1,69E-03 | 1,20E-04 | N2<br>N3      | 3,20E-05<br>4,42E-05<br>0,00E+00             | 4,46E-05             | 1,29E-05<br>0,00E+00 | 73E-05   | 2,84E-05    | V1            | 0,00E+00                                     | 0,00E+00               | 0,00E+00 |          |          |
| 14            | 1,47E-03<br>1,56E-03<br>1,66E-03             | 1,56E-03 | 9,50E-05                    |          |          | N4<br>N5      | 6,14E-08<br>9,88E-06<br>7,91E-05             | 6,14E-08             | 0,00E+00             | 2,       | 2,          | V2            | 0,00E+00                                     | 0,00E+00               | 0,00E+00 | 0        | C        |
| 15            | 1,68E-03<br>1,80E-03<br>1,80E-03             | 1,76E-03 | 6,93E-05                    |          |          | 01            | 2,25E-05<br>7,20E-04<br>7,43E-04             | 3,72E-05<br>7,44E-04 |                      |          |             | V3            | 0,00E+00                                     | 0,00E+00               | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| J1            | 1,86E-03<br>1,92E-03<br>1,98E-03             | 1,92E-03 | 6,00E-05                    | =        |          | O2            | 7,68E-04<br>1,39E-03<br>1,39E-03             | 1,39E-03             | 0,00E+00             |          |             | V4            | 0,00E+00                                     | 0,00E+00               | 0,00E+00 |          |          |
| J2            | 2,15E-03                                     | 2,15E-03 | 0,00E+00                    |          |          | О3            | 1,39E-03<br>1,50E-03<br>1,50E-03             | 1,50E-03             | 2,66E-19             | ,23E-03  | 2,82E-04    | V5            |                                              | 0,00E+00               | 0,00E+00 |          |          |
| J3            | 1,93E-03<br>1,96E-03<br>1,96E-03             | 1,95E-03 | 1,73E-05                    | E-03     | 1,61E-04 | O4            | 1,50E-03<br>1,07E-03<br>1,18E-03             | 1,14E-03             | 6,35E-05             | 1,,      | 2,9         | W             | 1,80E-03<br>1,93E-03<br>2,08E-03             | 1,94E-03               | 1,40E-04 | 1,94E-03 | 1,40E-04 |
| J4            | 1,83E-03<br>1,85E-03<br>1,76E-03<br>1,60E-03 | 1,73E-03 | 1,02E-04                    | 1,90     | 1,61     | O5            | 1,18E-03<br>1,41E-03<br>1,33E-03<br>1,41E-03 | 1,38E-03             | 4,62E-05             |          |             | X1            | 8,67E-04<br>9,75E-04<br>1,02E-03<br>1,67E-03 | 9,54E-04               | 7,86E-05 |          |          |
|               | 1,66E-03<br>1,66E-03<br>1,95E-03             |          |                             |          |          | R             | 1,30E-03<br>1,37E-03<br>1,24E-03             | 1,30E-03             | 6,51E-05             | ,30E-03  | 6,51E-05    | X2            | 1,67E-03<br>1,56E-03<br>2,01E-03             | 1,63E-03               | 6,35E-05 | 3        | 4        |
| J5            | 1,91E-03<br>1,95E-03                         | 1,94E-03 | 2,31E-05                    |          |          | S             | 1,84E-03<br>1,84E-03                         | 1,80E-03             | 6,93E-05             | -03      | 6,93E-05 6, | Х3            | 2,01E-03<br>1,86E-03                         | 1,96E-03               | 8,66E-05 | 1,62E-03 | 3,73E-04 |
| K4            | 1,79E-03<br>1,60E-03<br>1,67E-03             | 1,69E-03 | 9,61E-05                    |          |          | T1            | 1,72E-03<br>1,85E-03<br>1,85E-03             | 1,85E-03             | 0,00E+00             | 1,1      | 6,1         | X4            | 1,83E-03<br>1,99E-03<br>1,83E-03             | 1,88E-03               | 9,24E-05 |          |          |
|               | 1,38E-03<br>1,74E-03<br>1,78E-03             |          |                             |          |          | T2            | 1,85E-03<br>1,59E-03<br>1,49E-03             | 1,49E-03             | 9,50E-05             |          |             | X5            | 1,62E-03<br>1,73E-03<br>1,62E-03             | 1,66E-03               | 6,35E-05 |          |          |
| K6            | 1,70E-03<br>1,80E-03<br>1,52E-03<br>1,62E-03 | 1,63E-03 | 1,49E-04                    |          |          | Т3            | 1,40E-03<br>6,18E-04<br>6,62E-04<br>7,73E-04 | 6,84E-04             | 7,99E-05             | 1,37E-03 | 4,03E-04    |               |                                              |                        |          |          |          |
|               | 1,52E-03                                     |          |                             |          |          |               |                                              |                      |                      | <u></u>  | 7,4         |               |                                              |                        |          |          |          |

| =             | _ <del>-</del> _                 |                                  | ÁLISCHE<br>.MS-UNIVERSITA | ÄT               |          |               | Ern<br>Ourchläs                  | nittlung (<br>sigkeitsl                 |           | s        |          |               | Laborant<br>Hoferich             | ten: S. Ro<br>nter, H. W |          |   |   |
|---------------|----------------------------------|----------------------------------|---------------------------|------------------|----------|---------------|----------------------------------|-----------------------------------------|-----------|----------|----------|---------------|----------------------------------|--------------------------|----------|---|---|
| Proto-<br>typ | k <sub>f</sub><br>(m/s)          | Ø                                | σ                         | ø                | σ        | Proto-<br>typ | k <sub>f</sub><br>(m/s)          | ø                                       | σ         | ø        | σ        | Proto-<br>typ | k <sub>f</sub><br>(m/s)          | Ø                        | σ        | Ø | σ |
| Y1            | 1,75E-03<br>1,75E-03             | 1,75E-03                         | 0,00E+00                  |                  |          | Geog7         | 2,83E-04<br>1,17E-04<br>1,13E-04 | 1,59E-04                                | 6,56E-05  |          |          | Geoa 10       | 1,36E-04<br>1,31E-04<br>1,45E-04 | 1,40E-04                 | 8,91E-06 |   |   |
| Y2            | 1,75E-03<br>1,75E-03<br>1,75E-03 | 1,75E-03                         | 0,00E+00                  |                  |          | 99            | 1,40E-04<br>1,81E-04<br>1,21E-04 |                                         |           | ,25E-04  | 5,29E-05 | )e5           | 1,45E-04<br>1,53E-04<br>1,31E-04 |                          |          |   |   |
| Y3            | 1,81E-03<br>1,81E-03<br>1,81E-03 | 1,81E-03                         | 0,00E+00                  | 1,78E-03         | 5,63E-05 | Geog8         | 9,99E-05<br>1,38E-04<br>8,56E-05 | 8 70F-05                                | 3,06E-05  |          | 4)       |               |                                  |                          |          |   |   |
| Y4            | 1,75E-03<br>1,75E-03<br>1,75E-03 | 1,75E-03                         | 0,00E+00                  |                  |          | Ge            | 8,56E-05<br>5,29E-05<br>5,99E-05 | 0,70L-00                                | 3,00L-03  |          |          |               |                                  |                          |          |   |   |
| Y5            | 1,91E-03<br>1,91E-03<br>1,77E-03 | 1,86E-03                         | 8,08E-05                  |                  |          | Geog9         | 2,16E-04<br>1,31E-04<br>1,31E-04 | 1.67E-04                                | 4,07E-05  |          |          |               |                                  |                          |          |   |   |
| Z1            | 1,61E-03<br>1,61E-03<br>1,61E-03 | 1,61E-03                         | 0,00E+00                  |                  |          | e9            | 1,67E-04<br>1,41E-04<br>2,18E-04 | .,0 0.                                  | .,0. = 00 |          |          |               |                                  |                          |          |   |   |
| Z2            | 2,15E-03<br>1,97E-03<br>2,15E-03 | 2,09E-03                         | 1,04E-04                  |                  |          | Geog10        | 1,01E-04<br>1,34E-04<br>7,26E-05 | 1.02E-04                                | 3,01E-05  |          |          |               |                                  |                          |          |   |   |
| Z3            | 1,97E-03<br>1,82E-03<br>1,82E-03 | 1,87E-03                         | 8,66E-05                  | 1,94E-03         | 2,07E-04 | Gec           | 1,30E-04<br>1,13E-04<br>6,05E-05 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | -,        |          |          |               |                                  |                          |          |   |   |
| Z4            | 2,05E-03<br>1,89E-03<br>2,05E-03 | 2,00E-03                         | 9,24E-05                  |                  |          | Geoa1         | 1,06E-04<br>4,73E-05<br>6,91E-05 | 6 82F-05                                | 2,54E-05  |          |          |               |                                  |                          |          |   |   |
| <b>Z</b> 5    | 2,01E-03<br>2,19E-03<br>2,19E-03 | 2,13E-03                         | 1,04E-04                  |                  |          | 99            | 5,62E-05<br>8,99E-05<br>4,08E-05 | 0,022 00                                | 2,012 00  |          |          |               |                                  |                          |          |   |   |
| AA1           | 1,14E-07                         | 1,14E-07                         | 0,00E+00                  |                  |          |               | 9,51E-05                         |                                         |           |          |          |               |                                  |                          |          |   |   |
| AA2           | 0,00E+00                         | 0,00E+00                         | 0,00E+00                  | -07              | -04      |               | 5,10E-06                         |                                         |           |          |          |               |                                  |                          |          |   |   |
| AA3           | 1,29E-07                         | 1,29E-07                         | 0,00E+00                  | 1,61E-           | 1,68E-07 | Geoa4         | 2,15E-04                         | 1 73 - 04                               | 1,10E-04  |          |          |               |                                  |                          |          |   |   |
| AA4           | 1,15E-07                         | 1,15E-07                         | 0,00E+00                  | 1,6              | 1,6      | Ge            | 2,08E-04                         | 1,736-04                                | 1,101-04  |          |          |               |                                  |                          |          |   |   |
| AA5           | 4,46E-07                         | 4,46E-07                         | 0,00E+00                  |                  |          |               | 1,94E-04                         |                                         |           |          |          |               |                                  |                          |          |   |   |
| Gefdg1        | 0,00E+00                         | 0,00E+00                         | 0,00E+00                  |                  |          |               | 3,23E-04                         |                                         |           |          |          |               |                                  |                          |          |   | Į |
| Gefdg2        | 0,00E+00                         | 0,00E+00                         | 0,00E+00                  | Ģ                | Ş        |               | 1,05E-04                         |                                         |           | 1        |          |               |                                  |                          |          |   | Į |
| Gefdg3        | 0,00E+00                         | 0,00E+00                         | 0,00E+00                  |                  | Ä        |               | 1,28E-04                         |                                         |           | 1        |          |               |                                  |                          |          |   |   |
| Gefdg4        | 0,00E+00                         | 0,00E+00<br>0,00E+00<br>0,00E+00 | 0,00E+00                  | Ö,C              | Ŏ,       | 3a5           | 1,12E-04                         | 1 275 04                                | 1 025 05  | 1        |          |               |                                  |                          |          |   |   |
| Gefdg5        | 0,00E+00                         | 0,00E+00                         | 0,00E+00                  | $\lfloor \rceil$ | _        | Geoa5         | 1,58E-04                         | 1,∠1⊏-04                                | 1,93E-05  | 9        | 05       |               |                                  |                          |          |   |   |
|               |                                  | 0,00E+00                         | 0.00E+00                  | ΠÍ               |          |               | 1,38E-04                         |                                         |           | 1,28E-04 | 6,43E-05 |               |                                  |                          |          |   |   |
|               |                                  | 0,00E+00                         | 0,00E+00                  | 9                | 읽        |               | 1,19E-04                         |                                         |           | 1,2      | 6,4      |               |                                  |                          |          |   |   |
| Gefda3        | 0,00E+00                         | 0,00E+00                         | 0,00E+00                  |                  | ij       |               | 2,15E-04                         |                                         |           | ]        |          |               |                                  |                          |          |   |   |
|               |                                  | 0,00E+00                         | 0,00E+00                  | 0,00E+00         | Ŏ,       |               | 7,61E-05                         |                                         |           | 1        |          |               |                                  |                          |          |   |   |
|               | 0,00E+00                         | 0,00E+00                         | 0,00E+00                  | $\square$        |          | Geoa7         | 1,01E-04                         | 1 205 04                                | 4,76E-05  | 1        |          |               |                                  |                          |          |   |   |
|               | 9,35E-05                         |                                  |                           |                  |          | Gec           | 1,40E-04                         | 1,∠9⊏-04                                | +,70⊑-03  |          |          |               |                                  |                          |          |   |   |
|               | 8,16E-05                         |                                  |                           |                  |          |               | 1,30E-04                         |                                         |           | 1        | 1        |               |                                  |                          |          |   |   |
| )g3           | 1,06E-04                         | 0.725.05                         | 2 205 05                  |                  |          |               | 1,14E-04                         |                                         |           | 1        |          |               |                                  |                          |          |   |   |
| Geog3         | 1,20E-04                         | 9,72E-05                         | 2,29E-05                  |                  |          |               | 1,20E-04                         |                                         |           | 1        |          |               |                                  |                          |          |   |   |
|               | 1,20E-04                         |                                  |                           |                  |          |               | 9,00E-05                         |                                         |           | 1        |          |               |                                  |                          |          |   |   |
|               | 6,19E-05                         |                                  |                           |                  |          | 3a8           | 1,59E-04                         | 1 445 04                                | 3 07E 05  | 1        |          |               |                                  |                          |          |   |   |
| 960           | 2,38E-04<br>8,22E-05<br>8,22E-05 | 1 405 04                         | 6 415 05                  |                  |          | Geoa8         | 1,59E-04<br>2,05E-04<br>1,29E-04 | 1, <del>44</del> E-U4                   | 3,97E-05  |          |          |               |                                  |                          |          |   |   |
| Geoge         | 9,51E-05<br>1,64E-04<br>1,81E-04 | 1,40E-04                         | 6,41E-05                  |                  |          |               |                                  |                                         |           |          |          |               |                                  |                          |          |   |   |

|        | <u> </u>                 | West         | ÄLISCHE |       |      |        | Ermitt                   | _     |       |       |      |        | Labo                     | ranten | :       |       | $\neg$   |
|--------|--------------------------|--------------|---------|-------|------|--------|--------------------------|-------|-------|-------|------|--------|--------------------------|--------|---------|-------|----------|
|        |                          | WILHEI MÜNST | MS-UNI  | /ERSI | TÄT  | Wass   | seraufna                 |       |       | ge    | ns   | D. \   | Wesche,                  | T. Ho  | ferich  | ter   | .        |
| Proto- | .,,                      |              |         |       |      | Proto- | durch                    | Wägu  | ng    |       |      | Proto- |                          |        |         | _     | $\dashv$ |
| typ    | w <sub>a</sub><br>(Vol%) | Ø            | σ       | ø     | σ    | typ    | w <sub>a</sub><br>(Vol%) | Ø     | σ     | Ø     | σ    | typ    | w <sub>a</sub><br>(Vol%) | Ø      | σ       | Ø     | σ        |
|        | 24,81                    |              |         |       |      |        | 21,92                    |       |       |       |      |        | 25,70                    |        |         |       | П        |
| A4     | 27,02                    | 26,39        | 1,38    |       |      | D3     | 21,99                    | 22,25 | 0,51  |       |      | Ff6    | 23,04                    | 23,58  | 1,91    |       |          |
|        | 27,35                    |              |         |       |      |        | 22,83                    |       |       |       |      |        | 22,00                    |        |         |       |          |
| A5     | 24,53<br>26,95           | 26,73        | 2,10    |       |      | D4     | 22,08<br>22,28           | 22,81 | 1,09  |       |      | Ff7    | 26,69<br>21,29           | 23,28  | 2,97    |       |          |
| AS     | 28,71                    | 20,73        | 2,10    |       |      | D4     | 24,06                    | 22,01 | 1,09  | 4     |      | 1 17   | 21,29                    | 23,20  | 2,91    |       |          |
|        | 24,55                    |              |         |       |      |        | 23,91                    |       |       | 23,04 | 1,19 |        | 14,51                    |        |         |       | H        |
| A6     | 29,72                    | 26,04        | 3,21    | 26,02 | 1,86 | D5     | 25,18                    | 24,85 | 0,83  |       |      | Fr1    | 14,04                    | 14,49  | 0,44    |       |          |
|        | 23,85                    |              |         | 7     | `    |        | 25,47                    |       |       |       |      |        | 14,92                    |        |         |       |          |
|        | 26,97                    |              |         |       |      |        | 22,99                    |       | ١     |       |      |        | 15,53                    |        |         |       |          |
| A7     | 25,11                    | 25,77        | 1,04    |       |      | D7     | 24,49                    | 23,02 | 1,45  |       |      | Fr2    | 13,83                    | 14,90  | 0,93    |       |          |
|        | 25,24<br>23,22           |              |         | l     |      |        | 21,59<br>22.77           |       |       |       |      |        | 15,34<br>15,94           |        |         |       |          |
| A8     | 27,33                    | 25,15        | 2,07    |       |      | D8     | 22,77                    | 22,96 | 0,51  |       |      | Fr3    | 14,24                    | 15,49  | 1,09    | 5,31  | 1,32     |
|        | 24,89                    | -,           | , -     |       |      |        | 23,54                    | ,     | -,-   |       |      |        | 16,28                    | .,     | ,       | 15    | Ψ.       |
|        | 16,52                    |              |         |       |      |        | 19,87                    |       |       |       |      |        | 17,85                    |        |         |       |          |
| B4     | 17,08                    | 16,47        | 0,63    |       |      | E1     | 17,66                    | 18,46 | 1,22  |       |      | Fr4    | 15,52                    | 17,14  | 1,41    |       |          |
| -      | 15,82                    |              |         |       |      |        | 17,86                    |       |       |       |      |        | 18,06                    |        |         |       |          |
| B5     | 16,50                    | 17,78        | 1,46    |       |      | E2     | 19,41                    | 19,30 | 1,07  |       |      | Fr5    | 15,08<br>13,56           | 14,54  | 0,85    |       |          |
| БЭ     | 17,46<br>19,37           | 17,70        | 1,40    |       |      | EZ.    | 20,32<br>18,18           | 19,30 | 1,07  |       |      | FIS    | 14,98                    | 14,54  | 0,65    |       |          |
| -      | 15,97                    |              |         | 22    | 7    |        | 21,29                    |       |       | İ     |      |        | 22,64                    |        |         |       | Ħ        |
| В6     | 15,05                    | 15,79        | 0,67    | 16,92 | 1,87 | E3     | 20,25                    | 20,79 | 0,52  |       |      | G1     | 24,94                    | 24,12  | 1,28    |       |          |
|        | 16,35                    |              |         |       |      |        | 20,84                    |       |       |       |      |        | 24,77                    |        |         |       |          |
| В7     | 20,79                    | 20,25        | 0,77    |       |      |        | 19,29                    |       |       | ,32   | 1,19 |        | 22,83                    |        |         |       |          |
|        | 19,70                    | -, -         | ,       |       |      | E4     | 20,01                    | 19,65 | 0,36  | 19,   | _    | G2     | 24,55                    | 23,89  | 0,93    |       |          |
| В8     | 16,02<br>13,89           | 15,44        | 1,35    |       |      |        | 19,65<br>19,67           |       |       |       |      |        | 24,28<br>22,71           |        |         |       |          |
| БО     | 16,40                    | 15,44        | 1,55    |       |      | E5     | 20,69                    | 20,18 | 0,72  |       |      | G3     | 23,77                    | 23,27  | 0,53    | 23,98 | 0,84     |
|        | 17,77                    |              |         |       |      |        | 16,51                    |       |       | İ     |      |        | 23,32                    | ,      | , , , , | 23    | Ö        |
| C4     | 19,93                    | 18,90        | 1,08    |       |      | E6     | 18,04                    | 18,01 | 1,49  |       |      |        | 23,41                    |        |         |       |          |
|        | 19,01                    |              |         |       |      |        | 19,494                   |       |       |       |      | G4     | 23,98                    | 24,09  | 0,74    |       |          |
| 05     | 19,86                    | 40.00        | 4.05    |       |      | F-7    | 19,09                    | 40.40 | 0.00  |       |      |        | 24,87                    |        |         |       |          |
| C5     | 18,20<br>17,92           | 18,66        | 1,05    |       |      | E7     | 19,21<br>19,06           | 19,12 | 0,08  |       |      | G5     | 23,97<br>24,48           | 24,53  | 0,59    |       |          |
| -      | 18,84                    |              |         | _     |      |        | 22,59                    |       |       |       |      | 03     | 25,15                    | 24,55  | 0,55    |       |          |
| C6     | 19,62                    | 19,52        | 0,64    | 18,60 | 1,09 | Ff1    | 22,14                    | 22,07 | 0,55  |       |      |        | 24,85                    |        |         |       | П        |
|        | 20,10                    |              |         | ~     | _    |        | 21,49                    |       |       |       |      | H1     | 26,58                    | 26,71  | 1,93    |       |          |
|        | 16,42                    |              |         |       |      |        | 25,19                    |       |       |       |      |        | 28,71                    |        |         |       |          |
| C7     | 18,08                    | 17,19        | 0,84    |       |      | Ff2    | 20,74                    | 22,48 | 2,38  |       |      |        | 27,11                    | 00.04  | 0.07    |       |          |
|        | 17,06                    |              |         | l     |      |        | 21,50                    |       |       |       |      | H2     | 26,04<br>25,87           | 26,34  | 0,67    |       |          |
| C8     | 18,14<br>19,48           | 18,74        | 0,68    |       |      | Ff3    | 24,83<br>22,01           | 22,75 | 1,83  |       |      |        | 26,82                    |        |         |       |          |
|        | 18,60                    | 10,11        | 0,00    |       |      | 1.10   | 21,41                    |       | 1,00  |       |      | НЗ     | 25,86                    | 26,11  | 0,62    | 26,38 | 1,03     |
|        | 23,40                    |              |         |       |      |        | 23,81                    |       |       | 22,25 | 2,70 |        | 25,66                    |        |         | 26    | _        |
|        | 24,24                    |              |         |       |      | Ff4    | 19,27                    | 20,81 | 2,60  | 2     | ``   |        | 24,48                    |        |         |       |          |
| D1     | 23,12                    | 22,63        | 1,42    |       |      |        | 19,36                    |       |       |       |      | H4     | 26,52                    | 26,17  | 1,55    |       |          |
|        | 21,71                    |              |         |       |      | Ete    | 27,39                    | 20.75 | 5 7 F |       |      |        | 27,52                    |        |         |       |          |
|        | 20,69<br>23,61           |              |         |       |      | Ff5    | 17,39<br>17,46           | 20,75 | 5,75  |       |      | H5     | 26,77<br>26,55           | 26,58  | 0,18    |       |          |
| D2     | 23,42                    | 23,04        | 0,83    |       |      |        | 17,40                    | !     |       |       |      | 110    | 26,41                    | _5,50  | 5, 10   |       |          |
|        | 22,09                    |              |         |       |      |        |                          |       |       |       |      |        | -,                       |        |         |       | $\dashv$ |

|                | <u>-</u>                 | WESTE | ÄLISCHE  |              |      |        | Ermitt                   | _      |        |       |          |        | Labo                     | ranten | :      |       |          |
|----------------|--------------------------|-------|----------|--------------|------|--------|--------------------------|--------|--------|-------|----------|--------|--------------------------|--------|--------|-------|----------|
|                |                          | WILHE | LMS-UNIV | /ERSI        | TÄT  | Wass   | seraufna                 |        |        | ge    | ns       | D. \   | Wesche,                  | T. Ho  | ferich | nter  |          |
| Proto-         | 147                      |       |          |              | ı    | Proto- | durch                    | Wagu   | ıng    |       |          | Proto- |                          |        |        |       | 1        |
| typ            | w <sub>a</sub><br>(Vol%) | Ø     | σ        | Ø            | σ    | typ    | w <sub>a</sub><br>(Vol%) | Ø      | σ      | Ø     | σ        | typ    | w <sub>a</sub><br>(Vol%) | Ø      | σ      | Ø     | σ        |
|                | 27,15                    |       |          |              |      | N4     | 8,36                     | 8,36   | 0,00   |       |          |        | 10,26                    |        |        |       |          |
| l1             | 26,28                    | 26,35 | 0,76     |              |      | N5     | 9,11                     | 9,11   | 0,00   |       |          | V1     | 10,60                    | 10,03  | 0,71   |       |          |
|                | 25,63                    |       |          |              |      |        | 14,93                    |        |        |       |          |        | 9,23                     |        |        |       |          |
|                | 25,72                    |       |          |              |      | 01     | 14,65                    | 14,79  | 0,14   |       |          |        | 10,93                    |        |        |       |          |
| 12             | 26,36                    | 26,15 | 0,38     |              |      |        | 14,80                    |        |        |       |          | V2     | 10,76                    | 10,64  | 0,36   |       |          |
|                | 26,38                    |       |          |              |      |        | 16,05                    |        |        |       |          |        | 10,24                    |        |        |       |          |
|                | 29,13                    | 00.40 |          | <sub>∞</sub> | 7.   | 02     | 17,57                    | 16,79  | 0,76   |       |          |        | 11,21                    |        |        | 12    | 0        |
| 13             | 29,73                    | 29,16 | 0,56     | 27,08        | 1,47 |        | 16,76                    |        |        | 1     |          | V3     | 11,03                    | 11,55  | 0,76   | 10,77 | 0,70     |
|                | 28,61                    |       |          |              |      | О3     | 16,45                    | 15,10  | 3,99   | 6,25  | ,20      |        | 12,42                    |        |        | ł     |          |
| 14             | 25,00<br>25,58           | 26,20 | 1,60     |              |      | 03     | 10,61<br>18,25           | 15,10  | 3,99   | 16,   | 2,2      | V4     | 10,53<br>10,87           | 10,99  | 0,52   |       |          |
| 14             | 28,02                    | 20,20 | 1,00     |              |      |        | 15,04                    |        |        | 1     |          | V-T    | 11,56                    | 10,33  | 0,52   |       |          |
|                | 28,99                    |       |          | ł            |      | 04     | 15,64                    | 15,65  | 0,61   |       |          |        | 10,60                    |        |        | ł     |          |
| 15             | 26.99                    | 27,56 | 1,25     |              |      | •      | 16,26                    | . 0,00 | 0,0.   |       |          | V5     | 10,94                    | 10,66  | 0,26   |       |          |
|                | 26,70                    | ,     | , -      |              |      |        | 18,48                    |        |        | 1     |          |        | 10,43                    | .,     | .,     |       |          |
|                | 25,22                    |       |          |              |      | O5     | 19,45                    | 18,92  | 0,49   |       |          |        | 25,12                    |        |        | ~     |          |
| J1             | 24,36                    | 25,45 | 1,23     |              |      |        | 18,82                    |        |        |       |          | W      | 25,59                    | 25,23  | 0,32   | 25,23 | 0,32     |
|                | 26,78                    |       |          |              |      |        | 12,69                    |        |        | 2     | <b>ω</b> |        | 24,97                    |        |        | 2     |          |
|                | 23,95                    |       |          |              |      | R      | 13,81                    | 13,22  | 0,56   | 13,22 | 0,56     |        | 17,99                    |        |        |       |          |
| J2             | 25,62                    | 25,35 | 1,29     |              |      |        | 13,17                    |        |        | 7     |          | X1     | 17,62                    | 17,81  | 0,19   |       |          |
|                | 26,49                    |       |          |              |      |        | 10,87                    |        |        | 3     | 9        |        | 17,81                    |        |        | ļ     |          |
|                | 24,25                    |       |          | 3            | 5    | S      | 11,69                    | 11,03  | 0,59   | 11,03 | 0,59     |        | 19,76                    |        |        |       |          |
| J3             | 26,47                    | 25,57 | 1,17     | 25,25        | 1,05 |        | 10,54                    |        |        | `     |          | X2     | 21,28                    | 20,49  | 0,76   |       |          |
|                | 25,98                    |       |          | ``           |      | т4     | 15,42                    | 45.05  | 1, 0,4 |       |          |        | 20,44                    |        |        | ļ     |          |
| J4             | 23,31<br>25,30           | 24.60 | 1 10     |              |      | T1     | 14,88                    | 15,85  | 1,24   |       |          | Х3     | 17,28                    | 16,99  | 0,36   | 8,57  | 53       |
| J <del>4</del> | 25,30<br>25,45           | 24,69 | 1,19     |              |      |        | 17,24<br>13,82           |        |        | •     |          | Λ3     | 16,59<br>17,11           | 10,99  | 0,36   | ₩,    | 1,53     |
|                | 24,35                    |       |          | ł            |      | T2     | 15,02                    | 14,18  | 0,79   |       |          |        | 20,28                    |        |        | ł     |          |
| J5             | 26,31                    | 25,21 | 1,00     |              |      | 12     | 13,64                    | 14,10  | 0,73   |       |          | X4     | 19,40                    | 20,05  | 0,57   |       |          |
|                | 24,98                    |       | .,00     |              |      |        | 13,99                    |        |        | l     |          |        | 20,46                    |        | 0,0.   |       |          |
|                | 17,61                    |       |          |              |      | Т3     | 12,50                    | 13,99  | 1,50   | 13,15 | ,23      |        | 17,30                    |        |        | 1     |          |
| K4             | 19,09                    | 19,08 | 1,47     |              |      |        | 15,49                    |        |        | 7     | 2,       | X5     | 18,17                    | 17,53  | 0,56   |       |          |
|                | 20,55                    |       |          |              |      |        | 11,77                    |        |        |       |          |        | 17,13                    |        |        |       |          |
|                | 17,58                    |       |          |              |      | T4     | 10,31                    | 11,10  | 0,74   |       |          |        | 18,46                    |        |        |       |          |
| K6             | 20,50                    | 19,13 | 1,47     |              |      |        | 11,22                    |        |        |       |          | Y1     | 19,32                    | 18,86  | 0,43   |       |          |
|                | 19,32                    |       |          |              |      |        | 11,36                    |        |        |       |          |        | 18,80                    |        |        |       |          |
|                | 19,55                    |       |          | 62           | 33   | T5     | 10,07                    | 10,62  | 0,66   |       |          |        | 16,39                    |        |        |       |          |
| K7             | 22,85                    | 21,44 | 1,70     | 19,79        | 1,53 |        | 10,44                    |        |        |       |          | Y2     | 15,85                    | 16,14  | 0,27   |       |          |
|                | 21,92<br>17,71           |       |          |              |      | U1     | 16,19                    | 17,17  | 0,85   |       |          |        | 16,19                    |        |        | ł     |          |
| K8             | 20,26                    | 19,18 | 1,32     |              |      | 01     | 17,56<br>17,76           | 17,17  | 0,03   |       |          | Y3     | 18,56<br>17,72           | 18,39  | 0,60   | 17,76 | 1,34     |
| 110            | 19,57                    | 10,10 | 1,02     |              |      |        | 17,76                    |        |        | 1     |          | 10     | 18,89                    | 10,00  | 0,00   | 17    | <u> </u> |
|                | 18,80                    |       |          | l            |      | U2     | 18,04                    | 17,27  | 1,02   |       |          |        | 16,52                    |        |        | ł     |          |
| K10            | 21,04                    | 20,10 | 1,16     |              |      |        | 16,11                    | ,      | , -    |       |          | Y4     | 16,86                    | 16,40  | 0,53   |       |          |
|                | 20,45                    |       | L        |              |      |        | 16,22                    |        |        | ر.    |          |        | 15,82                    |        |        |       |          |
| M1             | 12,38                    | 12,38 | 0,00     |              |      | U3     | 16,04                    | 16,16  | 0,10   | 16,42 | 1,37     |        | 18,69                    |        |        | 1     |          |
| M2             | 11,57                    | 11,57 | 0,00     | ω            | _    |        | 16,22                    |        |        | _     | `        | Y5     | 19,37                    | 19,03  | 0,34   |       |          |
| М3             | 13,24                    | 13,24 | 0,00     | 12,18        | 0,67 |        | 16,72                    |        |        |       |          |        | 19,03                    |        |        |       |          |
| M4             | 11,70                    | 11,70 | 0,00     | `            |      | U4     | 18,11                    | 17,25  | 0,75   |       |          |        |                          |        |        |       |          |
| M5             | 12,00                    | 12,00 | 0,00     |              |      |        | 16,92                    |        | ļ      |       |          |        |                          |        |        |       |          |
| N1             | 9,63                     | 9,63  | 0,00     | -            |      | 115    | 13,55                    | 14.00  | 0 75   |       |          |        |                          |        |        |       |          |
| N2             | 8,55<br>7,86             | 8,55  | 0,00     | 8,70         | 0,68 | U5     | 14,10                    | 14,23  | 0,75   |       |          |        |                          |        |        |       |          |
| N3             | 7,00                     | 7,86  | 0,00     | Ø            | 0    |        | 15,03                    |        |        |       |          |        |                          |        |        |       |          |

|        | <u>-</u>       | Weste  | ÄLISCHE  |       |          |        | Ermitt                  | _       |      |       |      |        | Labo           | ranten | :      |       |      |
|--------|----------------|--------|----------|-------|----------|--------|-------------------------|---------|------|-------|------|--------|----------------|--------|--------|-------|------|
|        |                |        | LMS-UNIV | /ERSI | TÄT      | Wass   | eraufna                 |         |      | ge    | ns   | D. \   | Wesche,        | T. Ho  | ferich | iter  |      |
| Proto- | Wa             |        |          | Π     |          | Proto- | durch<br>w <sub>a</sub> |         |      |       | 1    | Proto- | Wa             |        |        |       |      |
| typ    | (Vol%)         | Ø      | σ        | Ø     | σ        | typ    | (Vol%)                  | Ø       | σ    | Ø     | σ    | typ    | (Vol%)         | Ø      | σ      | Ø     | σ    |
|        | 12,34          |        |          |       |          |        | 5,60                    |         |      |       |      |        | 9,93           |        |        |       |      |
| Z1     | 13,20          | 12,80  | 0,43     |       |          | Gefda3 | 6,16                    | 5,90    | 0,28 | 72    | 76,  | Geoa5  | 10,85          | 10 10  | 0.04   |       |      |
|        | 12,86<br>10,62 |        |          | ł     |          |        | 5,95<br>5,73            |         |      | 6,51  | 0,0  | Geoas  | 10,69<br>10,39 | 10,12  | 0,84   |       |      |
| Z2     | 10,44          | 10,73  | 0,36     |       |          | Gefda4 | 7,26                    | 6,42    | 0,78 |       |      |        | 8,76           |        |        | 10,05 | 1,06 |
|        | 11,14          | -,     | .,       |       |          |        | 6,28                    | ,       | .,   |       |      |        | 10,14          |        |        | 7     | _    |
|        | 13,78          |        |          | က     | (0       |        | 7,73                    |         |      | ĺ     |      |        | 10,04          |        |        |       |      |
| Z3     | 13,60          | 13,60  | 0,18     | 12,13 | 1,06     | Gefda5 | 7,67                    | 7,71    | 0,03 |       |      | Geoa7  | 11,26          | 10,13  | 0,83   |       |      |
|        | 13,42          |        |          | ľ     |          |        | 7,73                    |         |      |       |      |        | 10,26          |        |        |       |      |
| Z4     | 11,38<br>12,07 | 11,72  | 0,35     |       |          |        | 9,56<br>10,62           |         |      |       |      |        | 8,93<br>10,13  |        |        | ŀ     |      |
| 24     | 11,72          | 11,72  | 0,33     |       |          | Geog3  | 8,97                    | 9,69    | 0,60 |       |      |        | 10,13          |        |        |       |      |
|        | 11,37          |        |          | ł     |          | ocogo  | 9,47                    | 0,00    | 0,00 |       |      | Geoa8  | 11,80          | 10,55  | 1,02   |       |      |
| Z5     | 12,06          | 11,77  | 0,36     |       |          |        | 9,81                    |         |      |       |      |        | 10,76          | .,     | ,-     |       |      |
|        | 11,89          |        |          |       |          |        | 10,63                   |         |      | 1     |      |        | 9,07           |        |        |       |      |
|        | 20,54          |        |          |       |          |        | 11,23                   |         |      |       |      |        | 9,70           |        |        |       |      |
| AA1    | 19,37          | 19,67  | 0,76     |       |          | Geog6  | 10,29                   | 10,45   | 0,58 |       |      |        | 9,89           |        | ١      |       |      |
|        | 19,11          |        |          | l     |          |        | 9,64                    |         |      |       |      | Geoa10 |                | 9,78   | 1,15   |       |      |
| AA2    | 19,17<br>18,28 | 18,14  | 1,11     |       |          |        | 10,44<br>9,93           |         |      | ł     |      |        | 9,92<br>8,09   |        |        |       |      |
| AAZ    | 16,96          | 10, 14 | 1,11     |       |          |        | 9,93<br>11,41           |         |      |       |      |        | 0,09           |        |        |       | Н    |
|        | 18,24          |        |          | ١.    |          | Geog7  | 10,25                   | 10,65   | 0.68 |       |      |        |                |        |        |       |      |
| AA3    | 16,97          | 17,71  | 0,66     | 18,84 | 1,30     | 3      | 11,35                   | .,      | .,   |       |      |        |                |        |        |       |      |
|        | 17,92          |        |          | ۳     | _        |        | 10,33                   |         |      | 10,09 | 37   |        |                |        |        |       |      |
|        | 21,54          |        |          |       |          |        | 9,01                    |         |      | 6,    | 0,67 |        |                |        |        |       |      |
| AA4    | 19,85          | 20,32  | 1,07     |       |          |        | 10,36                   |         |      |       |      |        |                |        |        |       |      |
|        | 19,57          |        |          |       |          | Geog8  | 8,63                    | 9,42    | 0,66 |       |      |        |                |        |        |       |      |
| AA5    | 19,41<br>18,43 | 18,38  | 1,06     |       |          |        | 9,43<br>9,69            |         |      |       |      |        |                |        |        |       |      |
| AAS    | 17,29          | 10,30  | 1,00     |       |          |        | 10,00                   |         |      | ł     |      |        |                |        |        |       |      |
|        | 8,80           |        |          |       |          |        | 10,20                   |         |      |       |      |        |                |        |        |       |      |
| Gefdg1 | 9,03           | 8,91   | 0,12     |       |          | Geog9  | 10,42                   | 10,20   | 0,32 |       |      |        |                |        |        |       |      |
|        | 8,90           |        |          |       |          |        | 9,79                    |         |      |       |      |        |                |        |        |       |      |
|        | 7,38           |        |          |       |          |        | 10,60                   |         |      |       |      |        |                |        |        |       |      |
| Gefdg2 | 7,35           | 7,28   | 0,14     |       |          |        | 9,75                    |         |      |       |      |        |                |        |        |       |      |
|        | 7,12           |        |          |       |          | Coca10 | 9,89                    | 10.15   | 0.40 |       |      |        |                |        |        |       |      |
| Gefdg3 | 6,59<br>6,59   | 6,58   | 0,02     | 6,73  | 1,40     | Geog10 | 9,74<br>10,69           | 10,15   | 0,49 |       |      |        |                |        |        |       |      |
| Sciago | 6,56           | 5,50   | 0,02     | 6,    | <u>,</u> |        | 10,68                   |         |      |       |      |        |                |        |        |       |      |
|        | 4,91           |        |          | 1     |          |        | 8,27                    |         |      |       |      |        |                |        |        |       |      |
| Gefdg4 | 4,80           | 4,86   | 0,06     |       |          |        | 10,18                   |         |      |       |      |        |                |        |        |       |      |
|        | 4,86           |        |          |       |          | Geoa1  | 9,75                    | 8,98    | 1,05 |       |      |        |                |        |        |       |      |
|        | 5,96           |        |          |       |          |        | 9,09                    |         |      |       |      |        |                |        |        |       |      |
| Gefdg5 | 6,00           | 6,03   | 0,08     |       |          |        | 7,63                    |         |      |       |      |        |                |        |        |       |      |
|        | 6,12<br>5,30   |        |          | _     |          |        | 10,49<br>11,08          |         |      |       |      |        |                |        |        |       |      |
| Gefda1 | 5,30<br>5,32   | 5,27   | 0,07     |       |          | Geoa4  | 11,06                   | 10,74   | 0,90 |       |      |        |                |        |        |       |      |
| 23.301 | 5,19           | ٠,-،   | ,,,,,    |       |          | 20007  | 11,52                   | . 5,7 7 | 5,55 |       |      |        |                |        |        |       |      |
|        | 7,32           |        |          | 1     |          |        | 9,28                    |         |      |       |      |        |                |        |        |       |      |
| Gefda2 | 7,28           | 7,26   | 0,08     |       |          |        |                         |         | _    |       |      |        |                |        |        |       |      |
|        | 7,17           |        |          |       |          |        |                         |         |      |       |      |        |                |        |        |       |      |
|        |                |        |          |       |          |        |                         |         |      |       |      |        |                |        |        |       |      |
|        |                |        |          |       |          |        |                         |         |      |       |      |        |                |        |        |       |      |

|               | <u> </u>                 |       | ÄLISCHE<br>LMS-UNI |       | ITÄT | Was           | Ermittl<br>serhalt       | _     |      |       |      | La            | boranten<br>T. Hof       |        |            | e,         |      |
|---------------|--------------------------|-------|--------------------|-------|------|---------------|--------------------------|-------|------|-------|------|---------------|--------------------------|--------|------------|------------|------|
| Deste         |                          | MÜNST |                    | VERS  |      |               |                          | evern | noge | ens   |      | Deste         |                          | CHCHIC | <b>5</b> 1 | ı —        | 1    |
| Proto-<br>typ | w <sub>h</sub><br>(Vol%) | Ø     | σ                  | Ø     | σ    | Proto-<br>typ | w <sub>h</sub><br>(Vol%) | Ø     | σ    | ø     | σ    | Proto-<br>typ | w <sub>h</sub><br>(Vol%) | Ø      | σ          | ø          | σ    |
|               | 20,57                    |       |                    |       |      |               | 18,13                    |       |      |       |      |               | 10,43                    |        |            |            |      |
| A4            | 21,64                    | 21,88 | 1,45               |       |      | D3            | 18,34                    | 17,77 | 0,81 |       |      | Ff6           | 8,48                     | 9,31   | 1,01       |            |      |
|               | 23,44                    |       |                    | ļ     |      |               | 16,85                    |       |      | ļ     |      |               | 9,03                     |        |            |            |      |
|               | 20,15                    |       |                    |       |      |               | 19,07                    |       |      | 18,18 | 1,16 |               | 9,62                     |        |            |            |      |
| A5            | 22,78                    | 21,86 | 1,48               |       |      | D4            | 17,89                    | 18,44 | 0,59 | 18    | ٦,   | Ff7           | 8,06                     | 8,68   | 0,83       |            |      |
|               | 22,65                    |       |                    | ł     |      |               | 18,37                    |       |      | ŀ     |      |               | 8,36                     |        |            |            |      |
| A6            | 21,18<br>23,21           | 21,53 | 1,53               | 5,36  | ,25  | D5            | 19,44<br>19,36           | 19,30 | 0,17 |       |      | Fr1           | 10,39<br>9,69            | 10,20  | 0,45       |            |      |
| Au            | 20,21                    | 21,55 | 1,55               | 15,   | 1,   | D3            | 19,30                    | 19,30 | 0,17 |       |      |               | 10,53                    | 10,20  | 0,43       |            |      |
|               | 21,70                    |       |                    | ł     |      |               | 18,49                    |       |      | Ì     |      |               | 10,40                    |        |            | l          |      |
| A7            | 20,56                    | 20,67 | 0,98               |       |      | D7            | 19,20                    | 18,35 | 0,93 |       |      | Fr2           | 9,97                     | 10,21  | 0,22       |            |      |
|               | 19,74                    | ,     |                    |       |      |               | 17,36                    |       |      |       |      |               | 10,27                    | ,      | •          |            |      |
|               | 20,25                    |       |                    | İ     |      |               | 19,10                    |       |      | Ì     |      |               | 10,18                    |        |            | <b> </b> _ |      |
| A8            | 22,66                    | 21,14 | 1,32               |       |      | D8            | 18,67                    | 19,04 | 0,34 |       |      | Fr3           | 9,27                     | 9,77   | 0,46       | 10,01      | 0,47 |
|               | 20,52                    |       |                    |       |      |               | 19,35                    |       |      |       |      |               | 9,87                     |        |            | -          | 0    |
|               | 11,59                    |       |                    |       |      |               | 14,26                    |       |      |       |      |               | 9,49                     |        |            |            |      |
| B4            | 10,83                    | 11,32 | 0,43               |       |      |               | 12,23                    |       |      |       |      | Fr4           | 9,32                     | 9,56   | 0,28       |            |      |
|               | 11,54                    |       |                    |       |      | E1            | 12,88                    | 13,32 | 0,72 |       |      |               | 9,87                     |        |            |            |      |
|               | 11,53                    |       |                    |       |      |               | 13,77                    | ,-    | -,   |       |      |               | 10,45                    |        |            |            |      |
| B5            | 11,01                    | 11,27 | 0,26               |       |      |               | 13,59                    |       |      |       |      | Fr5           | 9,65                     | 10,30  | 0,59       |            |      |
|               | 11,28                    |       |                    |       |      |               | 13,19                    |       |      | ŀ     |      |               | 10,81                    |        |            |            |      |
| В6            | 10,92                    | 10,60 | 0,37               | 11,10 | 0,52 | E2            | 13,77                    | 13,52 | 0.30 |       |      | G1            | 12,30                    | 12,21  | 0,14       |            |      |
| БО            | 10,19<br>10,70           | 10,00 | 0,37               | _     | ľ    | E2            | 13,59<br>13,19           | 13,32 | 0,30 |       |      | Gi            | 12,27<br>12,05           | 12,21  | 0,14       |            |      |
|               | 10,70                    |       |                    | ł     |      |               | 12,84                    |       |      |       |      |               | 12,03                    |        |            |            |      |
| В7            | 12,14                    | 11,43 | 1,01               |       |      | E3            | 12,99                    | 12,92 | 0,11 | 28    | 4    | G2            | 12,67                    | 11,71  | 1,69       |            |      |
|               | 11,19                    |       |                    | 1     |      |               | 14,30                    |       |      | 13,   | 0,64 |               | 9,76                     | ,      | •          |            |      |
| В8            | 10,39                    | 10,97 | 0,51               |       |      | E4            | 13,68                    | 13,51 | 0,88 |       |      |               | 11,75                    |        |            | _          |      |
|               | 11,33                    |       |                    |       |      |               | 12,56                    |       |      |       |      | G3            | 12,22                    | 11,72  | 0,52       | 11,79      | 0,88 |
|               | 12,48                    |       |                    |       |      | E5            | 13,65                    | 13,44 | 0,30 |       |      |               | 11,18                    |        |            | _          |      |
| C4            | 11,66                    | 12,17 | 0,45               |       |      |               | 13,22                    | 10,11 | 0,00 | ļ     |      |               | 11,28                    |        |            |            |      |
|               | 12,37                    |       |                    | ļ     |      |               | 12,06                    |       |      |       |      | G4            | 11,65                    | 11,44  | 0,19       |            |      |
| 05            | 11,43                    | 40.70 | 0.04               |       |      | E6            | 12,34                    | 12,58 | 0,68 |       |      |               | 11,39                    |        |            |            |      |
| C5            | 10,29                    | 10,70 | 0,64               |       |      |               | 13,35                    |       |      |       |      | G5            | 10,40                    | 11,87  | 1,32       |            |      |
|               | 10,37<br>13,39           |       |                    | ł     |      | E7            | 14,11<br>13,78           | 13,59 | 0,63 |       |      | GS            | 12,26<br>12,95           | 11,07  | 1,32       |            |      |
| C6            | 12,77                    | 13,16 | 0,34               | 12,18 | 0,98 |               | 12,89                    | 10,00 | 0,00 |       |      |               | 20,06                    |        |            |            |      |
|               | 13,31                    |       | 0,0 .              | 12    | O,   |               | 10,36                    |       |      |       |      | H1            | 21,82                    | 21,24  | 1,02       |            |      |
|               | 12,72                    |       |                    | İ     |      | Ff1           | 8,98                     | 9,38  | 0,86 |       |      |               | 21,84                    | ,      | ,-         |            |      |
| C7            | 12,35                    | 12,79 | 0,47               |       |      |               | 8,79                     |       |      |       |      |               | 20,51                    |        |            | 1          |      |
|               | 13,29                    |       |                    |       |      |               | 9,87                     |       |      | İ     |      | H2            | 21,47                    | 20,97  | 0,48       |            |      |
|               | 12,82                    |       |                    | 1     |      | Ff2           | 8,73                     | 9,03  | 0,74 |       |      |               | 20,92                    |        |            |            |      |
| C8            | 11,59                    | 12,09 | 0,65               |       |      |               | 8,49                     |       |      |       |      |               | 19,73                    |        |            | 4          |      |
|               | 11,86                    |       |                    |       |      |               | 10,61                    |       |      |       |      | H3            | 21,24                    | 20,42  | 0,76       | 20,74      | 1,20 |
|               | 17,31                    |       |                    |       |      | Ff3           | 8,81                     | 9,40  | 1,05 |       |      |               | 20,29                    |        |            | <b> ``</b> |      |
| D4            | 18,92                    | 16.00 | 1 40               |       |      |               | 8,79                     |       |      | 9,21  | 0,78 | 1.14          | 17,30                    | 20.22  | 2.50       |            |      |
| D1            | 17,08                    | 16,83 | 1,49               |       |      | Ff4           | 10,59                    | 9,43  | 1,00 | တ်    | 0,   | H4            | 21,38                    | 20,23  | 2,56       |            |      |
|               | 15,72<br>15,11           |       |                    |       |      | 1 14          | 8,86<br>8,84             | 3,43  | 1,00 |       |      |               | 22,02<br>20,07           |        |            | ł          |      |
|               | 19,03                    |       |                    | ł     |      |               | 9,21                     |       |      | ł     |      | H5            | 20,07<br>21,77           | 20,84  | 0,86       |            |      |
| D2            | 18,13                    | 18,42 | 0,53               |       |      | Ff5           | 9,34                     | 9,28  | 0,09 |       |      |               | 20,67                    | 20,04  | 5,55       |            |      |
|               | 18,09                    | -,    | .,                 |       |      |               | 0,01                     | l     |      | İ     |      |               | _0,0.                    |        |            |            | -    |

|                | <u>-</u>                 | WESTFÄLISC<br>WILHELMS-U<br>MÜNSTER | he<br>Jniversität    |       |        | Wa             | Ermitt<br>sserhal        | _                    |                      | าร    |      | Lal           | boranten<br>T. Hof       |       |      | e,    |      |
|----------------|--------------------------|-------------------------------------|----------------------|-------|--------|----------------|--------------------------|----------------------|----------------------|-------|------|---------------|--------------------------|-------|------|-------|------|
| Proto-<br>typ  | w <sub>h</sub><br>(Vol%) | Ø                                   | σ                    | ø     | σ      | Proto-<br>typ  | w <sub>h</sub><br>(Vol%) | Ø                    | σ                    | ø     | σ    | Proto-<br>typ | w <sub>h</sub><br>(Vol%) | Ø     | σ    | ø     | σ    |
| I1             | 21,96<br>22,05<br>20.46  | 22,01                               | 0,06                 |       |        | N3<br>N4<br>N5 | 6,72<br>7,22<br>7,81     | 6,72<br>7,22<br>7,81 | 0,00<br>0,00<br>0,00 | 7,56  | 99'0 | U5            | 13,85<br>11,42<br>11,66  | 12,31 | 1,34 |       |      |
| 12             | 22,17<br>21,59<br>20,17  | 21,31                               | 1,03                 |       |        | 01             | 11,52<br>10,26<br>10,15  | 10,64                | 0,76                 |       |      | V1            | 8,41<br>8,63<br>8,07     | 8,37  | 0,28 |       |      |
| 13             | 20,37<br>20,30<br>19,85  | 20,17                               | 0,28                 | 14,53 | 1,03   | O2             | 11,73<br>10,29<br>10,35  | 10,79                | 0,81                 |       |      | V2            | 8,80<br>9,32<br>8,08     | 8,73  | 0,62 |       |      |
| 14             | 20,34<br>21,96<br>22,96  | 21,75                               | 1,32                 |       |        | О3             | 11,89<br>10,65<br>10,52  | 11,02                | 0,76                 | 10,86 | 0,76 | V3            | 8,92<br>8,70<br>8,34     | 8,65  | 0,29 | 8,94  | 0,57 |
| 15             | 22,91<br>21,18<br>21,30  | 21,80                               | 0,97                 |       |        | O4             | 11,52<br>10,06<br>10,13  | 10,57                | 0,82                 |       |      | V4            | 9,70<br>9,55<br>9,24     | 9,50  | 0,23 |       |      |
| J1             | 12,74<br>13,24<br>16,00  | 13,99                               | 1,76                 |       |        | O5             | 12,36<br>11,06<br>10,37  | 11,26                | 1,01                 |       |      | V5            | 9,89<br>9,34<br>9,18     | 9,47  | 0,37 |       |      |
| J2             | 15,09<br>13,82<br>15,97  | 14,96                               | 1,08                 |       |        | R              | 13,01<br>12,68<br>13,51  | 13,07                | 0,42                 | 13,07 | 0,42 | W             | 25,41<br>20,31<br>20,89  | 22,20 | 2,79 | 22,20 | 2,79 |
| J3             | 14,98<br>15,93<br>15,16  | 15,36                               | 0,50                 | 14,55 | 1,35   | S              | 10,86<br>10,22<br>11,04  | 10,71                | 0,43                 | 10,71 | 0,43 | X1            | 17,81<br>16,44<br>17,72  | 17,32 | 0,77 |       |      |
| J4             | 12,98<br>16,32<br>16,12  | 15,14                               | 1,87                 |       |        | T1             | 15,85<br>13,82<br>12,08  | 13,92                | 1,89                 |       |      | X2            | 19,72<br>19,09<br>19,45  | 19,42 | 0,32 |       |      |
| J5             | 13,01<br>13,05<br>13,80  | 13,29                               | 0,45                 |       |        | T2             | 14,26<br>11,82<br>11,92  | 12,67                | 1,38                 |       |      | X3            | 17,43<br>17,53<br>19,33  | 18,10 | 1,07 | 18,47 | 1,11 |
| K4             | 9,84<br>10,61<br>10,83   | 10,43                               | 0,52                 |       |        | Т3             | 14,46<br>12,31<br>12,41  | 13,06                | 1,21                 | 12,56 | 1,39 | X4            | 20,26<br>18,93<br>19,72  | 19,64 | 0,67 |       |      |
| K6             | 9,56<br>10,13<br>10,91   | 10,20                               | 0,68                 | •     |        | T4             | 11,80<br>11,45<br>10,95  | 11,40                | 0,43                 |       |      | X5            | 17,32<br>18,16<br>18,16  | 17,88 | 0,48 |       |      |
| K7             | 10,26<br>12,46<br>10,39  | 11,04                               | 1,23                 | 10,71 | 0,68   | T5             | 11,72<br>12,17<br>11,31  | 11,73                | 0,43                 |       |      | Y1            | 18,71<br>17,52<br>17,60  | 17,94 | 0,67 |       |      |
| K8             | 10,89<br>10,64<br>11,09  | 10,87                               | 0,23                 |       |        | U1             | 16,88<br>13,34<br>13,86  | 14,69                | 1,91                 |       |      | Y2            | 16,49<br>17,62<br>17,11  | 17,07 | 0,57 |       |      |
| K10            | 10,87<br>11,04<br>11,20  | 11,04                               | 0,17                 |       |        | U2             | 18,40<br>13,81<br>14,21  | 15,47                | 2,54                 | _     |      | Y3            | 18,53<br>15,63<br>16,50  | 16,89 | 1,49 | 17,59 | 1,18 |
| M1<br>M2<br>M3 | 9,97<br>9,32<br>10,49    | 9,97<br>9,32<br>10,49               | 0,00<br>0,00<br>0,00 | _     | 0,91   | U3             | 18,98<br>12,74<br>12,87  | 14,86                | 3,57                 | 14,63 | 2,37 | Y4            | 16,35<br>17,48<br>16,57  | 16,80 | 0,60 |       |      |
| M4<br>M5<br>N1 | 9,30<br>8,07<br>8,50     | 9,30<br>8,07<br>8,50                | 0,00<br>0,00         |       | ,<br>O | U4             | 17,62<br>13,89<br>15,85  | 15,79                | 1,87                 |       |      | Y5            | 19,13<br>19,38<br>19,27  | 19,26 | 0,13 |       |      |
| N1<br>N2       | 8,50<br>7,54             | 7,54                                | 0,00                 |       |        |                | 10,00                    |                      |                      |       |      |               | 18,∠1                    |       |      |       |      |

|               | _ =                      | WEST<br>WILHI | FÄLISCHE<br>ELMS-UNIV | /ERSITÄT |      | W             | Ermit<br>asserha         | _     |      | jens |      | Lab           | oranten:<br>H. W         | T. Ho<br>ensir |   | nter | , |
|---------------|--------------------------|---------------|-----------------------|----------|------|---------------|--------------------------|-------|------|------|------|---------------|--------------------------|----------------|---|------|---|
| Proto-<br>typ | w <sub>h</sub><br>(Vol%) | Ø             | σ                     | ø        | σ    | Proto-<br>typ | w <sub>h</sub><br>(Vol%) | Ø     | σ    | ø    | σ    | Proto-<br>typ | w <sub>h</sub><br>(Vol%) | ø              | σ | ø    | σ |
| Gefdg1        | 6,98<br>6,70<br>7,28     | 6,99          | 0,29                  |          |      | Geoa1         | 9,10<br>8,66<br>9,08     | 8,95  | 0,25 |      |      |               | (com no)                 |                |   |      |   |
| Gefdg2        | 5,05<br>5,38<br>4,96     | 5,13          | 0,22                  |          |      | Geoa4         | 9,85<br>9,18<br>9,74     | 9,59  | 0,36 |      |      |               |                          |                |   |      |   |
| Gefdg3        | 4,50<br>4,19<br>4,60     | 4,43          | 0,21                  | 4,78     | 1,29 | Geoa5         | 9,93<br>9,19<br>9,59     | 9,57  | 0,37 | 9,45 | 0,45 |               |                          |                |   |      |   |
| Gefdg4        | 3,77<br>3,57<br>3,91     | 3,75          | 0,17                  |          |      | Geoa7         | 9,79<br>9,34<br>9,64     | 9,59  | 0,23 | 6    | 0,   |               |                          |                |   |      |   |
| Gefdg5        | 3,65<br>3,56<br>3,58     | 3,60          | 0,05                  |          |      | Geoa8         | 10,22<br>9,79<br>10,00   | 10,00 | 0,22 |      |      |               |                          |                |   |      |   |
| Gefda1        | 3,76<br>3,50<br>4,31     | 3,86          | 0,41                  |          |      | Geoa10        | 9,22<br>8,89<br>8,84     | 8,98  | 0,21 |      |      |               |                          |                |   |      |   |
| Gefda2        | 5,44<br>5,67<br>5,38     | 5,50          | 0,15                  |          |      |               |                          |       |      |      |      |               |                          |                |   |      |   |
| Gefda3        | 3,62<br>3,48<br>3,54     | 3,55          | 0,07                  | 4,29     | 0,72 |               |                          |       |      |      |      |               |                          |                |   |      |   |
| Gefda4        | 3,92<br>4,05<br>4,33     | 4,10          | 0,21                  |          |      |               |                          |       |      |      |      |               |                          |                |   |      |   |
| Gefda5        | 4,41<br>4,53<br>4,41     | 4,45          | 0,07                  |          |      |               |                          |       |      |      |      |               |                          |                |   |      |   |
| Geog3         | 8,55<br>8,92<br>8,86     | 8,78          | 0,20                  |          |      |               |                          |       |      |      |      |               |                          |                |   |      |   |
| Geog6         | 9,19<br>9,17<br>9,19     | 9,18          | 0,01                  |          |      |               |                          |       |      |      |      |               |                          |                |   |      |   |
| Geog7         | 9,37<br>8,99<br>9,17     | 9,18          | 0,19                  | 15       | 10   |               |                          |       |      |      |      |               |                          |                |   |      |   |
| Geog8         | 8,90<br>8,72<br>8,78     | 8,80          | 0,09                  | 9,15     | 0,40 |               |                          |       |      |      |      |               |                          |                |   |      |   |
| Geog9         | 9,14<br>9,06<br>8,96     | 9,05          | 0,09                  |          |      |               |                          |       |      |      |      |               |                          |                |   |      |   |
| Geog10        | 9,74<br>9,94<br>10,00    | 9,89          | 0,14                  |          |      |               |                          |       |      |      |      |               |                          |                |   |      |   |

| _           | <u> </u>       |         | SCHE<br>S-UNIVERS | ITÄT  |      | Was    | Ermittle       | _     |           | ns   |      | La     | boranten<br>T. Hof |   |   | e, |   |
|-------------|----------------|---------|-------------------|-------|------|--------|----------------|-------|-----------|------|------|--------|--------------------|---|---|----|---|
| Proto-      | w <sub>h</sub> | MÜNSTER |                   | _     |      | Proto- | w <sub>h</sub> |       |           |      |      | Proto- | w <sub>h</sub>     |   |   | _  |   |
| typ         | (Vol%)         | Ø       | σ                 | Ø     | σ    | typ    | (Vol%)         | Ø     | σ         | Ø    | σ    | typ    | (Vol%)             | Ø | σ | Ø  | σ |
|             | 12,61          |         |                   |       |      |        | 3,62           |       |           | 6    | 2    |        |                    |   |   |    |   |
| Z1          | 11,89          | 11,99   | 0,58              |       |      | Gefda3 | 3,48           | 3,55  | 0,07      | 4,29 | 0,72 |        |                    |   |   |    |   |
|             | 11,46          |         |                   | ł     |      |        | 3,54<br>3,92   |       |           | ŀ    |      |        |                    |   |   |    |   |
| Z2          | 11,02<br>10,82 | 10,68   | 0,43              |       |      | Gefda4 | 3,92<br>4,05   | 4,10  | 0,21      |      |      |        |                    |   |   |    |   |
|             | 10,19          | 10,00   | 0,40              |       |      | CCIGGT | 4,33           | 7,10  | 0,21      |      |      |        |                    |   |   |    |   |
|             | 13,69          |         |                   | _     | _    |        | 4,41           |       |           | Ì    |      |        |                    |   |   |    |   |
| Z3          | 12,98          | 12,77   | 1,04              | 11,81 | 06'0 | Gefda5 | 4,53           | 4,45  | 0,07      |      |      |        |                    |   |   |    |   |
|             | 11,64          |         |                   | _     |      |        | 4,41           |       |           |      |      |        |                    |   |   |    |   |
| 74          | 11,26          | 44.05   | 0.70              |       |      | 0 0    | 8,55           | 0.70  | 0.00      |      |      |        |                    |   |   |    |   |
| Z4          | 12,69          | 11,95   | 0,72              |       |      | Geog3  | 8,92<br>8,86   | 8,78  | 0,20      |      |      |        |                    |   |   |    |   |
|             | 11,91<br>11,92 |         |                   | ł     |      |        | 9,19           |       |           | ł    |      |        |                    |   |   |    |   |
| Z5          | 11,78          | 11,66   | 0,33              |       |      | Geog6  | 9,17           | 9,18  | 0,01      |      |      |        |                    |   |   |    |   |
|             | 11,29          | ,00     | 0,00              |       |      | cogo   | 9,19           | 0,.0  | 0,0 .     |      |      |        |                    |   |   |    |   |
|             | 17,32          |         |                   |       |      |        | 9,37           |       |           | İ    |      |        |                    |   |   |    |   |
| AA1         | 16,28          | 16,38   | 0,89              |       |      | Geog7  | 8,99           | 9,18  | 0,19      |      |      |        |                    |   |   |    |   |
|             | 15,54          |         |                   | ļ     |      |        | 9,17           |       |           | 9,15 | 0,40 |        |                    |   |   |    |   |
|             | 15,56          |         |                   |       |      |        | 8,90           |       |           | တ်   | o,   |        |                    |   |   |    |   |
| AA2         | 14,81          | 14,78   | 0,79              |       |      | Geog8  | 8,72           | 8,80  | 0,09      |      |      |        |                    |   |   |    |   |
|             | 13,98<br>15,22 |         |                   | ł     |      |        | 8,78<br>9,14   |       |           |      |      |        |                    |   |   |    |   |
| AA3         | 14,24          | 14,71   | 0,49              | 15,65 | 1,23 | Geog9  | 9,06           | 9.05  | 0.09      |      |      |        |                    |   |   |    |   |
| 7 0 10      | 14,68          | ,, .    | 0,10              | 15    |      | Coogo  | 8,96           | 0,00  | 0,00      |      |      |        |                    |   |   |    |   |
|             | 18,46          |         |                   | İ     |      |        | 9,74           |       |           |      |      |        |                    |   |   |    |   |
| AA4         | 16,76          | 17,20   | 1,10              |       |      | Geog10 |                | 9,89  | 0,14      |      |      |        |                    |   |   |    |   |
|             | 16,39          |         |                   | ļ     |      |        | 10,00          |       |           |      |      |        |                    |   |   |    |   |
|             | 16,07          | 45.40   | 0.70              |       |      | 0 4    | 9,10           | 0.05  | 0.05      |      |      |        |                    |   |   |    |   |
| AA5         | 14,80          | 15,19   | 0,76              |       |      | Geoa1  | 8,66<br>9,08   | 8,95  | 0,25      |      |      |        |                    |   |   |    |   |
|             | 14,71<br>6,98  |         |                   |       |      |        | 9,85           |       |           | ł    |      |        |                    |   |   |    |   |
| Gefdg1      | 6,70           | 6,99    | 0,29              |       |      | Geoa4  | 9,18           | 9,59  | 0,36      |      |      |        |                    |   |   |    |   |
| 3           | 7,28           | ,,,,,   | , -               |       |      |        | 9,74           | ,     | , , , , , |      |      |        |                    |   |   |    |   |
|             | 5,05           |         |                   | Ī     |      |        | 9,93           |       |           | İ    |      |        |                    |   |   |    |   |
| Gefdg2      | 5,38           | 5,13    | 0,22              |       |      | Geoa5  | 9,19           | 9,57  | 0,37      |      |      |        |                    |   |   |    |   |
|             | 4,96           |         |                   |       |      |        | 9,59           |       |           | 9,45 | 0,45 |        |                    |   |   |    |   |
| 0 - 6-1 - 0 | 4,50           | 4.40    | 0.04              | ∞     | စ္က  | 07     | 9,79           | 0.50  | 0.00      | 6    | 0    |        |                    |   |   |    |   |
| Gefdg3      | 4,19<br>4,60   | 4,43    | 0,21              | 4,78  | 1,29 | Geoa7  | 9,34<br>9,64   | 9,59  | 0,23      |      |      |        |                    |   |   |    |   |
|             | 3,77           |         |                   | ł     |      |        | 10,22          |       |           |      |      |        |                    |   |   |    |   |
| Gefdg4      | 3,57           | 3,75    | 0,17              |       |      | Geoa8  | 9,79           | 10,00 | 0,22      |      |      |        |                    |   |   |    |   |
| 3           | 3,91           | -, -    | ,                 |       |      |        | 10,00          | -,    | ,         |      |      |        |                    |   |   |    |   |
|             | 3,65           |         |                   | Ī     |      |        | 9,22           |       |           | İ    |      |        |                    |   |   |    |   |
| Gefdg5      | 3,56           | 3,60    | 0,05              |       |      | Geoa10 | 8,89           | 8,98  | 0,21      |      |      |        |                    |   |   |    |   |
|             | 3,58           |         |                   |       |      |        | 8,84           |       |           |      |      |        |                    |   |   |    |   |
| Cofded      | 3,76           | 2.00    | 0.44              |       |      |        |                |       |           |      |      |        |                    |   |   |    |   |
| Gefda1      | 3,50<br>4,31   | 3,86    | 0,41              |       |      |        |                |       |           |      |      |        |                    |   |   |    |   |
|             | 5,44           |         |                   | ł     |      |        |                |       |           |      |      |        |                    |   |   |    |   |
| Gefda2      | 5,67           | 5,50    | 0,15              |       |      |        |                |       |           |      |      |        |                    |   |   |    |   |
|             | 5,38           |         |                   |       |      |        |                |       |           |      |      |        |                    |   |   |    |   |
|             |                |         |                   |       |      |        |                |       |           |      |      |        |                    |   |   |    |   |

|        | <u>-</u> <u>-</u> _ | WIL      | STFÄLISCHE<br>HELMS-UNIV<br>NSTER | ERSITÄT | Erg        |            | e der Mo          | _          | der     |         | Labora    | nt: Sara        | ı Rölver   |       |
|--------|---------------------|----------|-----------------------------------|---------|------------|------------|-------------------|------------|---------|---------|-----------|-----------------|------------|-------|
|        | pF-Stı              | ufe: 1,8 |                                   |         | einge      | stellter D | <b>)ruck:</b> 0,0 | 6 bar ± 0, | 01 bar  |         | Datu      | <b>m:</b> 15.09 | 0.10 - 01. | 10.10 |
|        |                     |          | ,                                 | A       |            |            |                   |            | geo     | STON® p | rotect gr | rau             |            |       |
|        | 4                   | 6        | 8                                 | 4       | 6          | 8          | 1                 | 3          | 4       | 8       | 1         | 3               | 4          | 8     |
| Δt (h) | G                   | ewicht ( | g)                                | Wasse   | rgehalt (  | Vol%)      |                   | Gewi       | cht (g) |         | Wa        | assergel        | alt (Vol.  | -%)   |
| 0,0    | 1261,7              | 1211,4   | 1243,2                            | 28,58   | 20,84      | 25,14      | 1714,2            | 1716,7     | 1701,7  | 1768,2  | 9,13      | 8,85            | 8,73       | 8,62  |
| 0,5    | 1241,5              | 1198,1   | 1229,5                            | 25,28   | 18,64      | 22,94      | 1695,1            | 1699,5     | 1680,6  | 1752,8  | 6,44      | 6,45            | 5,74       | 6,52  |
| 1,5    | 1237,1              | 1194,1   | 1221,0                            | 24,56   | 17,98      | 21,58      | 1692,7            | 1697,1     | 1675,6  | 1748,8  | 6,10      | 6,11            | 5,03       | 5,97  |
| 2,3    | 1233,8              | 1190,3   | 1214,5                            | 24,01   | 17,35      | 20,54      | 1692,4            | 1695,1     | 1673,9  | 1748,3  | 6,05      | 5,83            | 4,79       | 5,91  |
| 5,5    | 1226,5              | 1185,1   | 1177,4                            | 22,82   | 16,49      | 14,58      | 1691,5            | 1692,8     | 1673,3  | 1747,4  | 5,93      | 5,51            | 4,70       | 5,78  |
| 23,5   | 1186,2              | 1160,9   | 1143,8                            | 16,22   | 12,48      | 9,19       | 1684,9            | 1688,2     | 1672,3  | 1740,0  | 5,00      | 4,87            | 4,56       | 4,78  |
| 29,5   | 1180,2              | 1153,6   | 1143,5                            | 15,24   | 11,27      | 9,14       | 1684,8            | 1687,7     | 1671,4  | 1739,6  | 4,98      | 4,80            | 4,43       | 4,72  |
| 47,5   | 1177,9              | 1131,6   | 1142,5                            | 14,86   | 7,63       | 8,98       | 1683,7            | 1686,8     | 1670,7  | 1739,1  | 4,83      | 4,67            | 4,33       | 4,65  |
| 167,0  | 1155,0              | 1109,1   | 1139,9                            | 11,11   | 3,91       | 8,56       | 1682,7            | 1685,6     | 1669,5  | 1737,4  | 4,68      | 4,51            | 4,16       | 4,42  |
| 190,5  | 1154,9              | 1109,1   | 1139,7                            | 11,09   | 3,91       | 8,53       | 1682,5            | 1685,6     | 1669,4  | 1737,2  | 4,66      | 4,51            | 4,15       | 4,39  |
| 216,0  | 1154,9              | 1109,1   | 1139,5                            | 11,09   | 3,91       | 8,50       | 1682,4            | 1685,6     | 1669,3  | 1737,1  | 4,64      | 4,51            | 4,13       | 4,38  |
| 310,5  | 1154,4              | 1108,7   | 1139,4                            | 11,01   | 3,84       | 8,48       | 1681,6            | 1684,8     | 1668,8  | 1736,6  | 4,53      | 4,39            | 4,06       | 4,31  |
| 334,5  | 1153,9              | 1108,6   | 1139,3                            | 10,93   | 3,83       | 8,46       | 1681,4            | 1684,6     | 1668,7  | 1736,4  | 4,50      | 4,37            | 4,05       | 4,29  |
| 358,5  | 1153,3              | 1108,5   | 1139,2                            | 10,83   | 3,81       | 8,45       | 1681,2            | 1684,5     | 1668,6  | 1736,4  | 4,47      | 4,35            | 4,03       | 4,29  |
| 383,0  | 1152,9              | 1108,5   | 1139,2                            | 10,77   | 3,81       | 8,45       | 1681,2            | 1684,4     | 1668,6  | 1736,4  | 4,47      | 4,34            | 4,03       | 4,29  |
|        |                     |          | E                                 | 3       |            |            |                   |            | geoST   | ON® pro | tect anth | nrazit          |            |       |
|        | 4                   | 6        | 7                                 | 4       | 6          | 7          | 9                 | 10         | 14      | 15      | 9         | 10              | 14         | 15    |
| Δt (h) | G                   | ewicht ( | g)                                | Wasse   | ergehalt ( | Vol%)      |                   | Gewi       | cht (g) |         | Wa        | assergeh        | alt (Vol.  | -%)   |
| 0,0    | 1296,2              | 1346,3   | 1302,2                            | 15,21   | 14,39      | 15,11      | 1779,8            | 1729,2     | 1707,4  | 1688,9  | 10,13     | 9,57            | 10,37      | 9,98  |
| 0,5    | 1278,2              | 1330,8   | 1281,5                            | 12,29   | 11,90      | 11,72      | 1755,2            | 1706,8     | 1681,3  | 1664,3  | 6,82      | 6,46            | 6,71       | 6,53  |
| 1,5    | 1277,4              | 1329,4   | 1280,6                            | 12,16   | 11,68      | 11,58      | 1753,3            | 1705,1     | 1678,5  | 1657,3  | 6,57      | 6,22            | 6,31       | 5,55  |
| 2,3    | 1277,0              | 1329,0   | 1279,6                            | 12,09   | 11,61      | 11,41      | 1752,4            | 1704,9     | 1677,9  | 1654,4  | 6,45      | 6,19            | 6,23       | 5,15  |
| 5,5    | 1274,9              | 1327,7   |                                   | 11,75   | 11,40      | 11,22      | 1750,9            | 1702,9     | 1676,5  | 1653,9  | 6,25      | 5,92            | 6,03       | 5,08  |
| 23,5   | 1270,2              | 1326,3   | 1274,2                            | 10,99   | 11,18      | 10,53      | 1743,7            | 1696,4     | 1674,8  | 1652,3  | 5,28      | 5,01            | 5,79       | 4,85  |
| 29,5   | 1268,8              | 1325,8   | 1273,1                            | 10,76   | 11,10      | 10,35      | 1743,2            | 1696,0     | 1674,3  | 1651,6  | 5,21      | 4,96            | 5,72       | 4,75  |
| 47,5   | 1267,5              | 1324,4   | 1271,0                            | 10,55   | 10,87      | 10,01      | 1742,5            | 1695,6     | 1671,4  | 1651,2  | 5,12      | 4,90            | 5,32       | 4,70  |
| 167,0  | 1262,5              | 1319,1   | 1264,8                            | 9,74    | 10,02      | 8,99       | 1741,2            | 1693,7     | 1666,8  | 1649,6  | 4,94      | 4,64            | 4,67       | 4,47  |
| 190,5  | 1262,0              | 1318,6   | 1264,1                            | 9,66    | 9,94       | 8,88       | 1740,9            | 1693,7     | 1666,8  | 1649,6  | 4,90      | 4,64            | 4,67       | 4,47  |
| 216,0  | 1261,6              | 1318,2   | 1263,3                            | 9,59    | 9,88       | 8,75       | 1740,7            | 1693,7     | 1666,8  | 1649,6  | 4,88      | 4,64            | 4,67       | 4,47  |
| 310,5  | 1261,1              | 1317,1   | 1260,1                            | 9,51    | 9,70       | 8,22       | 1740,0            | 1693,1     | 1666,2  | 1648,9  | 4,78      | 4,55            | 4,59       | 4,38  |
| 334,5  | 1259,9              | 1316,6   | 1259,9                            | 9,31    | 9,62       | 8,19       | 1739,9            | 1693,0     | 1666,1  | 1648,7  | 4,77      | 4,54            | 4,57       | 4,35  |
| 358,5  | 1259,8              | 1316,3   | 1259,7                            | 9,30    | 9,57       | 8,16       | 1739,8            | 1693,0     | 1666,0  | 1648,6  | 4,75      | 4,54            | 4,56       | 4,33  |
| 383,0  | 1259,8              | 1316,1   | 1259,5                            | 9,30    | 9,54       | 8,13       | 1739,8            | 1693,0     | 1666,0  | 1648,6  | 4,75      | 4,54            | 4,56       | 4,33  |

|        |        | w        | ESTFÄLISCHE<br>ILHELMS-UN<br>ÜNSTER |       | Erge      |           | e der M<br>gspanr |           | g der   |          | Labora     | nt: Sara        | a Rölver   |       |
|--------|--------|----------|-------------------------------------|-------|-----------|-----------|-------------------|-----------|---------|----------|------------|-----------------|------------|-------|
|        | pF-Stı | ufe: 2,5 |                                     |       | einge     | estellter | Druck: 0,         | 3 bar ± 0 | ,01 bar |          | Datu       | <b>m:</b> 24.08 | 3.10 - 10. | 09.10 |
|        |        |          | Α                                   |       |           |           |                   |           | ge      | oSTON® p | rotect gra | ıu              |            |       |
|        | 4      | 6        | 8                                   | 4     | 6         | 8         | 1                 | 3         | 4       | 8        | 1          | 3               | 4          | 8     |
| Δt (h) | G      | ewicht ( | g)                                  | Wasse | rgehalt ( | (Vol%)    |                   | Gewi      | cht (g) |          | Wa         | sserge          | alt (Vol.  | -%)   |
| 0,0    | 1247,3 | 1204,5   | 1238,2                              | 26,23 | 19,70     | 24,34     | 1714,1            | 1711,6    | 1698,3  | 1766,9   | 9,12       | 8,14            | 8,25       | 8,44  |
| 0,5    | 1235,4 | 1170,2   | 1229,1                              | 24,28 | 14,02     | 22,88     | 1692,6            | 1690,2    | 1679,4  | 1749,2   | 6,08       | 5,15            | 5,57       | 6,03  |
| 1,5    | 1232,6 | 1123,3   | 1223,6                              | 23,82 | 6,26      | 22,00     | 1690,1            | 1688,1    | 1678,2  | 1742,2   | 5,73       | 4,85            | 5,40       | 5,08  |
| 3,0    | 1229,7 | 1118,5   | 1212,1                              | 23,34 | 5,47      | 20,15     | 1690,1            | 1687,1    | 1676,9  | 1739,9   | 5,73       | 4,72            | 5,21       | 4,76  |
| 5,5    | 1226,6 | 1117,2   | 1188,5                              | 22,84 | 5,25      | 16,36     | 1689,0            | 1686,6    | 1676,3  | 1739,1   | 5,57       | 4,65            | 5,13       | 4,65  |
| 23,5   | 1203,8 | 1114,5   | 1141,0                              | 19,10 | 4,80      | 8,74      | 1684,3            | 1685,2    | 1671,7  | 1737,2   | 4,91       | 4,45            | 4,47       | 4,39  |
| 29,0   | 1199,6 | 1114,0   | 1140,0                              | 18,41 | 4,72      | 8,58      | 1684,1            | 1684,8    | 1671,1  | 1736,7   | 4,88       | 4,39            | 4,39       | 4,33  |
| 48,8   | 1187,0 | 1112,0   | 1138,0                              | 16,35 | 4,39      | 8,26      | 1683,4            | 1684,2    | 1669,9  | 1735,9   | 4,78       | 4,31            | 4,22       | 4,22  |
| 72,3   | 1175,5 | 1110,5   | 1136,6                              | 14,47 | 4,14      | 8,03      | 1683,0            | 1683,9    | 1669,4  | 1735,2   | 4,73       | 4,27            | 4,15       | 4,12  |
| 167,5  | 1156,6 | 1107,4   | 1134,9                              | 11,37 | 3,63      | 7,76      | 1681,7            | 1683,0    | 1667,6  | 1734,7   | 4,54       | 4,14            | 3,89       | 4,05  |
| 192,3  | 1154,4 | 1106,7   | 1134,7                              | 11,01 | 3,51      | 7,73      | 1681,1            | 1682,7    | 1667,3  | 1734,3   | 4,46       | 4,10            | 3,85       | 4,00  |
| 215,3  | 1152,8 | 1106,4   | 1134,6                              | 10,75 | 3,46      | 7,71      | 1680,7            | 1682,5    | 1667,2  | 1734,1   | 4,40       | 4,07            | 3,84       | 3,97  |
| 239,5  | 1151,9 | 1105,9   | 1134,5                              | 10,60 | 3,38      | 7,69      | 1680,5            | 1682,3    | 1666,8  | 1734,0   | 4,37       | 4,50            | 3,78       | 3,96  |
| 335,5  | 1148,9 | 1104,8   | 1134,4                              | 10,11 | 3,20      | 7,68      | 1680,3            | 1682,2    | 1666,4  | 1733,8   | 4,35       | 4,03            | 3,72       | 3,93  |
| 359,3  | 1148,6 | 1104,8   | 1134,4                              | 10,06 | 3,20      | 7,68      | 1680,2            | 1682,2    | 1666,2  | 1733,8   | 4,33       | 4,03            | 3,69       | 3,93  |
| 383,3  | 1148,4 | 1104,8   | 1134,4                              | 10,03 | 3,20      | 7,68      | 1680,0            | 1682,1    | 1666,1  | 1733,7   | 4,30       | 4,02            | 3,68       | 3,92  |
| 408,8  | 1148,2 | 1104,8   | 1134,4                              | 10,00 | 3,20      | 7,68      | 1679,9            | 1682,1    | 1666,0  | 1733,7   | 4,29       | 4,03            | 3,67       | 3,92  |
|        |        |          | В                                   |       |           | ı         |                   |           |         | ON® pro  |            | hrazit          | ı          |       |
|        | 4      | 6        | 7                                   | 4     | 6         | 7         | 9                 | 10        | 14      | 15       | 9          | 10              | 14         | 15    |
| Δt (h) |        | ewicht ( |                                     |       | rgehalt ( | 1         |                   |           | cht (g) |          |            |                 | alt (Vol.  |       |
| 0,0    | 1289,7 | 1338,3   | 1296,7                              | 14,16 | 13,10     | 14,21     | 1774,8            | 1727,4    | 1703,3  | 1686,1   | 9,46       | 9,32            | 9,79       | 9,58  |
| 0,5    | 1274,8 | 1327,5   | 1279,3                              | 11,74 | 11,37     | 11,36     | 1745,8            | 1704,6    | 1679,2  | 1660,8   | 5,56       | 6,15            | 6,41       | 6,04  |
| 1,5    | 1272,4 | 1325,5   | 1277,2                              | 11,35 | 11,05     | 11,02     | 1743,9            | 1700,9    | 1671,0  | 1658,1   | 5,31       | 5,64            | 5,26       | 5,66  |
| 3,0    | 1271,4 | 1324,7   | 1275,8                              | 11,18 | 10,92     | 10,79     | 1742,7            | 1697,1    | 1669,3  | 1652,9   | 5,14       | 5,11            | 5,02       | 4,94  |
| 5,5    | 1270,5 | 1324,3   | 1274,7                              | 11,04 | 10,86     | 10,61     | 1741,9            | 1696,4    | 1668,5  | 1652,0   | 5,04       | 5,01            | 4,91       | 4,81  |
| 23,5   | 1268,6 | 1322,9   | 1270,6                              | 10,73 | 10,63     | 9,94      | 1739,9            | 1694,9    | 1667,3  | 1650,2   | 4,77       | 4,80            | 4,74       | 4,56  |
| 29,0   | 1267,7 | 1322,3   | 1269,8                              | 10,58 | 10,54     | 9,81      | 1739,5            | 1694,6    | 1667,2  | 1650,0   | 4,71       | 4,76            | 4,73       | 4,53  |
| 48,8   | 1266,0 | 1321,1   | 1267,5                              | 10,31 | 10,34     | 9,43      | 1738,9            | 1694,0    | 1666,6  | 1648,9   | 4,63       | 4,68            | 4,64       | 4,38  |
| 72,3   | 1265,3 | 1320,0   | 1266,1                              | 10,19 | 10,17     | 9,21      | 1738,5            | 1693,7    | 1665,9  | 1648,3   | 4,58       | 4,64            | 4,55       | 4,29  |
| 167,5  | 1261,9 | 1317,2   | 1261,5                              | 9,64  | 9,72      | 8,45      | 1737,2            | 1692,3    | 1664,6  | 1647,5   | 4,40       | 4,44            | 4,36       | 4,18  |
| 192,3  | 1261,3 | 1316,6   | 1259,8                              | 9,54  | 9,62      | 8,18      | 1736,9            | 1692,0    | 1664,2  | 1647,1   | 4,36       | 4,40            | 4,31       | 4,12  |
| 215,3  | 1260,9 | 1316,3   | 1258,7                              | 9,48  | 9,57      | 8,00      | 1736,7            | 1691,7    | 1664,0  | 1647,0   | 4,34       | 4,36            | 4,28       | 4,11  |
| 239,5  | 1260,2 | 1315,8   | 1258,1                              | 9,36  | 9,49      | 7,90      | 1736,5            | 1691,4    | 1663,8  | 1646,9   | 4,31       | 4,32            | 4,25       | 4,10  |
| 335,5  | 1259,5 | 1314,7   | 1256,4                              | 9,25  | 9,32      | 7,62      | 1736,4            | 1691,0    | 1663,4  | 1646,7   | 4,30       | 4,26            | 4,20       | 4,07  |
| 359,3  | 1259,4 | 1314,5   | 1256,3                              | 9,23  | 9,29      | 7,60      | 1736,4            | 1690,9    | 1663,3  | 1646,6   | 4,30       | 4,25            | 4,18       | 4,05  |
| 383,3  | 1259,3 | 1314,3   | 1256,3                              | 9,22  | 9,25      | 7,60      | 1736,3            | 1690,9    | 1663,2  | 1646,6   | 4,28       | 4,25            | 4,17       | 4,05  |
| 408,8  | 1259,3 | 1314,2   | 1256,3                              | 9,22  | 9,24      | 7,60      | 1736,3            | 1690,9    | 1663,2  | 1646,5   | 4,28       | 4,25            | 4,17       | 4,04  |

| =              |                  | WIL              | STFÄLISCHE<br>HELMS-UNIV<br>NSTER | ERSITÄT        | Erg            |              | e der Mo<br>gspann | _                | der              |                  | Labora       | nt: Sara        | ı Rölver     |              |
|----------------|------------------|------------------|-----------------------------------|----------------|----------------|--------------|--------------------|------------------|------------------|------------------|--------------|-----------------|--------------|--------------|
|                | pF-Stu           | ufe: 2,5         |                                   |                | einge          | estellter [  | Oruck: 0,3         | 3 bar ± 0,0      | 01 bar           |                  | Datu         | <b>m:</b> 07.10 | .10 - 05.    | 11.10        |
|                |                  |                  | ,                                 | 4              |                |              |                    |                  | geo              | oSTON® pı        | otect gra    | u               |              |              |
|                | 4                | 6                | 8                                 | 4              | 6              | 8            | 1                  | 3                | 4                | 8                | 1            | 3               | 4            | 8            |
| Δt (h)         | G                | ewicht (         | g)                                | Wasse          | ergehalt (     | Vol%)        |                    | Gewi             | cht (g)          |                  | Wa           | assergel        | alt (Vol.    | -%)          |
| 0,0            | 1253,5           | 1205,4           | 1253,0                            | 27,24          | 19,85          | 26,72        | 1718,4             | 1719,3           | 1704,3           | 1772,8           | 9,73         | 9,21            | 9,10         | 9,24         |
| 0,8            | 1239,3           | 1193,4           | 1240,5                            | 24,92          | 17,86          | 24,71        | 1696,1             | 1697,5           | 1676,8           | 1751,5           | 6,58         | 6,17            | 5,20         | 6,34         |
| 2,3            | 1230,8           | 1189,8           | 1226,3                            | 23,52          | 17,27          | 22,43        | 1690,1             | 1693,1           | 1675,6           | 1744,6           | 5,73         | 5,55            | 5,03         | 5,40         |
| 6,0            | 1206,8           | 1186,4           | 1209,8                            | 19,59          | 16,70          | 19,78        | 1689,1             | 1691,8           | 1675,2           | 1742,9           | 5,59         | 5,37            | 4,97         | 5,17         |
| 24,2           | 1158,7           | 1174,2           | 1161,4                            | 11,72          | 14,68          | 12,01        | 1687,8             | 1689,3           | 1674,1           | 1741,0           | 5,41         | 5,02            | 4,81         | 4,91         |
| 120,3          | 1158,1           | 1124,6           | 1141,6                            | 11,62          | 6,48           | 8,83         | 1685,0             | 1687,0           | 1672,6           | 1738,7           | 5,01         | 4,70            | 4,60         | 4,60         |
| 144,3          | 1157,7           | 1120,1           | 1141,2                            | 11,55          | 5,73           | 8,77         | 1684,1             | 1686,8           | 1672,1           | 1738,2           | 4,88         | 4,67            | 4,53         | 4,53         |
| 167,3          | 1157,5           | 1116,3           | 1140,7                            | 11,52<br>11,49 | 5,10           | 8,69<br>8,63 | 1683,7<br>1683,3   | 1686,7<br>1686,6 | 1672,0<br>1671,9 | 1737,9<br>1737,7 | 4,83         | 4,66            | 4,52         | 4,49         |
| 191,7<br>294,1 | 1157,3<br>1155,9 | 1112,2<br>1109,6 | 1140,3<br>1139,0                  | 11,49          | 4,42<br>3,99   | 8,63<br>8,42 | 1682,0             | 1686,1           | 1671,9           | 1737,7           | 4,77<br>4,59 | 4,65<br>4,58    | 4,50<br>4,39 | 4,46<br>4,35 |
| 311,1          | 1155,9           | 1109,6           | 1138,6                            | 11,20          | 3,94           | 8,35         | 1681,7             | 1685,9           | 1670,8           | 1736,9           | 4,59         | 4,55            | 4,35         | 4,35         |
| 335,3          | 1155,0           | 1108,8           | 1138.0                            | 11,14          | 3,86           | 8,26         | 1681,2             | 1685,7           | 1670,4           | 1736,2           | 4,47         | 4,52            | 4,29         | 4,26         |
| 359,8          | 1154,9           | 1108,5           | 1137,7                            | 11,09          | 3,81           | 8,21         | 1680.9             | 1685,5           | 1670,3           | 1735,9           | 4,43         | 4,49            | 4,28         | 4,22         |
| 455,8          | 1154,1           | 1107,9           | 1137,1                            | 10,96          | 3,71           | 8,11         | 1679,7             | 1685,2           | 1669,9           | 1735,2           | 4,26         | 4,45            | 4,22         | 4,12         |
| 479,3          | 1153,9           | 1107,8           | 1137,1                            | 10,93          | 3,70           | 8,11         | 1679,5             | 1685,2           | 1669,8           | 1735,0           | 4,23         | 4,45            | 4,20         | 4,10         |
| 503,3          | 1153,6           | 1107,7           | 1137,1                            | 10,88          | 3,68           | 8,11         | 1679,3             | 1685,1           | 1669,8           | 1734,9           | 4,20         | 4,44            | 4,20         | 4,08         |
| 622,8          | 1152,9           | 1107,2           | 1137,0                            | 10,77          | 3,60           | 8,10         | 1678,1             | 1684,9           | 1669,5           | 1734,4           | 4,03         | 4,41            | 4,16         | 4,01         |
| 695,2          | 1152,3           | 1106,9           | 1137,0                            | 10,67          | 3,55           | 8,10         | 1677,6             | 1684,7           | 1669,5           | 1734,1           | 3,96         | 4,38            | 4,16         | 3,97         |
|                |                  |                  | E                                 | 3              |                |              |                    |                  | geoST            | ON® pro          | tect antl    | nrazit          |              |              |
|                | 4                | 6                | 7                                 | 4              | 6              | 7            | 9                  | 10               | 14               | 15               | 9            | 10              | 14           | 15           |
| Δt (h)         | G                | ewicht (         | g)                                | Wasse          | rgehalt (      | Vol%)        |                    | Gewi             | cht (g)          |                  | Wa           | assergel        | alt (Vol.    | -%)          |
| 0,0            | 1296,3           | 1348,2           | 1307,8                            | 15,23          | 14,69          | 16,02        | 1781,9             | 1728,7           | 1705,8           | 1687,6           | 10,41        | 9,50            | 10,14        | 9,79         |
| 0,8            | 1279,6           | 1331,4           | 1283,6                            | 12,52          | 12,00          | 12,07        | 1753,7             | 1702,8           | 1679,0           | 1664,0           | 6,62         | 5,90            | 6,38         | 6,49         |
| 2,3            | 1276,6           | 1329,8           | 1279,6                            | 12,03          | 11,74          | 11,41        | 1748,7             | 1701,2           | 1674,1           | 1662,3           | 5,95         | 5,68            | 5,70         | 6,25         |
| 6,0            | 1275,6           | 1328,5           | 1278,3                            | 11,87          | 11,53          | 11,20        | 1747,7             | 1700,3           | 1672,5           | 1660,3           | 5,82         | 5,55            | 5,47         | 5,97         |
| 24,2           | 1273,5           | 1326,3           | 1275,7                            | 11,52          | 11,18          | 10,77        | 1746,2             | 1699,2           | 1671,7           | 1654,3           | 5,61         | 5,40            | 5,36         | 5,13         |
| 120,3          | 1269,0           | 1321,9           | 1270,2                            | 10,79          | 10,47          | 9,88         | 1744,1             | 1696,8           | 1670,4           | 1651,5           | 5,33         | 5,07            | 5,18         | 4,74         |
| 144,3          | 1267,1           | 1321,2           | 1268,1                            | 10,48          | 10,36          | 9,53         | 1743,2             | 1696,3           | 1668,7           | 1651,2           | 5,21         | 5,00            | 4,94         | 4,70         |
| 167,3<br>191,7 | 1266,4<br>1265,6 | 1320,9<br>1320,8 | 1267,4<br>1266,8                  | 10,37<br>10,24 | 10,31<br>10,30 | 9,42<br>9,32 | 1743,1<br>1743,0   | 1696,2<br>1696,2 | 1668,6<br>1668,5 | 1651,1<br>1651,1 | 5,20<br>5.19 | 4,99            | 4,92<br>4,91 | 4,68<br>4,68 |
| 294,1          | 1264,5           | 1320,8           | 1263,6                            | 10,24          | 10,30          | 9,32<br>8,80 | 1743,0             | 1695,7           | 1667,8           | 1650,6           | 5,18<br>5,00 | 4,99<br>4,92    | 4,91         | 4,68         |
| 311,1          | 1264,5           | 1319,6           | 1263,0                            | 10,00          | 10,10          | 8,70         | 1741,6             | 1695,7           | 1667,6           | 1650,6           | 5,00<br>4,96 | 4,92            | 4,78         | 4,59         |
| 335,3          | 1263,4           | 1319,4           | 1262,2                            | 9,88           | 10,07          | 8,57         | 1741,3             | 1694,9           | 1667,0           | 1650,4           | 4,89         | 4,80            | 4,73         | 4,54         |
| 359,8          | 1263,1           | 1318,9           | 1261,6                            | 9,83           | 9,99           | 8,47         | 1740,6             | 1694,8           | 1667,2           | 1650,0           | 4,86         | 4,79            | 4,73         | 4,53         |
| 455,8          | 1262,7           | 1318,2           | 1259,7                            | 9,77           | 9,88           | 8,16         | 1740,1             | 1694,5           | 1666,8           | 1649,6           | 4,79         | 4,75            | 4,67         | 4,47         |
| 479,3          | 1262,6           | 1318,1           | 1259,5                            | 9,75           | 9,86           | 8,13         | 1740,1             | 1694,5           | 1666,8           | 1649,5           | 4,79         | 4,75            | 4,67         | 4,46         |
| 503,3          | 1262,6           | 1318,1           | 1259,3                            | 9,75           | 9,86           | 8,09         | 1740,0             | 1694,5           | 1666,8           | 1649,5           | 4,78         | 4,75            | 4,67         | 4,46         |
| 622,8          | 1262,5           | 1317,4           | 1258,9                            | 9,74           | 9,75           | 8,03         | 1739,6             | 1694,3           | 1666,5           | 1649,3           | 4,73         | 4,72            | 4,63         | 4,43         |
| 695,2          | 1262,5           | 1317,3           | 1258,5                            | 9,74           | 9,74           | 7,96         | 1739,5             | 1694,3           | 1666,5           | 1649,3           | 4,71         | 4,72            | 4,63         | 4,43         |

|                  | <u>-</u>         | WESTFÄ<br>WILHELM<br>MÜNSTE | us-Univers     | SITÄT         | Ergeb            | nisse<br>Saug    | der Me<br>spann  | _                | der          |               | Lat            | oorant:        | Sara Rölve     | er                           |
|------------------|------------------|-----------------------------|----------------|---------------|------------------|------------------|------------------|------------------|--------------|---------------|----------------|----------------|----------------|------------------------------|
|                  | pF-Stu           | ife: 2,5                    |                |               | eingeste         | ellter Dru       | u <b>ck:</b> 0,3 | bar ± 0,0        | 1 bar        |               | D              | atum: 07       | 7.12.10 - 07   | .04.11                       |
|                  |                  | Α                           |                |               |                  |                  | geoS             | TON® pı          | rotect       | grau          |                |                | Fül            | Isand                        |
|                  | 4                | 6                           | 4              | 6             | 2                | 5                | 6                | 7                | 2            | 5             | 6              | 7              | Fuge 5         | Fuge 5                       |
| Δt (h)           | Gewi             | cht (g)                     | Wasser<br>(Vol | -gehalt<br>%) |                  | Gewid            | cht (g)          |                  | Wa           | asserg        | ehalt (Vo      | ol%)           | Gewicht<br>(g) | Wassser-<br>gehalt<br>(Vol%) |
| 0,0              | 1265,3           | 1213,5                      | 29,17          | 21,19         | 1782,3           | 1803,7           | 1721,2           | 1732,4           | 9,44         | 8,47          | 8,71           | 8,68           | 306,0          | 40,83                        |
| 191,3            | 1156,9           | 1109,5                      | 11,42          | 3,98          | 1746,3           | 1772,1           | 1686,5           | 1701,9           | 4,47         | 4,15          | 3,84           | 4,45           | 269,1          | 6,97                         |
| 361,0            | 1152,8           | 1105,3                      | 10,75          | 3,28          | 1745,8           | 1771,5           | ,                | ,                | 4,40         | 4,07          | 3,76           | 4,35           | 269,0          | 6,88                         |
| 744,8            | 1149,5           | 1106,3                      | 10,21          | 3,45          | 1741,5           | 1771,6           |                  | 1700,9           | 3,81         | 4,08          | 3,55           | 4,31           | 268,9          | 6,79                         |
| 1006,5           | 1147,8           | 1101,1                      | 9,93           | 2,59          | 1739,5           | 1771,2           | , .              | ,                | 3,53         | 4,03          | 3,19           | 4,18           | 266,7          | 4,77                         |
| 1198,8           | 1146,8           | 1101,1                      | 9,77           | 2,59          | 1739,0           | 1770,7           | , , ,            | 1699,5           | 3,46         | 3,96          | 3,12           | 4,11           | 266,1          | 4,22                         |
| 1342,8           | 1146,2           | 1100,5                      | 9,67           | 2,49          | 1738,5           | 1770,3           |                  | 1699,6           | 3,39         | 3,90          | 3,07           | 4,13           | 265,9          | 4,04                         |
| 1511,5           | 1145,7           | 1100,4<br>1096,5            | 9,59           | 2,47          | 1738,3           | 1770,3           | ,                | 1699,7<br>1698.5 | 3,37<br>3,23 | 3,90          | 3,03           | 4,14           | 265,6          | 3,76                         |
| 1682,3<br>1846,5 | 1142,7<br>1136,7 | 11096,5                     | 9,09<br>8.11   | 1,83<br>2,45  | 1737,3<br>1737,8 | 1769,6<br>1767.3 | ,                | 1696,2           | 3,23         | 3,81<br>3,49  | 2,91<br>2,79   | 3,98<br>3,66   | 264,9<br>264,6 | 3,12<br>2,84                 |
| 1919,0           | 1134,1           | 1088,4                      | 7,69           | 0.48          |                  | 1767,3           | ,-               | ,                | 3,30         | 3,38          | 2,79           | 3,52           | 264,6          | 2,84                         |
| 2039.0           | 1132,5           | 1095,2                      | 7,42           | 1,61          |                  | 1765,9           | ,                | -                |              | 3,30          | 2,65           | 3,45           | 264,8          | 3,03                         |
| 2182,5           | 1132,6           | 1095,6                      | 7,44           | 1,68          |                  | 1765,5           | , i              | ,                |              | 3,25          | 2,68           | 3,35           | 264,6          | 2,84                         |
| 2230,5           | 1131,3           | 1094,8                      | 7,23           | 1,54          |                  | 1765,4           | , i              | ,                |              | 3,23          | 2,65           | 3,00           | 262,9          | 1,28                         |
| 2374,5           | 1132,7           | 1095,3                      | 7,46           | 1,63          |                  | 1765,6           | ,                | ,                |              | 3,26          | 2,68           | 3,24           | 265,0          | 3,21                         |
| 2590,5           | 1134,0           | 1099,8                      | 7,67           | 2,37          |                  | 1765,6           |                  | 1693,9           |              | 3,26          | 2,78           | 3,34           | 265,0          | 3,21                         |
| 2926,5           | 1133,1           | 1100,2                      | 7,52           | 2,44          |                  | 1765,4           | ,                | ,                |              | 3,23          | 2,81           | 3,34           | 265,2          | 3,40                         |
|                  | ı                | 3                           |                |               | geoSTC           | N® prot          | ect anth         | razit            |              |               |                | Ва             | asaltsplit     |                              |
|                  | 7                | 7                           | 11             | 12            | 13               | 16               | 11               | 12               | 13           | 16            | Fuge 2         | Fuge 3         | Fuge 2         | Fuge 3                       |
| Δt (h)           | Gewicht<br>(g)   | Wasser-<br>gehalt<br>(Vol%) |                | Gewi          | cht (g)          |                  | Was              | sergeha          | lt (Vol.     | -%)           | Gewi           | cht (g)        |                | ergehalt<br>ol%)             |
| 0,0              | 1303,5           | 15,32                       | 1690,2         | 1811,3        | 1768,2           | 1773,8           | 10,37            | 10,04            | 9,54         | 8,38          | 307,7          | 310,8          | 45,42          | 42,67                        |
| 191,3            | 1264,8           | 8,99                        |                | 1769,1        | 1728,9           | 1742,8           | 5,09             | 4,45             | 4,19         | 4,16          | 263,3          | 267,0          | 4,68           | 2,48                         |
| 361,0            | 1263,9           | 8,85                        |                | 1768,2        |                  | 1741,9           | 4,73             | 4,33             | 4,10         | 4,04          | 263,1          | 267,0          | 4,50           | 2,48                         |
| 744,8            | 1261,7           | 8,49                        |                |               | 1727,3           |                  | 4,68             | 4,09             | 3,98         | 4,04          | 263,1          | 267,0          | 4,50           | 2,48                         |
| 1006,5           | 1254,7           | 7,34                        |                |               | 1724,2           |                  | 4,62             | 3,72             | 3,55         | 3,98          | 262,4          | 266,8          | 3,85           | 2,29                         |
| 1198,8           | 1253,4           | 7,13                        | 1649,6         |               | 1723,5           |                  | 4,53             | 3,55             | 3,46         | 3,94          | 262,4          | 266,5          | 3,85           | 2,02                         |
| 1342,8           | 1253,1           | 7,08                        |                | 1761,7        |                  |                  | 4,50             | 3,47             | 3,42         | 3,93          | 262,2          | 266,7          | 3,67           | 2,20                         |
| 1511,5           | 1252,2           | 6,93                        | 1649,2         |               | 1722,7           | 1741,7           | 4,48             | 3,42             | 3,35         | 4,01          | 262,2          | 266,7          | 3,67           | 2,20                         |
| 1682,3           | 1250,1           | 6,59                        |                |               | 1721,6           |                  | 4,40             | 3,26             | 3,20         | 3,88          | 262,0          | 266,6          | 3,49           | 2,11                         |
| 1846,5           | 1248,4           | 6,31                        |                | 1758,9        | 17166            | 1738,2           | 4,09             | 3,10             | 3,00         | 3,54          | 261,9          | 266,5          | 3,40           | 2,02                         |
| 1919,0<br>2039,0 | 1248,3<br>1248,8 | 6,29<br>6.38                | 1644,9         |               | 1716,6<br>1717,7 | 1737,3<br>1736,8 | 3,86<br>3,76     | 2,74             | 2,52<br>2,67 | 3,41<br>3,35  | 262,0<br>262,1 | 266,2<br>266,1 | 3,49<br>3,58   | 1,74<br>1,65                 |
| 2039,0           | 1248,8           | 6,38<br>6,28                |                | 1757,5        |                  | 1736,8           | 3,76             | 2,91<br>2,93     | 2,70         | 3,35          | 262,1          | 266,1          | 3,58           | 1,65<br>1,65                 |
| 2230,5           | 1240,2           | 5,56                        | 1640,7         |               | 1717,9           |                  | 3,26             | 2,93<br>2,91     | 2,70         | 3,24          | 262,1          | 265,1          | 3,49           | 0,73                         |
| 2374,5           | 1249,1           | 6,43                        | 1642,2         |               | 1717,9           |                  | 3,47             | 2,94             | 2,74         | 3,24          | 262,0          | 266,3          | 3,49           | 1,84                         |
| 2590,5           | 1249,9           | 6,56                        | 1642,7         |               | 1719,4           | 1736,0           | 3,54             | 3,05             | 2,90         | 3,24          | 262,2          | 266,2          | 3,67           | 1,74                         |
| 2926,5           | 1250,1           | 6,59                        |                |               | 1719,7           |                  | 3,54             | 3,09             | 2,94         | 3,21          | 262,2          | 266,3          | 3,58           | 1,74                         |
| _525,5           | 00,1             | 3,00                        | . 5 . 2, 1     | 55,5          |                  | 55,5             | 5,5⊣             | 3,00             | _,-,-        | <b>▽,</b> - ' | , .            | _00,0          | 3,50           | 1,01                         |

|               |                  |                  | WESTFÄLIS<br>WILHELMS<br>MÜNSTER | CHE<br>-Universit | ÄТ      | Erg     | jebniss<br>Sa    | se der<br>ugspa |              | _            | ler                                   | La           | aboran       | nt: Sar        | a Rölv       | er           |
|---------------|------------------|------------------|----------------------------------|-------------------|---------|---------|------------------|-----------------|--------------|--------------|---------------------------------------|--------------|--------------|----------------|--------------|--------------|
|               | p                | F-Stufe:         | : 3                              |                   |         | eingest | ellter Dr        | <b>uck:</b> 1 b | ar ± 0,0     | 4 bar        |                                       | Dat          | um: 08       | .06.10         | - 24.06      | .10          |
|               |                  |                  |                                  |                   |         | g       | eoSTON           | ® prote         | ct grau      |              |                                       |              |              |                |              |              |
|               | 1                | 2                | 3                                | 4                 | 5       | 6       | 7                | 8               | 1            | 2            | 3                                     | 4            | 5            | 6              | 7            | 8            |
| ∆t (h)        |                  |                  |                                  | Gewi              | cht (g) |         |                  |                 |              |              | Was                                   | sergeh       | alt (Vo      | l. <b>-</b> %) |              |              |
| 0,0           | 1714,8           | 1781,8           | 1722,7                           | 1703,2            | 1810,9  | 1718,5  | 1736,0           | 1775,4          | 9,22         | 9,37         | 9,69                                  | 8,94         | 9,45         | 8,33           | 9,18         | 9,60         |
| 0,5           | 1691,2           | 1758,7           | 1695,7                           | 1685,6            | 1785,4  | 1699,3  | 1712,1           | 1752,2          | 5,89         | 6,18         | 5,92                                  | 6,45         | 5,97         | 5,64           | 5,86         | 6,44         |
| 1,5           | 1689,7           | 1756,7           | 1693,0                           | 1684,5            | 1783,1  | 1697,3  | 1710,4           | 1748,8          | 5,67         | 5,91         | 5,54                                  | 6,29         | 5,65         | 5,36           | 5,63         | 5,97         |
| 3,0           | 1688,5           | 1755,1           | 1691,6                           | 1683,3            | 1781,2  | 1696,2  | 1709,1           | 1746,4          | 5,50         | 5,68         | 5,34                                  | 6,12         | 5,39         | 5,20           | 5,45         | 5,65         |
| 5,5           | 1687,7           | 1754,8           | 1690,8                           | •                 | 1780,4  | 1695,6  | 1708,6           | 1745,1          | 5,39         | 5,64         | 5,23                                  | 5,64         | 5,28         | 5,12           | 5,38         | 5,47         |
| 24,0          | 1686,6           | 1753,0           | -                                |                   | 1778,5  | 1694,1  | 1707,3           | -               | 5,24         | 5,39         | 5,05                                  | 5,28         | 5,02         | 4,91           | 5,20         | 5,27         |
| 29,5          | 1685,6           | 1752,4           | 1688,3                           |                   | 1778,4  | 1693,8  | 1707,1           | 1742,9          | 5,09         | 5,31         | 4,88                                  | 5,16         | 5,01         | 4,87           | 5,17         | 5,17         |
| 46,5          | 1685,0           | 1751,6           | 1687,5                           |                   | 1777,5  | 1692,8  | 1705,9           | 1742,1          | 5,01         | 5,20         | 4,77                                  | 5,03         | 4,89         | 4,73           | 5,00         | 5,06         |
| 70,5          | 1684,3           | 1751,3           |                                  |                   | 1776,3  | 1692,6  | 1705,7           | -               | 4,91         | 5,16         | 4,74                                  | 4,89         | 4,72         | 4,70           | 4,98         | 4,97         |
| 142,5         | 1683,2           | 1749,9           | 1686,3                           |                   | 1775,1  | 1691,8  | 1704,6           | 1739,9          | 4,76         | 4,97         | 4,60                                  | 4,72         | 4,56         | 4,59           | 4,82         | 4,76         |
| 166,5         | 1682,8           | 1749,5           | 1686,2                           |                   | 1774,8  | 1691,4  | 1704,2           |                 | 4,70         | 4,91         | 4,59                                  | 4,63         | 4,52         | 4,53           | 4,77         | 4,72         |
| 197,5         | 1682,7           | 1749,2           | 1685,9                           | , , ,             | 1774,6  |         | 1703,9           | 1739,2          | 4,68         | 4,87         | 4,55                                  | 4,59         | 4,49         | 4,50           | 4,73         | 4,67         |
| 214,5         | 1682,6           | 1749,1           | 1685,8                           |                   | 1774,4  | 1691,1  | 1703,8           | 1739,0          | 4,67         | 4,86         | 4,53                                  | 4,57         | 4,46         | 4,49           | 4,71         | 4,64         |
| 238,5         | 1682,2           | 1748,7           | 1685,6                           |                   | 1774,0  | 1691,0  | 1703,5           |                 | 4,61         | 4,80         | 4,51                                  | 4,49         | 4,41         | 4,48           | 4,67         | 4,59         |
| 358,5         | 1681,6           | 1748,0           | 1685,2                           | 1671,4            | 1773,7  | 1690,4  | 1702,8           | 1737,2          | 4,53         | 4,70         | 4,45                                  | 4,43         | 4,37         | 4,39           | 4,57         | 4,39         |
| 383,0         | 1681,6           | 1747,9           | 1685,1                           | 1671,4            | 1773,7  | 1690,4  | 1702,7           | 1737,1          | 4,53         | 4,69         | 4,44                                  | 4,43         | 4,37         | 4,39           | 4,56         | 4,38         |
|               |                  |                  |                                  |                   |         |         | STON®            | <del></del>     |              |              |                                       |              |              |                |              |              |
|               | 9                | 10               | 11                               | 12                | 13      | 14      | 15               | 16              | 9            | 10           | 11                                    | 12           | 13           | 14             | 15           | 16           |
| Δt (h)        | 4705 5           | 4704.0           | 4000 5                           | Gewid             |         | 47444   | 4000.0           | 4704.0          | 40.00        | 0.05         |                                       | sergeh       |              |                | 40.00        | 0.00         |
| 0,0           | 1785,5           | 1731,2           | 1693,5                           | 1813,3            | 1773,5  | 1714,1  | 1689,3           | 1784,3          | 10,89        | 9,85         | 10,84                                 | 10,30        | 10,26        | 11,31          | 10,03        | 9,80         |
| 0,5           | 1759,7           | 1710,0           | 1663,6                           |                   | 1744,1  | 1679,7  | 1660,6           |                 | 7,43         | 6,90         | 6,54                                  | 7,15         | 6,26         | 6,48           | 6,01         | 6,02         |
| 1,5           | 1758,6           | 1706,3<br>1704,7 | 1661,7                           | 1787,5            | 1742,4  | 1677,7  | 1658,9<br>1657,1 | 1754,6          | 7,28         | 6,39         | 6,27<br>6,17                          | 6,89         | 6,03         | 6,20           | 5,78         | 5,77         |
| 3,0           | 1756,9<br>1755,1 | ,                | ,                                |                   | 1740,9  |         | 1656,4           | 1752,9          | 7,05         | 6,17         | , , , , , , , , , , , , , , , , , , , | 6,78         | 5,83         | 5,96           | 5,52         | 5,53         |
| 5,5           | 1755,1           | 1703,7           |                                  |                   |         |         | 1654,8           |                 | 6,81<br>6,30 | 6,03<br>5,89 | 6,06<br>5,87                          | 6,26<br>5,96 | 5,76<br>5,57 | 5,91<br>5,58   | 5,43<br>5,20 | 5,44<br>5,30 |
| 24,0<br>29,5  | 1750,2           |                  | 1658,7                           |                   |         |         | 1654,1           |                 | 6,15         | 5,72         | 5,84                                  | 5,85         | 5,49         | 5,53           | 5,10         | 5,21         |
| 46,5          | 1748,8           |                  | 1658,2                           |                   |         |         | 1653,0           |                 | 5,96         | 5,65         | 5,77                                  | 5,73         | 5,38         | 5,29           | 4,95         | 5,10         |
| 70,5          | 1740,0           | 1701,0           |                                  |                   | 1737,6  | 1671,1  | 1652,8           |                 | 5,78         | 5,58         | 5,63                                  | 5,60         | 5,36         | 5,29           | 4,93         | 5,06         |
| 70,5<br>142,5 | 1747,4           |                  |                                  | 1776,5            |         |         | 1651,7           |                 | 5,76         | 5,32         | 5,48                                  | 5,43         | 5,23         | 5,26           | 4,77         | 4,77         |
| 166,5         | 1745,7           |                  |                                  |                   | 1736,3  | 1669,3  | 1651,7           |                 | 5,45         | 5,26         | 5,44                                  | 5,32         | 5,23         | 5,09           | 4,77         | 4,77         |
| 197,5         |                  | -                | 1655,6                           |                   | 1735,9  | 1668,9  | 1651,0           |                 | 5,40         | 5,21         | 5,40                                  | 5,28         | 5,15         | 4,97           | 4,67         | 4,69         |
| 214,5         |                  |                  | 1655,5                           |                   |         | 1668,7  | 1650,8           |                 | 5,37         | 5,17         | 5,38                                  | 5,26         | 5,12         | 4,94           | 4,64         | 4,68         |
| 238,5         | 1743,7           | 1697,0           |                                  |                   | 1735,7  | 1668,3  | 1650,6           |                 | 5,28         | 5,17         | 5,29                                  | 5,14         | 5,06         | 4,88           | 4,61         | 4,61         |
| 358,5         | 1742,7           | 1695,5           |                                  |                   |         |         | 1650,0           |                 | 5,14         | 4,89         | 5,24                                  | 4,98         | 4,98         | 4,77           | 4,53         | 4,47         |
|               |                  |                  |                                  |                   |         |         |                  |                 |              |              |                                       |              |              |                |              | 4,45         |
| 383,0         | 1742,7           | 1695,3           | 1654,5                           | 1773,1            | 1734,5  | 1667,3  | 1649,8           | 1744,9          | 5,14         | 4,86         | 5,24                                  | 4,98         | 4,96         | 4,74           | 4,50         | 4,4          |

|                | <u> </u>         | WIL              | STFÄLISCHE<br>.HELMS-UNI<br>NSTER |                | Erge           | ebnisse<br>Saug | der Me<br>Ispann | _                | der              |                  | Labora       | ınt: Sara         | a Rölver     |              |
|----------------|------------------|------------------|-----------------------------------|----------------|----------------|-----------------|------------------|------------------|------------------|------------------|--------------|-------------------|--------------|--------------|
|                | pF-Stu           | u <b>fe:</b> 3   |                                   |                | einge          | stellter D      | ruck: 1 b        | ar ± 0,04        | bar              |                  | Datu         | ı <b>m:</b> 01.12 | 2.10 - 07.   | 04.11        |
|                |                  |                  |                                   | Α              |                |                 |                  |                  | geo              | STON®            | protect      | grau              |              |              |
|                | 8                |                  |                                   | 8              |                |                 | 1                | 3                | 4                | 8                | 1            | 3                 | 4            | 8            |
| Δt (h)         | G                | ewicht (         | g)                                | Wasse          | ergehalt (     | Vol%)           |                  | Gewi             | cht (g)          |                  | Wa           | assergel          | nalt (Vol.   | -%)          |
| 0,0            | 1267,2           |                  |                                   | 29,00          |                |                 | 1727,3           | 1735,7           | 1719,6           | 1783,4           | 10,99        | 11,50             | 11,27        | 10,69        |
| 0,7            | 1241,1           |                  |                                   | 24,81          |                |                 | 1697,9           | 1698,9           | 1683,0           | 1756,1           | 6,83         | 6,36              | 6,08         | 6,97         |
| 2,2            | 1191,8           |                  |                                   | 16,89          |                |                 | 1693,5           | 1696,5           | 1681,0           | 1751,4           | 6,21         | 6,03              | 5,79         | 6,33         |
| 23,9           | 1143,6           |                  |                                   | 9,15           |                |                 | 1691,4           | 1694,0           | 1679,4           | 1748,1           | 5,91         | 5,68              | 5,57         | 5,88         |
| 47,7           | 1141,2           |                  |                                   | 8,77           |                |                 | 1690,1           | 1692,8           | 1678,4           | 1746,5           | 5,73         | 5,51              | 5,42         | 5,66         |
| 146,9          | 1138,5           |                  |                                   | 8,34           |                |                 | 1688,8           | 1691,7           | 1676,1           | 1744,9           | 5,55         | 5,36              | 5,10         | 5,44         |
| 335,4          | 1136,1           |                  |                                   | 7,95           |                |                 | 1686,3           | 1689,8           | 1674,5           | 1742,4           | 5,19         | 5,09              | 4,87         | 5,10         |
| 480,4          | 1135,3           |                  |                                   | 7,82           |                |                 | 1685,6           | 1689,4           | 1673,8           | 1741,1           | 5,09         | 5,04              | 4,77         | 4,93         |
| 888,8          | 1135,2           |                  |                                   | 7,81           |                |                 | 1685,2           | 1688,6           | 1672,6           | 1739,3           | 5,04         | 4,92              | 4,60         | 4,68         |
| 1150,2         | 1134,8           |                  |                                   | 7,74           |                |                 | 1684,6           | 1688,0           | 1672,1           | 1738,1           | 4,95         | 4,84              | 4,53         | 4,52         |
| 1342,7         | 1134,2           |                  |                                   | 7,65           |                |                 | 1683,8           | 1687,4           | 1671,6           | 1737,0           | 4,84         | 4,76              | 4,46         | 4,37         |
| 1486,7         | 1133,5           |                  |                                   | 7,53           |                |                 | 1683,6           | 1687,1           | 1671,4           | 1735,9           | 4,81         | 4,72              | 4,43         | 4,22         |
| 1655,4         | 1133,5           |                  |                                   | 7,53           |                |                 | 1683,6           | 1687,1           | 1671,0           | 1735,1           | 4,81         | 4,72              | 4,37         | 4,11         |
| 1826,4         | 1131,8           |                  |                                   | 7,26           |                |                 | 1682,9           | 1685,4           | 1670,0           | 1733,6           | 4,71         | 4,48              | 4,23         | 3,90         |
| 1990,7         | 1130,8           |                  |                                   | 7,10           |                |                 | 1678,3           | 1681,9           | 1667,4           | 1732,1           | 4,06         | 3,99              | 3,86         | 3,70         |
| 2063,2         | 1128,8           |                  |                                   | 6,78           |                |                 | 1676,2           | 1680,8           | 1666,3           | 1731,5           | 3,77         | 3,84              | 3,71         | 3,62         |
| 2183,2         | 1128,6           |                  |                                   | 6,75           |                |                 | 1675,1           | 1680,1           | 1665,8           | 1731,0           | 3,61         | 3,74              | 3,64         | 3,55         |
| 2326,7         | 1129,0           |                  |                                   | 6,81           |                |                 | 1674,1           | 1679,4           | 1665,2           | 1730,5           | 3,47         | 3,64              | 3,55         | 3,48         |
| 2519,7         | 1129,0           |                  |                                   | 6,81           |                |                 | 1672,9           | 1678,6           | 1663,4           | 1729,8           | 3,30         | 3,53              | 3,30         | 3,39         |
| 2735,2         | 1120,7           |                  |                                   | 5,48           |                |                 | 1670,9           | 1673,5           | 1661,1           | 1724,6           | 3,02         | 2,82              | 2,97         | 2,68         |
| 3053,7         | 1109,6           |                  |                                   | 3,70           |                |                 | 1666,1           | 1669,0           | 1654,4           | 1719,1           | 2,34         | 2,19              | 2,02         | 1,93         |
|                |                  |                  |                                   | В              |                | 1               |                  |                  |                  | TON® pr          |              |                   | ı            | 1            |
|                | 4                | 6                | ,                                 | 4              | 6              |                 | 9                | 10               | 14               | 15               | 9            | 10                | 14           | 15           |
| Δt (h)         |                  | ewicht (         | g)                                |                | ergehalt (     | Vol%)           |                  |                  | cht (g)          |                  |              |                   | nalt (Vol.   |              |
| 0,0            | 1304,2           | 1351,1           |                                   | 16,51          | 15,16          |                 | 1795,1           | 1741,5           | 1718,8           | 1700,4           | 12,18        | 11,28             | 11,97        | 11,59        |
| 0,7            | 1278,0           | 1332,5           |                                   | 12,26          | 12,17          |                 | 1756,2           | 1712,8           | 1684,5           | 1662,3           | 6,96         | 7,29              | 7,15         | 6,25         |
| 2,2            | 1276,0           | 1330,8           |                                   | 11,93          | 11,90          |                 | 1754,2           | 1710,9           | 1680,7           | 1660,2           | 6,69         | 7,03              | 6,62         | 5,96         |
| 23,9           | 1273,0           | 1327,7           |                                   | 11,44          | 11,40          |                 | 1751,6           | 1705,2           | 1677,8           | 1658,5           | 6,34         | 6,24              | 6,22         | 5,72         |
| 47,7           | 1272,1           | 1326,5           |                                   | 11,30          | 11,21          |                 | 1750,3           | 1704,3<br>1702,8 | 1676,5           | 1657,8           | 6,16         | 6,11              | 6,03         | 5,62         |
| 146,9          | 1270,3           | 1324,6           |                                   | 11,00          | 10,91          |                 | 1749,0           | ,                | 1674,8           | 1655,7           | 5,99         | 5,90              | 5,79         | 5,33         |
| 335,4<br>480,4 | 1268,1<br>1267,4 | 1322,7<br>1322,0 |                                   | 10,65<br>10.53 | 10,60<br>10,49 |                 | 1746,3<br>1745,5 | 1701,4<br>1700,0 | 1672,4<br>1671.4 | 1654,0<br>1653,3 | 5,63<br>5,52 | 5,71<br>5.51      | 5,46<br>5,32 | 5,09<br>4 90 |
| 480,4<br>888,8 | 1267,4           | 1322,0           |                                   | 10,53<br>10,50 | 10,49          |                 | 1745,5           | 1699,0           | 1671,4<br>1671,1 | 1652,6           | 5,52<br>5,48 | 5,51<br>5,37      | 5,32         | 4,99<br>4,89 |
| 1150,2         | 1267,2           | 1321,0           |                                   | 10,34          | 10,42          |                 | 1745,2           | 1698,1           | 1670,5           | 1651,9           | 5,46         | 5,37<br>5,25      | 5,26         | 4,89         |
| 1342,7         | 1265,3           | 1320,6           |                                   | 10,34          | 10,33          |                 | 1744,1           | 1697,2           | 1670,0           | 1651,9           | 5,21         | 5,12              | 5,19         | 4,67         |
| 1486,7         | 1265,0           | 1320,0           |                                   | 10,19          | 10,20          |                 | 1743,2           | 1696,8           | 1669,8           | 1650,6           | 5,16         | 5,12              | 5,12         | 4,61         |
| 1655,4         | 1264,6           | 1320,5           |                                   | 10,14          | 10,22          |                 | 1742,5           | 1696,7           | 1669,5           | 1650,0           | 5,10         | 5,07              | 5,05         | 4,56         |
| 1826,4         | 1263,1           | 1319,5           |                                   | 9,83           | 10,20          |                 | 1742,5           | 1695,3           | 1668,5           | 1648,8           | 4,98         | 4,86              | 4,91         | 4,36         |
| 1990,7         | 1259,0           | 1316,5           |                                   | 9,17           | 9,61           |                 | 1737,9           | 1690,1           | 1663,3           | 1646,6           | 4,50         | 4,14              | 4,18         | 4,05         |
| 2063,2         | 1257,2           | 1313,8           |                                   | 8,88           | 9,17           |                 | 1735,4           | 1688,0           | 1661,6           | 1645,3           | 4,16         | 3,85              | 3,94         | 3,87         |
| 2183,2         | 1256,3           | 1312,5           |                                   | 8,73           | 8,97           |                 | 1733,7           | 1686,5           | 1660,6           | 1644,4           | 3,93         | 3,64              | 3,80         | 3,75         |
| 2326,7         | 1255,6           | 1311,0           |                                   | 8,62           | 8,72           |                 | 1732,7           | 1685,2           | 1659,6           | 1643,9           | 3,80         | 3,46              | 3,66         | 3,68         |
| 2519,7         | 1252,8           | 1307,1           |                                   | 8,16           | 8,10           |                 | 1730,1           | 1683,9           | 1658,5           | 1643,1           | 3,45         | 3,28              | 3,51         | 3,56         |
| 2735,2         | 1244,4           | 1302,9           |                                   | 6,80           | 7,43           |                 | 1724,6           | 1681,3           | 1652,4           | 1639,3           | 2,71         | 2,92              | 2,65         | 3,03         |
| 3053,7         | 1237,4           | 1293,3           |                                   | 5,66           | 5,89           |                 | 1717,8           | 1676,2           | 1646,8           | 1631,1           | 1,80         | 2,21              | 1,87         | 1,88         |

|        | -1                                        |                            |                                        |                                        |
|--------|-------------------------------------------|----------------------------|----------------------------------------|----------------------------------------|
|        | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER |                            | Ergebnisse der<br>Saugspannungsmessung | <b>Laborantin:</b> Sara Rölver         |
|        | pF-Stufe: 4,2                             | eingestellter Druc         | eingestellter Druck: 15 bar ± 0,3 bar  | <b>Datum:</b> 22.12.10 - 02.03.11      |
|        | iwe9                                      | Gewicht (g)                | Wasse                                  | Wassergehalt (Vol%)                    |
| Δt (h) | geoSTON <sup>®</sup> protect grau         | geoSTON® protect anthrazit | geoSTON <sup>®</sup> protect grau      | geoSTON <sup>®</sup> protect anthrazit |
| 0,0    | 202,7                                     | 282,50                     | 13,64                                  | 12,28                                  |
| 383,1  | 297,4                                     | 274,70                     | 7,24                                   | 6,18                                   |
| 645,8  | 296,7                                     | 274,30                     | 6,70                                   | 5,87                                   |
| 838,0  | 296,5                                     | 274,10                     | 6,55                                   | 5,71                                   |
| 982,0  | 296,3                                     | 274,00                     | 6,40                                   | 5,63                                   |
| 1151,0 | 296,2                                     | 274,00                     | 6,32                                   | 5,63                                   |
| 1322,0 | 296,2                                     | 274,00                     | 6,32                                   | 5,63                                   |
| 1490,0 | 296,1                                     | 273,90                     | 6,24                                   | 5,56                                   |
| 1682,0 | 296,1                                     | 273,90                     | 6,24                                   | 5,56                                   |

|               | _ =                          | WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER   \$\lambda\$ (\$\$2\$) |      |                              |                  |      |                              | W                |      | ittlunç<br>eleitfä | _                    |                    |      | L                            | aboran             | ten: S. | Rölver                       | , F. Firt        | ıs   |
|---------------|------------------------------|-------------------------------------------------------------------|------|------------------------------|------------------|------|------------------------------|------------------|------|--------------------|----------------------|--------------------|------|------------------------------|--------------------|---------|------------------------------|------------------|------|
| Proto-<br>typ |                              | λ (S1)<br>//(m · k                                                |      |                              | λ (S2)<br>//(m·ł |      |                              | λ (S3)<br>//(m·ł |      | Proto-<br>typ      |                      | λ (S1)<br>V/(m · k |      |                              | λ (S2)<br>V/(m · l |         |                              | λ (S3)<br>//(m·ł |      |
| P.            | Ì                            | ø                                                                 | ,,   | Ì                            | ø                | ,,   | Ì                            | ø                | ,,   | P.                 | ,                    | ø                  | ,,   | ·                            | ø                  | ,,      | ì                            | ø                | ,,   |
|               | 1,56                         |                                                                   |      | 2,49                         |                  |      | 2,77                         |                  |      |                    | 0,54                 |                    |      | 0,70                         |                    |         | 0,70                         |                  |      |
| А             | 1,60<br>1,65                 | 1,59                                                              | 0,05 | 2,74<br>2,53                 | 2,59             | 0,13 | 2,78<br>2,77                 | 2,77             | 0,01 | R                  | 0,55<br>0,55         | 0,54               | 0,01 | 0,69<br>0,67                 | 0,69               | 0,02    | 0,72<br>0,71                 | 0,71             | 0,01 |
| В             | 1,59<br>1,63<br>1,65         | 1,62                                                              | 0,03 | 1,79<br>1,72<br>1,73         | 1,76             | 0,04 | 1,88<br>1,75<br>1,90         | 1,84             | 0,08 | Т                  | 2,06<br>1,97<br>1,96 | 2,00               | 0,06 | 2,76<br>2,78<br>2,52         | 2,69               | 0,14    | 2,90<br>2,90<br>2,87         | 2,89             | 0,02 |
| С             | 1,56<br>1,56<br>1,59         | 1,57                                                              | 0,02 | 1,79<br>1,66<br>1,56<br>1,68 | 1,63             | 0,06 | 1,76<br>1,76<br>1,78         | 1,77             | 0,01 | U                  | 1,94<br>1,94<br>1,94 | 1,94               | 0,00 | 2,66<br>2,56<br>2,53<br>2,62 | 2,58               | 0,07    | 2,77<br>2,78<br>2,83<br>2,78 | 2,79             | 0,03 |
| D             | 0,92<br>0,91<br>0,91         | 0,91                                                              | 0,01 | 1,01<br>1,03<br>1,00         | 1,01             | 0,02 | 1,78<br>1,09<br>1,10<br>1,08 | 1,09             | 0,01 | V                  | 1,80<br>1,80<br>1,80 | 1,80               | 0,00 | 2,63<br>2,74<br>0,42         | 2,66               | 0,07    | 2,72<br>2,75<br>0,47         | 2,75             | 0,03 |
| Е             | 2,66<br>2,74<br>2,79         | 2,73                                                              | 0,07 | 3,02<br>2,69<br>2,95         | 2,89             | 0,17 | 3,18<br>3,29<br>3,18         | 3,22             | 0,06 | W                  | 0,25<br>0,25<br>1,98 | 0,25               | 0,00 | 0,40<br>0,39<br>2,67         | 0,40               | 0,02    | 0,48<br>0,49<br>2,80         | 0,48             | 0,01 |
| Ff            | 1,55<br>1,59<br>1,60         | 1,58                                                              | 0,03 | 1,63<br>1,66<br>1,79         | 1,68             | 0,09 | 1,83<br>1,86<br>1,80         | 1,83             | 0,03 | Х                  | 1,93<br>1,92<br>1,96 | 1,94               | 0,03 | 2,50<br>1,98<br>2,67         | 2,38               | 0,36    | 2,79<br>2,80<br>2,87         | 2,80             | 0,01 |
| Fr            | 1,74<br>1,70<br>1,72         | 1,72                                                              | 0,02 | 1,76<br>1,89<br>1,83         | 1,83             | 0,07 | 1,93<br>1,96<br>1,97         | 1,95             | 0,02 | Y                  | 1,98<br>1,98<br>1,62 | 1,97               | 0,01 | 2,50<br>2,55<br>2,32         | 2,57               | 0,09    | 2,88<br>2,91<br>2,50         | 2,89             | 0,02 |
| G             | 2,01<br>1,99<br>2,03         | 2,01                                                              | 0,02 | 2,54<br>2,57<br>2,52         | 2,54             | 0,03 | 2,58<br>2,59<br>2,61         | 2,59             | 0,02 | Z                  | 1,61<br>1,63<br>1,62 | 1,62               | 0,01 | 1,99<br>2,18<br>2,38         | 2,17               | 0,17    | 2,52<br>2,51<br>2,69         | 2,51             | 0,01 |
| Н             | 1,79<br>1,80<br>1,81         | 1,80                                                              | 0,01 | 2,45<br>2,81<br>2,28         | 2,51             | 0,27 | 2,54<br>2,61<br>2,64         | 2,60             | 0,05 | AA                 | 1,64<br>1,63<br>2,26 | 1,63               | 0,01 | 2,40<br>2,34<br>2,48         | 2,37               | 0,03    | 2,72<br>2,70<br>2,28         | 2,70             | 0,02 |
| ı             | 1,77<br>1,79<br>1,80         | 1,79                                                              | 0,02 | 2,39<br>2,44<br>2,41         | 2,41             | 0,03 | 2,61<br>2,64<br>2,65         | 2,63             | 0,02 | Gefdg              | 2,06<br>2,11<br>1,83 | 2,14               | 0,10 | 2,31<br>2,34<br>2,06         | 2,38               | 0,09    | 2,29<br>2,62<br>2,26         | 2,40             | 0,19 |
| J             | 1,66<br>1,65<br>1,67         | 1,66                                                              | 0,01 | 2,47                         | 2,41             | 0,06 | 2,60                         | 2,60             | 0,05 | Gefda              |                      | 1,91               | 0,07 | 2,06<br>2,02<br>2,04<br>2,54 | 2,04               | 0,02    | 2,29<br>2,31<br>2,73         | 2,29             | 0,03 |
| К             | 1,67<br>1,52<br>1,59<br>1,60 | 1,57                                                              | 0,04 | 1,75<br>1,76<br>1,79         | 1,77             | 0,02 | 1,91<br>1,91<br>1,88         | 1,90             | 0,02 |                    | 2,23<br>2,25<br>2,36 |                    |      | 2,63<br>2,53<br>2,58         |                    |         | 2,72<br>2,74<br>2,78         |                  |      |
| М             | 2,00<br>1,96<br>1,99         | 1,98                                                              | 0,02 | 2,15<br>2,11<br>2,06         | 2,11             | 0,05 | 2,22<br>2,61<br>2,21         | 2,35             | 0,23 | Geog               | 2,29<br>2,30<br>2,27 | 2,28               | 0,04 | 2,65<br>2,65<br>2,66         | 2,58               | 0,12    | 2,86<br>2,85<br>2,79         | 2,79             | 0,05 |
| N             | 1,88<br>1,77<br>1,79         | 1,81                                                              | 0,06 | 2,16<br>2,22<br>1,90<br>2,12 | 2,10             | 0,14 | 1,61<br>2,18<br>2,19         | 1,99             | 0,33 |                    | 2,22<br>2,25<br>2,26 |                    |      | 2,67<br>2,27<br>2,66<br>2,49 |                    |         | 2,80<br>2,82<br>2,71         |                  |      |
| 0             | 1,71<br>1,77<br>1,79         | 1,76                                                              | 0,04 | 2,00<br>1,90<br>1,92         | 1,94             | 0,05 | 2,03<br>2,07<br>2,05         | 2,05             | 0,02 | Geoa               | 2,26<br>2,27         | 2,26               | 0,01 | 2,41<br>2,49                 | 2,46               | 0,05    | 2,74<br>2,75                 | 2,73             | 0,02 |

|               | _ =                          |                            | Wı   | STFÄLISC<br>LHELMS-<br>INSTER |                           | ITÄT | Е                            |                           | _    | der s<br>nekap | •                            |                           | en   | Laboranten: S. Rölver, F. Firus |                           |      |                      |                            |      |  |
|---------------|------------------------------|----------------------------|------|-------------------------------|---------------------------|------|------------------------------|---------------------------|------|----------------|------------------------------|---------------------------|------|---------------------------------|---------------------------|------|----------------------|----------------------------|------|--|
| Proto-<br>typ |                              | C <i>p</i> (S1<br>/(m³ · k | -    |                               | <i>Cp</i> (S2<br>/(m³ · k |      |                              | <i>Cp</i> (S3<br>/(m³ · I |      | Proto-<br>typ  |                              | <i>Cp</i> (S1<br>/(m³ · k | •    |                                 | <i>Cp</i> (S2<br>/(m³ · k |      |                      | C <i>p</i> (S3<br>/(m³ · k | -    |  |
| ۵             |                              | Ø                          | σ    |                               | Ø                         | σ    |                              | Ø                         | σ    | Ь              |                              | Ø                         | σ    |                                 | Ø                         | σ    |                      | Ø                          | σ    |  |
| Α             | 1,80<br>1,87<br>1,88         | 1,85                       | 0,04 | 2,21<br>2,23<br>2,24          | 2,23                      | 0,02 | 2,30<br>2,27<br>2,30         | 2,29                      | 0,02 | R              | 1,65<br>1,66<br>1,66         | 1,66                      | 0,01 | 1,82<br>1,79<br>1,78            | 1,80                      | 0,02 | 1,83<br>1,84<br>1,84 | 1,84                       | 0,01 |  |
| В             | 1,88<br>1,89<br>1,89         | 1,89                       | 0,01 | 2,22<br>2,18<br>2,19          | 2,19                      | 0,02 | 2,29<br>2,03<br>2,24         | 2,19                      | 0,14 | Т              | 1,86<br>1,87<br>1,89         | 1,87                      | 0,02 | 2,23<br>2,27<br>2,20            | 2,23                      | 0,04 | 2,28<br>2,31<br>2,24 | 2,28                       | 0,04 |  |
| С             | 1,95<br>1,92                 | 1,93                       | 0,02 | 2,17<br>2,18<br>2,23          | 2,20                      | 0,03 | 2,27<br>2,26                 | 2,27                      | 0,01 | U              | 1,77<br>1,78<br>1,78         | 1,78                      | 0,01 | 2,15<br>2,16<br>2,16            | 2,16                      | 0,01 | 2,20<br>2,16<br>2,22 | 2,19                       | 0,03 |  |
| 1             | 1,93<br>1,81<br>1,81<br>1,82 | 1,81                       | 0,01 | 2,19<br>2,02<br>2,04<br>2,01  | 2,02                      | 0,02 | 2,28<br>2,06<br>2,07<br>2,02 | 2,05                      | 0,03 | ٧              | 1,82<br>1,82<br>1,82<br>1,45 | 1,82                      | 0,00 | 2,29<br>2,26<br>2,29            | 2,28                      | 0,02 | 2,34<br>2,35<br>2,36 | 2,35                       | 0,01 |  |
| E             | 2,05<br>2,04<br>2,04         | 2,04                       | 0,01 | 2,36<br>1,84<br>2,32          | 2,17                      | 0,29 | 2,36<br>2,39<br>2,36         | 2,37                      | 0,02 | W              | 1,45<br>1,45<br>1,45<br>1,66 | 1,45                      | 0,00 | 1,62<br>1,60<br>1,57            | 1,60                      | 0,03 | 1,62<br>1,67<br>2,21 | 1,65                       | 0,03 |  |
| Ff            | 1,77<br>1,86<br>1,87         | 1,83                       | 0,06 | 2,01<br>1,97<br>2,06          | 2,01                      | 0,05 | 2,09<br>2,12<br>2,04         | 2,08                      | 0,04 | Х              | 1,66<br>1,67<br>1,89         | 1,66                      | 0,01 | 2,22<br>2,19<br>2,24            | 2,20                      | 0,02 | 2,24<br>2,24<br>2,27 | 2,23                       | 0,02 |  |
| Fr            | 1,99<br>1,94<br>1,94         | 1,86                       | 0,03 | 2,23<br>2,23<br>2,23          | 2,23                      | 0,00 | 2,23<br>2,23<br>2,29         | 2,25                      | 0,03 | Υ              | 1,89<br>1,89<br>1,89         | 1,89                      | 0,00 | 2,24<br>2,11<br>2,26<br>2,15    | 2,20                      | 0,08 | 2,13<br>2,29<br>2,14 | 2,23                       | 0,09 |  |
| G             | 1,74<br>1,90<br>1,91         | 1,85                       | 0,10 | 2,10<br>2,20<br>2,17          | 2,16                      | 0,05 | 2,22<br>2,20<br>2,22         | 2,21                      | 0,01 | Z              | 1,71<br>1,71<br>1,72         | 1,71                      | 0,01 | 2,15<br>2,19<br>2,13            | 2,16                      | 0,02 | 2,18<br>2,20<br>2,21 | 2,17                       | 0,03 |  |
| Н             | 1,93<br>1,92<br>1,92         | 1,92                       | 0,01 | 2,23<br>2,25<br>2,28          | 2,25                      | 0,03 | 2,26<br>2,29<br>2,30         | 2,28                      | 0,02 | AA             | 1,72<br>1,72<br>1,72<br>2,10 | 1,72                      | 0,00 | 2,16<br>2,17<br>2,32            | 2,15                      | 0,02 | 2,29<br>2,23<br>1,66 | 2,24<br>1,86               | 0,04 |  |
| I             | 1,88<br>1,91<br>1,91         | 1,90                       | 0,02 | 2,24<br>2,26<br>2,23          | 2,24                      | 0,02 | 2,30<br>2,23<br>2,27         | 2,23                      | 0,04 | Gefdg          | 1,67<br>1,68<br>2,02         | 1,82                      | 0,25 | 2,30<br>2,29<br>2,27            | 2,30                      | 0,02 | 1,60<br>2,31<br>2,26 | 1,00                       | 0,00 |  |
| J             | 1,86<br>1,93<br>1,93         | 1,91                       | 0,04 | 2,22<br>2,22<br>2,20          | 2,21                      | 0,01 | 2,28                         | 2,26                      | 0,04 | Gefda<br>Geog  | 2,06<br>2,07<br>2,01         | 2,05                      | 0,03 | 2,17<br>2,27<br>2,37            | 2,24                      | 0,06 | 2,32<br>2,31<br>2,38 | 2,30                       | 0,03 |  |
| К             | 1,84<br>0,98<br>1,99         | 1,60                       | 0,55 | 2,22<br>2,23<br>2,19          | 2,21                      | 0,02 | 2,24<br>2,26<br>2,22         | 2,24                      | 0,02 | Coog           | 2,04<br>2,05<br>2,02         |                           |      | 2,36<br>2,36<br>2,25            |                           |      | 2,38<br>2,36<br>2,37 |                            |      |  |
| М             | 2,07<br>2,09<br>2,08         | 2,08                       | 0,01 | 2,24<br>2,24<br>2,26          | 2,25                      | 0,01 | 2,32<br>2,22<br>2,31         | 2,28                      | 0,06 |                | 2,01<br>2,02<br>1,93         | 2,00                      | 0,04 | 2,30<br>2,33<br>2,35            | 2,33                      | 0,06 | 2,36<br>2,37<br>2,36 | 2,37                       | 0,01 |  |
| Ν             | 1,95<br>1,98<br>2,00         | 1,98                       | 0,03 | 2,29<br>2,29<br>2,07<br>2,11  | 2,19                      | 0,12 | 1,47<br>2,31<br>2,30         | 2,03                      | 0,48 | Geoa           | 1,97<br>1,98<br>2,02         |                           |      | 2,36<br>2,20<br>2,37<br>2,35    |                           |      | 2,35<br>2,36<br>2,40 |                            |      |  |
| 0             | 2,01<br>1,98<br>1,99         | 1,99                       | 0,02 | 2,28<br>2,24<br>2,23          | 2,25                      | 0,03 | 2,20<br>2,27<br>2,26         | 2,24                      | 0,04 | Jour           | 2,02<br>2,03<br>2,04         | 2,03                      | 0,01 | 2,05<br>2,38                    | 2,26                      | 0,18 | 2,40<br>2,40<br>2,40 | 2,40                       | 0,00 |  |

|               | _ <u>-</u>                   |                  | w    | ESTFÄLIS<br>ILHELMS-<br>ÜNSTER |                  | ітйт | Ermittlung der<br>Temperaturleitfähigkeit |                  |      |               |                              |      |      |                              | Laboranten: S. Rölver, F. Firus |      |                              |                  |      |  |  |
|---------------|------------------------------|------------------|------|--------------------------------|------------------|------|-------------------------------------------|------------------|------|---------------|------------------------------|------|------|------------------------------|---------------------------------|------|------------------------------|------------------|------|--|--|
| Proto-<br>typ |                              | a (S1)<br>(m²/s) |      |                                | a (S2)<br>(m²/s) |      |                                           | a (S3)<br>(m²/s) |      | Proto-<br>typ | a (S1)<br>(m²/s)             |      |      |                              | a (S2)<br>(m²/s)                |      |                              | a (S3)<br>(m²/s) |      |  |  |
| ₫ '           |                              | Ø                | σ    |                                | Ø                | σ    |                                           | Ø                | σ    | Ь             |                              | Ø    | σ    |                              | Ø                               | σ    |                              | Ø                | σ    |  |  |
| А             | 0,87<br>0,85<br>0,86         | 0,86             | 0,01 | 1,13<br>1,23<br>1,13           | 1,16             | 0,06 | 1,21<br>1,23<br>1,21                      | 1,22             | 0,01 | R             | 0,33<br>0,33<br>0,33         | 0,33 | 0,00 | 0,39<br>0,38<br>0,38         | 0,38                            | 0,01 | 0,39<br>0,39<br>0,38         | 0,39             | 0,01 |  |  |
| В             | 0,84<br>0,86<br>0,87         | 0,86             | 0,02 | 0,81<br>0,79<br>0,79           | 0,80             | 0,02 | 0,82<br>0,86<br>0,85                      | 0,84             | 0,02 | Т             | 1,11<br>1,05<br>1,04         | 1,07 | 0,04 | 1,24<br>1,22<br>1,14         | 1,20                            | 0,05 | 1,28<br>1,26<br>1,28         | 1,27             | 0,01 |  |  |
| С             | 0,80                         | 0,81             | 0,02 | 0,82<br>0,76<br>0,70           | 0,74             | 0,04 | 0,77<br>0,78                              | 0,78             | 0,01 | U             | 1,10<br>1,09<br>1,09         | 1,09 | 0,01 | 1,24<br>1,19<br>1,18         | 1,20                            | 0,03 | 1,26<br>1,28<br>1,28         | 1,27             | 0,01 |  |  |
| D             | 0,83<br>0,51<br>0,50<br>0,50 | 0,50             | 0,01 | 0,77<br>0,50<br>0,50<br>0,50   | 0,50             | 0,00 | 0,78<br>0,53<br>0,53<br>0,54              | 0,53             | 0,01 | V             | 0,99<br>0,99<br>0,99         | 0,99 | 0,00 | 1,14<br>1,16<br>1,20<br>0,26 | 1,17                            | 0,03 | 1,19<br>1,16<br>1,17<br>0,28 | 1,17             | 0,02 |  |  |
| E             | 1,30<br>1,34<br>1,37         | 1,34             | 0,04 | 1,28<br>1,46<br>1,27           | 1,34             | 0,11 | 1,34<br>1,38<br>1,35                      | 1,36             | 0,02 | W             | 0,17<br>0,17<br>0,17         | 0,17 | 0,00 | 0,25<br>0,25<br>0,25         | 0,25                            | 0,01 | 0,28<br>0,30<br>0,29         | 0,29             | 0,01 |  |  |
| Ff            | 0,87<br>0,85<br>0,86         | 0,86             | 0,01 | 0,81<br>0,85<br>0,85           | 0,84             | 0,02 | 0,88<br>0,88<br>0,88                      | 0,88             | 0,00 | Х             | 1,19<br>1,17<br>1,15         | 1,17 | 0,02 | 1,13<br>0,90<br>1,19         | 1,08                            | 0,16 | 1,27<br>1,24<br>1,25         | 1,25             | 0,02 |  |  |
| Fr            | 0,86<br>0,87<br>0,88<br>0,84 | 0,86             | 0,02 | 0,85<br>0,79<br>0,85<br>0,82   | 0,82             | 0,03 | 0,86<br>0,88<br>0,86                      | 0,87             | 0,01 | Υ             | 1,04<br>1,05<br>1,05<br>0,95 | 1,05 | 0,01 | 1,19<br>1,18<br>1,13         | 1,17                            | 0,03 | 1,26<br>1,35<br>1,27         | 1,29             | 0,05 |  |  |
| G             | 1,16<br>1,05<br>1,06         | 1,09             | 0,06 | 1,21<br>1,16<br>1,16           | 1,18             | 0,03 | 1,16<br>1,18<br>1,17                      | 1,17             | 0,01 | Z             | 0,94<br>0,96<br>0,94         | 0,95 | 0,01 | 0,93<br>1,00                 | 1,00                            | 0,08 | 1,17<br>1,16<br>1,14         | 1,16             | 0,02 |  |  |
| Н             | 0,93<br>0,94<br>0,94         | 0,94             | 0,01 | 1,10<br>1,25<br>1,00           | 1,12             | 0,13 | 1,17<br>1,13<br>1,14<br>1,15              | 1,14             | 0,01 | AA            | 0,94<br>0,95<br>0,95<br>1,08 | 0,95 | 0,01 | 1,11<br>1,08<br>1,07         | 1,10                            | 0,02 | 1,19<br>1,21<br>1,37         | 1,21             | 0,02 |  |  |
| ı             | 0,94<br>0,94<br>0,94<br>0,94 | 0,94             | 0,00 | 1,00<br>1,07<br>1,08<br>1,08   | 1,08             | 0,01 | 1,15<br>1,15<br>1,19<br>1,17              | 1,17             | 0,02 | Gefdg         | 1,08<br>1,24<br>1,25<br>0,91 | 1,19 | 0,10 | 1,07<br>1,00<br>1,03         | 1,03                            | 0,04 | 1,37<br>1,44<br>1,13         | 1,31             | 0,16 |  |  |
| J             | 0,89<br>0,86                 | 0,87             | 0,02 | 1,11<br>1,08                   | 1,09             | 0,02 | 1,14<br>1,16                              | 1,15             | 0,01 | Gefda         | 0,94<br>0,95                 | 0,93 | 0,02 | 0,92<br>0,90                 | 0,91                            | 0,01 | 0,99                         | 1,00             | 0,01 |  |  |
| К             | 0,87<br>0,83<br>0,80<br>0,81 | 0,81             | 0,02 | 1,08<br>0,79<br>0,79<br>0,82   | 0,80             | 0,02 | 1,15<br>0,85<br>0,85<br>0,85              | 0,85             | 0,00 |               | 1,15<br>1,09<br>1,09<br>1,17 |      |      | 1,08<br>1,11<br>1,07<br>1,15 |                                 |      | 1,15<br>1,14<br>1,16<br>1,17 |                  |      |  |  |
| М             | 0,96<br>0,94<br>0,95         | 0,95             | 0,01 | 0,96<br>0,94<br>0,91           | 0,94             | 0,03 | 0,96<br>1,17<br>0,96                      | 1,03             | 0,12 | Geog          | 1,14<br>1,14<br>1,17         | 1,14 | 0,03 | 1,15<br>1,14<br>1,13         | 1,11                            | 0,04 | 1,21<br>1,20<br>1,18         | 1,18             | 0,02 |  |  |
| N             | 0,97<br>0,89<br>0,90         | 0,92             | 0,04 | 0,95<br>0,97<br>0,92<br>1,01   | 0,96             | 0,04 | 1,10<br>0,94<br>0,95                      | 1,00             | 0,09 |               | 1,13<br>1,14<br>1,12         |      |      | 1,13<br>1,03<br>1,12         |                                 |      | 1,19<br>1,19<br>1,13         |                  |      |  |  |
| 0             | 0,85<br>0,89<br>0,90         | 0,88             | 0,03 | 0,88                           | 0,86             | 0,02 | 0,92<br>0,91<br>0,91                      | 0,91             | 0,01 | Geoa          | 1,11                         | 1,11 | 0,01 | 1,17<br>1,04                 | 1,09                            | 0,07 | 1,14<br>1,14                 | 1,14             | 0,01 |  |  |

|               | <u> -</u>                          |      | FÄLISCHE<br>ELMS-UNI<br>TER |      | ÑΤ   |               | Ermittlur<br>Verd                  | ng der<br>lunstu |      | or-  |      | Laborant: P. Starke |                                    |           |        |          |          |  |  |  |
|---------------|------------------------------------|------|-----------------------------|------|------|---------------|------------------------------------|------------------|------|------|------|---------------------|------------------------------------|-----------|--------|----------|----------|--|--|--|
| Proto-<br>typ | <i>ET <sub>lab</sub></i> (g/7,5 h) | Ø    | σ                           | Ø    | σ    | Proto-<br>typ | <i>ET <sub>lab</sub></i> (g/7,5 h) | Ø                | σ    | Ø    | σ    | Proto-<br>typ       | <i>ET <sub>lab</sub></i> (g/7,5 h) | ø         | σ      | Ø        | σ        |  |  |  |
| A4            | 7,20<br>7,00<br>6,00               | 6,73 | 0,60                        |      |      |               | 2,60<br>5,50<br>4,00               |                  |      |      |      | G1                  | 5,50<br>5,20<br>4,80               | 5,17      | 0,35   |          |          |  |  |  |
| A5            | 4,40<br>5,10<br>4,80               | 4,77 | 0,40                        | 5,70 | 06'0 | D1            | 3,50<br>4,70<br>3,10               | 3,95             | 0,80 | 3,40 |      | G2                  | 5,20<br>5,60<br>5,40               | 5,40      | 0,28   | 5,48     | 0,49     |  |  |  |
| A6            | 5,70<br>5,70<br>5,60               | 5,67 | 0,10                        |      |      |               | 4,10<br>4,30<br>3,90               |                  |      |      | 1,03 | G3<br>G5            | 5,40<br>5,60<br>6,60               | 5,47<br>- | - 0,12 |          |          |  |  |  |
| B4            | 3,00                               | ı    | -                           |      |      | 1             | 4,40                               |                  |      | 3    |      | 1114                | 6,30                               |           | 4.00   |          |          |  |  |  |
| B5            | 4,60<br>5,20<br>4,20               | 4,67 | 0,50                        |      |      | D2            | 3,40<br>2,50<br>1,80               | 2,23             | 0,38 |      |      | H1                  | 8,40<br>8,90<br>7,80               | 7,87      | 1,38   |          |          |  |  |  |
| B6            | 4,20<br>3,30                       | 3,83 | 0,50                        |      |      |               | 2,40<br>3,20                       | ۷,۷٥             | 0,36 |      |      | H2                  | 7,00<br>8,20                       | 7,67      | 0,61   | 0,61 6,2 | 0,85     |  |  |  |
|               | 4,00<br>5,00<br>3,50               |      |                             | 0    | 0    | D3            | 2,40<br>2,00<br>2,10               | 2,53             | 0,61 |      |      | НЗ                  | 7,70<br>8,70<br>8,50               | 8,30      | 0,53   |          |          |  |  |  |
|               | 4,40<br>3,60                       |      |                             | 4,20 | 0,70 | E1            | 2,90<br>2,70                       | 2,57             | 0,42 |      |      | I1                  | 8,10<br>6,50                       | 6,83      | 1,14   |          |          |  |  |  |
| В7            | 3,90<br>4,30<br>4,90               | 4,25 | 0,70                        |      |      | E2            | 3,40<br>3,30<br>2,50               | 3,07             | 0,49 | 2,73 | 0,59 | 12                  | 5,90<br>6,70<br>7,40               | 7,13      | 0,38   | 7,04     | 29'0     |  |  |  |
|               | 4,80<br>5,20<br>4,20               |      |                             |      |      | E3            | 1,60<br>3,20<br>2,90               | 2,57             | 0,85 |      |      | 13                  | 7,30<br>7,10<br>6,70               | 7,17      | 0,50   | 7        | 0        |  |  |  |
|               | 3,00<br>3,1                        |      |                             |      |      | Ff1           | 2,30<br>2,60                       | 2,17             | 0,51 |      |      | 10                  | 7,70<br>5,90                       | ,,,,      |        |          | $\vdash$ |  |  |  |
| C6            | 3,00<br>4,20<br>3,70               | 3,43 | 0,67                        |      |      | F.60          | 1,60<br>2,00<br>1,40               | 4.70             | 0.00 | 8    | 25   | J1                  | 6,30<br>4,50<br>4,90               | 5,57      | 0,95   |          |          |  |  |  |
| C7            | 3,50<br>3,10<br>3,10               | 3,32 | 0,29                        |      |      | Ff2           | 1,70<br>2,40<br>2,20               | 1,70             | 0,30 | 2,18 | 0,52 | J2                  | 4,80<br>5,20<br>4,90               | 4,97      | 0,21 c | 5,18     | 0,71     |  |  |  |
|               | 3,00<br>3,50                       |      |                             | 3,19 | 99'0 | Ff3           | 2,50<br>3,10                       | 2,60             | 0,46 |      |      | J3                  | 5,50<br>3,70                       | -         | -      |          |          |  |  |  |
| C8            | 2,10<br>3,10<br>2,00               | 2,95 | 0,91                        |      |      | Fr1           | 4,30<br>5,10<br>4,20               | 4,53             | 0,49 |      |      | J4<br>J5            | 5,80<br>5,70<br>5,00               | 5,36      | 0,49   |          |          |  |  |  |
| 00            | 2,80<br>3,20<br>4,50               | 2,30 | 0,51                        |      |      | Fr2           | 4,10<br>4,80<br>6,60               | 5,17             | 1,29 | 4,76 | 0,91 |                     |                                    |           |        |          |          |  |  |  |
|               | ,                                  |      |                             |      |      | Fr3           | 3,50<br>5,50<br>4,70               | 4,57             | 1,01 |      |      |                     |                                    |           |        |          |          |  |  |  |
|               |                                    |      |                             |      |      |               |                                    |                  |      |      |      |                     |                                    |           |        |          |          |  |  |  |

|               | <u> -</u>                          |              | FÄLISCHE<br>ELMS-UN<br>ETER |      | ίτ   | 1             | Ermittlur<br>Verd                  | ng der<br>lunstu |              | or-   |                         | Laborant: P. Starke |                                       |       |      |      |      |  |  |
|---------------|------------------------------------|--------------|-----------------------------|------|------|---------------|------------------------------------|------------------|--------------|-------|-------------------------|---------------------|---------------------------------------|-------|------|------|------|--|--|
| Proto-<br>typ | <i>ET <sub>lab</sub></i> (g/7,5 h) | ø            | σ                           | Ø    | σ    | Proto-<br>typ | <i>ET <sub>lab</sub></i> (g/7,5 h) | Ø                | σ            | Ø     | σ                       | Proto-<br>typ       | <i>ET <sub>lab</sub></i><br>(g/7,5 h) | Ø     | σ    | ø    | σ    |  |  |
| K4            | 2,90<br>2,70<br>2,20               | 2,60         | 0,36                        |      |      | T2            | 10,50<br>11,10<br>11,14            | 10,91            | 0,36         | 11,02 | 0,64                    | Z2                  | 13,20<br>12,60<br>12,50               | 12,77 | 0,38 |      |      |  |  |
| K6            | 3,40<br>2,70<br>2,70               | 2,93         | 0,40                        |      |      | Т3            | 9,70<br>11,30<br>11,90             | ,30 10,97 1,14   |              | Z3    | 11,40<br>11,50<br>13,10 | 12,00               | 12,69                                 | 12,69 | 0,78 |      |      |  |  |
| K7            | 3,20<br>4,60<br>3,70               | 3,83         | 0,71                        | 3,26 | 69'0 | U1            | 7,10<br>8,20<br>7,00               | 7,43             | 0,67         | 7,53  | 62'0                    | Z4                  | 13,00<br>13,40<br>13,50               | 13,45 | 0,07 |      |      |  |  |
| K8            | 3,30<br>3,00<br>2,50               | 2,93         | 0,40                        |      |      | U2<br>U3      | 7,70<br>8,30<br>6,20               | 8,00<br>7,20     | 0,42<br>1,41 |       |                         | AA1                 | 5,10<br>5,70<br>6,90                  | 5,90  | 0,92 |      |      |  |  |
| K10           | 4,20<br>4,00<br>3,80               | 4,00         | 0,20                        |      |      | V2            | 8,20<br>14,20<br>14,60             | 13,97            | 0,78         |       |                         | AA2                 | 7,20<br>7,90<br>7,30                  | 7,47  | 0,38 | 1,09 |      |  |  |
| M1<br>M2      | 3,40<br>4,70<br>5,60               | 4,05<br>5,00 | 0,92                        | 693  | 66   | V4            | 13,10<br>14,50<br>11,90            | 13,73            | 1,59         | 14,01 | 76,0                    |                     | 7,50<br>8,20<br>8,30                  | 8,00  |      |      |      |  |  |
| M3            | 4,40<br>5,30<br>6,20               | 5,75         | 0,85                        | 4,8  | 3'0  | V5            | 14,80<br>14,80<br>14,50            | 14,33            | 0,57         | _     | 0                       | Gefdg1              | 3,90<br>4,40<br>3,70                  | 4,00  | 0,36 |      |      |  |  |
| N1            | 5,10<br>3,80<br>5,60               | 4,45         | 0,92                        | 5,10 | 0,93 | Ö             | 13,70<br>8,00<br>8,50              |                  |              |       |                         | Gefdg2              | 4,00<br>3,50<br>3,80                  | 3,77  | 0,25 | 3,69 | 0,40 |  |  |
| N2            | 5,90<br>3,80                       | 5,75         | 0,21                        |      |      | W             | 8,40<br>7,50                       | 8,10             | 0,45         | -     | -                       | Gefdg3              | 3,40<br>3,50                          | 3,30  | 0,26 |      |      |  |  |
| 01            | 4,00<br>4,7<br>4,20                | 4,17         | 0,47                        | 4    | 2    | X1<br>X2      | 7,00<br>6,40<br>7,20               | 8,17             | 2,40         |       |                         | Gefda1              | 3,00<br>3,70<br>3,60                  | 3,73  | 0,15 |      |      |  |  |
| O2            | 3,50<br>3,30<br>3,60               | 3,67         | 0,47                        | 3,84 | 0,42 | X3            | 10,90<br>6,50<br>7,90              | 7,20             | 0,99         | 7,39  | 1,43                    | Gefda2              | 3,90<br>4,50<br>4,90                  | 4,47  | 0,45 |      | 0,42 |  |  |
| O3            | 3,60<br>3,90<br>8,00               | 3,70         | 0,17                        |      |      | X4<br>X5      | 7,00<br>7,50<br>6,10               | 7,25<br>6,10     | 0,35         |       |                         | Gefda3              | 4,00<br>3,70<br>4,20                  | 4,00  | 0,26 | 4    | 0    |  |  |
| R             | 5,00<br>5,30<br>7,10               | 6,58         | 1,35                        | -    | -    | Y2            | 8,90<br>9,60<br>9,00               | 9,17             | 0,38         |       |                         | Gerdao              | 4,10                                  | 4,00  | 0,20 |      |      |  |  |
| S             | 7,50<br>6,70<br>5,90<br>5,70       | 6,00         | 0,48                        | -    | -    | Y3<br>Y4      | 8,30<br>5,30<br>6,20<br>8,60       | 6,60<br>7,95     | 1,54<br>0,92 | 7,82  | 1,42                    |                     |                                       |       |      |      |      |  |  |
|               | 5,7<br>10,7                        |              |                             |      |      | Y5            | 7,30<br>7,20                       | 7,20             | 0,32         |       |                         |                     |                                       |       |      |      |      |  |  |
| T1            | 11,4<br>11,40                      | 11,17        | 0,4                         |      |      |               |                                    |                  |              |       |                         |                     |                                       |       |      |      |      |  |  |

|               | <u> </u>                           |      | FÄLISCHE<br>ELMS-UNI<br>TER |      | ŠТ   | E             | rmittlunç<br>Verdu                |   |   | Laborant: P. Starke |   |               |                                   |   |   |   |   |
|---------------|------------------------------------|------|-----------------------------|------|------|---------------|-----------------------------------|---|---|---------------------|---|---------------|-----------------------------------|---|---|---|---|
| Proto-<br>typ | <i>ET <sub>lab</sub></i> (g/7,5 h) | Ø    | σ                           | Ø    | σ    | Proto-<br>typ | <i>ET<sub>lab</sub></i> (g/7,5 h) | Ø | σ | ø                   | σ | Proto-<br>typ | <i>ET<sub>lab</sub></i> (g/7,5 h) | Ø | σ | ø | σ |
| Geog1         | 9,20<br>9,90<br>7,90               | 9,00 | 1,01                        |      |      |               |                                   |   |   |                     |   |               |                                   |   |   |   |   |
| Geog2         | 9,20<br>9,70<br>8,90               | 9,27 | 0,40                        |      |      |               |                                   |   |   |                     |   |               |                                   |   |   |   |   |
| Geog3         | 8,80<br>10,40<br>8,10              | 9,10 | 1,18                        | 9,26 | 0,97 |               |                                   |   |   |                     |   |               |                                   |   |   |   |   |
| Geog4         | 9,90<br>11,30<br>7,80              | 9,67 | 1,76                        |      |      |               |                                   |   |   |                     |   |               |                                   |   |   |   |   |
| Geog5         | 9,40<br>9,10                       | 9,25 | 0,21                        |      |      |               |                                   |   |   |                     |   |               |                                   |   |   |   |   |
| Geoa1         | 7,50<br>9,40<br>8,80               | 8,57 | 0,97                        |      |      |               |                                   |   |   |                     |   |               |                                   |   |   |   |   |
| Geoa2         | 8,10<br>9,30<br>10,20              | 9,20 | 1,05                        |      |      |               |                                   |   |   |                     |   |               |                                   |   |   |   |   |
| Geoa3         | 8,50<br>9,00<br>7,80               | 8,43 | 0,60                        |      |      |               |                                   |   |   |                     |   |               |                                   |   |   |   |   |
| Geoa4         | 8,40<br>8,40<br>8,70               | 8,50 | 0,17                        |      |      |               |                                   |   |   |                     |   |               |                                   |   |   |   |   |
| Geoa5         | 8,20<br>8,8<br>9,80                | 8,93 | 0,81                        |      |      |               |                                   |   |   |                     |   |               |                                   |   |   |   |   |

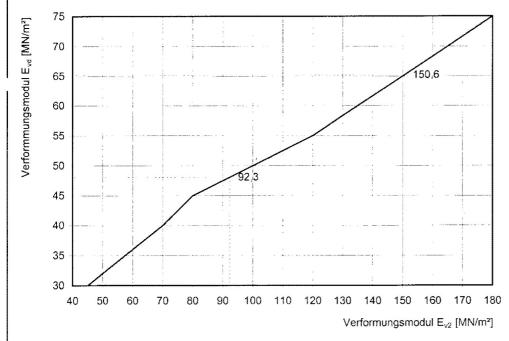
| Schichtenve  | WILHELMS-UNIVERSITÄT Ge Ab PC  rzeichnis nach DIN 4 | eologisch-Paläont<br>teilung für Angew<br>Dr. Patricia Göb |                                              |                | Bohru<br>Bohrw<br>Ort:<br>Gitterv<br>rechts<br>Höher<br>Datum | :                 | mm Sonde Karte: hoch: satzpunktes: |                                       |
|--------------|-----------------------------------------------------|------------------------------------------------------------|----------------------------------------------|----------------|---------------------------------------------------------------|-------------------|------------------------------------|---------------------------------------|
| Teufe (cm)   | Korn-<br>größen-<br>ansprache                       | Konsistenz                                                 | Wasser-<br>gehalt<br>(bei rolligen<br>Böden) | Farbe          | Organ<br>Bestar<br>Geruc                                      | ische<br>ndteile/ | Beprobung (Teufe/ Behälter/ Art)   | Wasser-<br>führung/<br>GW-<br>Spiegel |
| 0 - 83       | AUSHUB                                              |                                                            |                                              |                |                                                               |                   |                                    |                                       |
| 83 -158      | mS, gG, X                                           |                                                            |                                              | Grau-<br>braun |                                                               |                   |                                    |                                       |
| 158 -<br>183 | U,T                                                 | Weich                                                      |                                              | Grau-<br>rot   |                                                               |                   |                                    |                                       |
| 183 -<br>223 | U,                                                  |                                                            |                                              |                |                                                               |                   |                                    |                                       |
| 223          | KBF                                                 |                                                            |                                              |                |                                                               |                   |                                    |                                       |
|              |                                                     |                                                            |                                              |                |                                                               |                   |                                    |                                       |
|              |                                                     |                                                            |                                              |                |                                                               |                   |                                    |                                       |
|              |                                                     |                                                            |                                              |                |                                                               |                   |                                    |                                       |
|              |                                                     |                                                            |                                              |                |                                                               |                   |                                    |                                       |

|              | WILHELMS-UNIVERSITÄT MÜNSTER GO | ESTFÄLISCHE Weologisch-Paläont oteilung für Angew D Dr. Patricia Göb | ologisches Institu<br>vandte Geologie        |                  | STER An                                        | nlage:                              |                                  |                                       |
|--------------|---------------------------------|----------------------------------------------------------------------|----------------------------------------------|------------------|------------------------------------------------|-------------------------------------|----------------------------------|---------------------------------------|
| Schichtenver | rzeichnis nach DIN<br>Bauvo     | <b>4022</b><br>orhaben: DBU-Pro                                      | jekt Az.: (23277-                            | 23)              | Bohrwerkz<br>Ort: Bi<br>Gitterwerte<br>rechts: | zeug: 36r<br>P 2<br>e:<br>e des An: |                                  |                                       |
| Teufe (cm)   | Korn-<br>größen-<br>ansprache   | Konsistenz                                                           | Wasser-<br>gehalt<br>(bei rolligen<br>Böden) | Farbe            | Kalkgehali<br>Organisch<br>Bestandte<br>Geruch | ne                                  | Beprobung (Teufe/ Behälter/ Art) | Wasser-<br>führung/<br>GW-<br>Spiegel |
| 0 - 100      | AUSHUB                          |                                                                      |                                              |                  |                                                |                                     |                                  |                                       |
| 100-175      | fS, gG, X                       |                                                                      |                                              | Grau-<br>schwarz |                                                |                                     |                                  |                                       |
| 175 -<br>245 | U,T, fS                         | Weich                                                                |                                              | Grau-rot         |                                                |                                     |                                  |                                       |
| 245 -<br>280 | U, T, gG                        |                                                                      |                                              | Grau-rot         |                                                |                                     |                                  |                                       |
| 280          | KBF                             |                                                                      |                                              |                  |                                                |                                     |                                  |                                       |
|              |                                 |                                                                      |                                              |                  |                                                |                                     |                                  |                                       |
|              |                                 |                                                                      |                                              |                  |                                                |                                     |                                  |                                       |
|              |                                 |                                                                      |                                              |                  |                                                |                                     |                                  |                                       |

| ===          | WILHELMS-UNIVERSITÄT MÜNSTER GE | ESTFÄLISCHE W<br>eologisch-Paläonto<br>oteilung für Angewa<br>DDr. Patricia Göbe | ologisches Institu<br>andte Geologie         |                  | STER                                         | Anlage:<br>zu:                 |                                  |                                       |
|--------------|---------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|------------------|----------------------------------------------|--------------------------------|----------------------------------|---------------------------------------|
| Schichtenver | rzeichnis nach DIN              | <b>4022</b><br>rhaben: DBU-Projo                                                 | ekt Az.: (23277-                             | 23)              | Bohrwing Ort: Gitterwing rechts: Höhen Datum | erkzeug: 36i<br>BP 3<br>verte: | Karte: hoch: satzpunktes:        |                                       |
| Teufe (cm)   | Korn-<br>größen-<br>ansprache   | Konsistenz                                                                       | Wasser-<br>gehalt<br>(bei rolligen<br>Böden) | Farbe            | Kalkge<br>Organi<br>Bestar<br>Geruch         | sche<br>ndteile/               | Beprobung (Teufe/ Behälter/ Art) | Wasser-<br>führung/<br>GW-<br>Spiegel |
| 0 - 90       | AUSHUB                          |                                                                                  |                                              |                  |                                              |                                |                                  |                                       |
| 90-150       | mS, gG, X                       |                                                                                  |                                              | Grau-<br>schwarz |                                              |                                |                                  |                                       |
| 150 -<br>178 | U,T, fS                         | bröckelig                                                                        |                                              | schwarz          |                                              |                                |                                  |                                       |
| 178 -<br>202 | U, T                            | weich                                                                            |                                              | Grau-rot         |                                              |                                |                                  |                                       |
| 202 -<br>236 | U, fS, T                        | bröckelig                                                                        |                                              | Rot-grau         |                                              |                                |                                  |                                       |
| 236 -<br>265 | U, fS, mS,<br>gG                | Bröckelig                                                                        |                                              | Grau-<br>rot     | kalkh                                        | naltig                         |                                  |                                       |
| 265          | KBF                             |                                                                                  |                                              |                  |                                              |                                |                                  |                                       |
|              |                                 |                                                                                  |                                              |                  |                                              |                                |                                  |                                       |
|              |                                 |                                                                                  |                                              |                  |                                              |                                |                                  |                                       |

|              | WILHELMS-UNIVERSITÄT MÜNSTER GE | ESTFÄLISCHE W<br>eologisch-Paläont<br>eteilung für Angew<br>Dr. Patricia Göb | ologisches Institi<br>andte Geologie         |                  | STER Anlage:                                                                                                          |                                  |                                       |
|--------------|---------------------------------|------------------------------------------------------------------------------|----------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|
| Schichtenver | rzeichnis nach DIN 4<br>Bauvoi  | <b>4022</b><br>rhaben: DBU-Proj                                              | ekt Az.: (23277-                             | 23)              | Bohrung/Schurf N Bohrwerkzeug: 36 Ort: BP 4 Gitterwerte: rechts: Höhenlage des Ar Datum: 09.04.200 Bearbeiter: Starke | Karte: hoch: nsatzpunktes:       |                                       |
| Teufe (cm)   | Korn-<br>größen-<br>ansprache   | Konsistenz                                                                   | Wasser-<br>gehalt<br>(bei rolligen<br>Böden) | Farbe            | Kalkgehalt/ Organische Bestandteile/ Geruch                                                                           | Beprobung (Teufe/ Behälter/ Art) | Wasser-<br>führung/<br>GW-<br>Spiegel |
| 0 - 95       | AUSHUB                          |                                                                              |                                              |                  |                                                                                                                       |                                  |                                       |
| 95-185       | mS, gG, X,                      |                                                                              |                                              | Grau-<br>schwarz |                                                                                                                       |                                  |                                       |
| 185 -<br>230 | U,T                             | weich                                                                        |                                              | Rot-grau         |                                                                                                                       |                                  |                                       |
| 230 -<br>265 | U, fS, fG                       | weich                                                                        |                                              | Grau-rot         |                                                                                                                       |                                  |                                       |
| 265          | KBF                             |                                                                              |                                              |                  |                                                                                                                       |                                  |                                       |
|              |                                 |                                                                              |                                              |                  |                                                                                                                       |                                  |                                       |
|              |                                 |                                                                              |                                              |                  |                                                                                                                       |                                  |                                       |
|              |                                 |                                                                              |                                              |                  |                                                                                                                       |                                  |                                       |
|              |                                 |                                                                              |                                              |                  |                                                                                                                       |                                  |                                       |

# DYNAMISCHES VERFORMUNGSMODUL(Az: 2327)


Baustoffprüfstelle

mit dem Leichten Fallgewichtsgerät mit 1,5 facher Stoßbelastung in Anlehnung an die TP BF-StB, Teil 8.3

Roxeler Ingenieurgesellschaft mbH Otto-Hahn-Straße 7 48161 Münster Telefon (0 25 34) 62 00-0 Telefax (0 25 34) 62 00-32 www.roxeler.de e-mail: mail@roxeler.de

| Bauvorhaben:                    |                        |             |                                                  |                                        | Projekt-Nr.:   | 030081-08                   |
|---------------------------------|------------------------|-------------|--------------------------------------------------|----------------------------------------|----------------|-----------------------------|
| DBU-Projekt, Lehrstuh           | l für Angewa           | andte Geolo | ogie                                             |                                        | Anlage:        | 2.1                         |
| WWU Münster                     |                        |             |                                                  |                                        |                |                             |
| Ausgeführt durch:               | Eut                    | am:         | 08.05.08                                         | Tiefe u. FC                            | OK/Erdpl. [m]: | 0,00                        |
| Ausgeführt auf:                 | OK STS                 |             |                                                  | Platt                                  | enunterlager:  | Sand                        |
| Nr. und Lage des<br>Prüfpunktes | Setzung s <sub>i</sub> | Mittelwert  | Verfor-<br>mungs-<br>modul<br>E <sub>vd1,5</sub> | entspricht :<br>Verformung<br>Ist-Wert |                | Anmerkung                   |
|                                 | [mm]                   | [mm]        | [MN/m²]                                          | [MN/m²]                                | [MN/m²]        |                             |
| SFG 1 / Feld 1                  | 0,40<br>0,38<br>0,36   | 0,38        | 88,9                                             | 221,7                                  | 120            | Verdichtung<br>ausreichend  |
| SFG 3 / Feld 3                  | 0,52<br>0,52<br>0,51   | 0,52        | 65,2                                             | 150,6                                  | 120            | Verdichtung<br>ausreichend  |
| SFG 4 / Feld 4                  | 0,71<br>0,71<br>0,69   | 0,70        | 48,1                                             | 92,3                                   | 120            | Verdichtung<br>unzureichend |

### Vergleichskurve zur Ermittlung des statischen Verformungsmoduls aus Reihenversuchen



Nach den Ergebnissen der von den Straßenbaubehörden des Landes Nordrhein-Westfalen durchgeführten Vergleichsuntersuchungen gilt bei Verwendung des Leichten Fallgewichtsgerätes mit 1,5-facher Stoßbelastung für grobkörnige Böden (Korngrößen ≥ 32 mm) die der nebenstehenden Abbildung zu entnehmende Vergleichskurve. Anhand dieser Kurve ist eine Extrapolation von E<sub>V2</sub>-Anforderungen auch über 120 MN/m²

### Bemerkungen:

#### Abschlussbericht "Evaporation von Pflasterstein-Belägen" (Az: 23277)

# **PLATTENDRUCKVERSUCH**

Roxeler Baustoffprüfstelle

Roxeler Ingenieurgesellschaft mbH

www.roxeler.de e-mail: mail@roxeler.de

Otto-Hahn-Straße 7 48161 Münster Telefon (0 25 34) 62 00-0 Telefax (0 25 34) 62 00-32

nach DIN 18134

Bauvorhaben: Projekt-Nr.: 030078-08

DBU-Projekt, Lehrstuhl für Angewandte Geologie Anlage: 2.4

WWU Münster

Messpunkt: Tiefe u. FOK/Erdpl. [m]: 0,00

LPD 7 / Feld 7 Ausgeführt durch: Euting

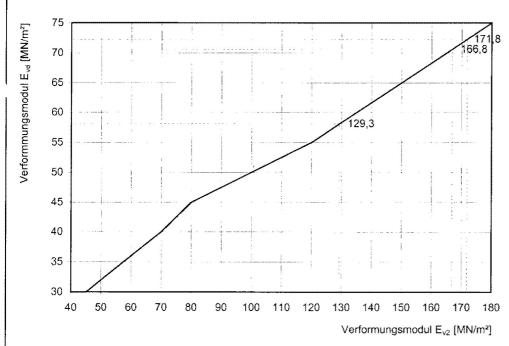
am: 08.05.2008

Ausgeführt auf: HKS Plattenunterlager: Sand

| Ausgetunrt au       | <u>  [                                   </u> | HKS       |                     | Plattenuntenager:                                               | <u></u>        | iliu  |
|---------------------|-----------------------------------------------|-----------|---------------------|-----------------------------------------------------------------|----------------|-------|
| Normal-             |                                               | Setz      | zung                |                                                                 |                |       |
| spannung $\sigma_0$ | Kraft                                         | Meßuhr    | Platten-<br>zentrum | Auswertu                                                        | ng             |       |
| [MN/m²]             | [kN]                                          | [mm]      | [mm]                |                                                                 |                |       |
|                     | 1. Belastu                                    | ungsstufe |                     | Plattendurchmesser D [m]                                        |                | 0,3   |
| 0,01                | 0,71                                          | 0,01      | 0,02                | Distanz zwischen                                                |                |       |
| 0,08                | 5,65                                          | 0,06      | 0,12                | Haltepunkt - Plattenzentrum h                                   | <b>1</b> թ [m] | 1,45  |
| 0,16                | 11,31                                         | 0,12      | 0,24                | Haltepunkt - Meßuhr h <sub>M</sub> [m]                          |                | 0,725 |
| 0,24                | 16,96                                         | 0,32      | 0,64                | Übersetzungsverhältnis $h_p/h_N$                                | 1:             | 2,00  |
| 0,32                | 22,62                                         | 0,50      | 1,00                | Belastungsstufe                                                 | 1              | 2     |
| 0,40                | 28,27                                         | 0,74      | 1,48                | Maximale Normalspannung                                         | 0,50           | 0,45  |
| 0,45                | 31,81                                         | 0,87      | 1,74                | σ <sub>max</sub> [MN/m²]                                        | 0,50           | 0,45  |
| 0,50                | 35,34                                         | 1,02      | 2,04                | Polynomische Konstante a <sub>1</sub>                           | 1,84           | 1,04  |
|                     | Entlas                                        | stung     |                     | Polynomische Konstante a <sub>2</sub>                           | 5,01           | 1,23  |
| 0,25                | 17,67                                         | 0,96      | 1,92                | Verformungsmodul E <sub>v</sub> , lst-                          |                |       |
| 0,125               | 8,84                                          | 0,86      | 1,72                | Wert [MN/m²]                                                    | E4 0           | 141,1 |
|                     | 2. Belastu                                    | ıngsstufe |                     | $E_{v} = \frac{0.75 \cdot D}{(a_{1} + a_{2} \cdot \sigma_{1})}$ | 51,8           | 141,1 |
| 0,00                | 0,00                                          | 0,67      | 1,34                | $a_1 + a_2 \cdot \sigma_1$                                      |                |       |
| 0,08                | 5,65                                          | 0,75      | 1,50                | Verhältnis E <sub>v2</sub> /E <sub>v1</sub> , Ist-Wert          |                | 2,7   |
| 0,16                | 11,31                                         | 0,82      | 1,64                | Verformungsmodul E <sub>v2</sub> , Soll-                        | Wert           | 120   |
| 0,24                | 16,96                                         | 0,87      | 1,74                | [MN/m²]                                                         |                | 120   |
| 0,32                | 22,62                                         | 0,93      | 1,86                | Anforderung erfüllt?                                            |                | Ja    |
| 0,40                | 28,27                                         | 1,02      | 2,04                | Verhältnis E <sub>v2</sub> /E <sub>v1</sub> , Soll-Wert         |                | 2,5   |
| 0,45                | 31,81                                         | 1,07      | 2,14                | Anforderung erfüllt ?                                           |                | Nein  |

## Bemerkungen:

# DYNAMISCHESAVERFORMUNGSMODULA: 23277


Rozeler Baustoffprüfstelle

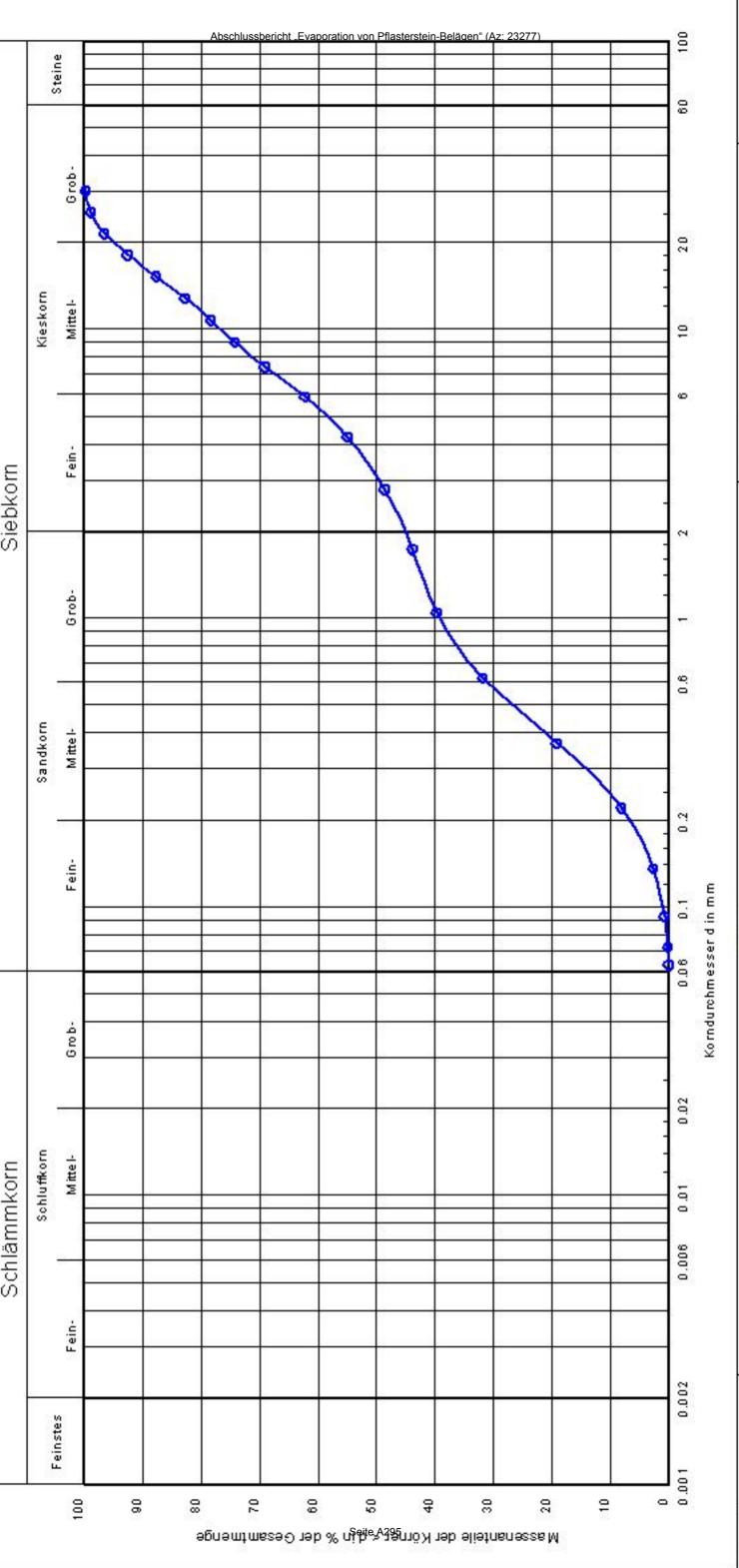
mit dem Leichten Fallgewichtsgerät mit 1,5 facher Stoßbelastung in Anlehnung an die TP BF-StB, Teil 8.3

Roxeler Ingenieurgesellschaft mbH Otto-Hahn-Straße 7 48161 Münster Telefon (0 25 34) 62 00-0 Telefax (0 26 34) 62 00-32 www.roxejer.de e-mail: mail@roxeler.de

| Bauvorhaben:                    |                        |                                        |                                                  |                         | Projekt-Nr.:                            | 030081-08                  |
|---------------------------------|------------------------|----------------------------------------|--------------------------------------------------|-------------------------|-----------------------------------------|----------------------------|
| DBU-Projekt, Lehrstuh           | l für Angewa           | andte Geolo                            | ogie                                             |                         | Anlage:                                 | 2.2                        |
| WWU Münster                     |                        | ······································ |                                                  |                         |                                         |                            |
| Ausgeführt durch:               | Eut                    | am:                                    | 08.05.08                                         | Tiefe u. FC             | OK/Erdpl. [m]:                          | 0,00                       |
| Ausgeführt auf:                 | OK STS                 |                                        |                                                  | Platt                   | enunterlager:                           | Sand                       |
| Nr. und Lage des<br>Prüfpunktes | Setzung s <sub>i</sub> | Mittelwert                             | Verfor-<br>mungs-<br>modul<br>E <sub>vd1,5</sub> | entspricht : Verformung | statischem<br>gsmodul E <sub>v2</sub> * | Anmerkung                  |
|                                 | [mm]                   | [mm]                                   | [MN/m²]                                          | [MN/m²]                 | [MN/m²]                                 |                            |
| SFG 5 / Feld 5                  | 0,57<br>0,59<br>0,58   | 0,58                                   | 58,1                                             | 129,3                   | 120                                     | Verdichtung<br>ausreichend |
| SFG 6 / Feld 6                  | 0,49<br>0,48<br>0,47   | 0,48                                   | 70,6                                             | 166,8                   | 120                                     | Verdichtung<br>ausreichend |
| SFG 7 / Feld 7                  | 0,48                   | 0,47                                   | 72,3                                             | 171,8                   | 120                                     | Verdichtung<br>ausreichend |

### Vergleichskurve zur Ermittlung des statischen Verformungsmoduls aus Reihenversuchen




Nach den Ergebnissen der von den Straßenbaubehörden des Landes Nordrhein-Westfalen durchgeführten Vergleichsuntersuchungen gilt bei Verwendung des Leichten Fallgewichtsgerätes mit 1,5-facher Stoßbelastung für grobkörnige Böden (Korngrößen ≥ 32 mm) die

Bemerkungen:

Bearbeiter: Kaul/Starke

Prüfungsnummer: Feld 4

Steine Grob. Art der Entnahme: Haufwerksbeprobung Probe entnommen am: 05.06.2008 Arbeitsweise: DIN EN 932-1:1996 Kieskorn Mittel-Fein-Siebkorn Grob-Körnungslinie **DBU-Projekt** Verdunstung Sandkorn Mittel-Fein-Grob-Datum: 02.07.08 Schluffkorn Mittel-Schlämmkorn



Bericht:

Anlage:

Bemerkungen:

7.0 × 10.4

k [m/s] (Hazen):

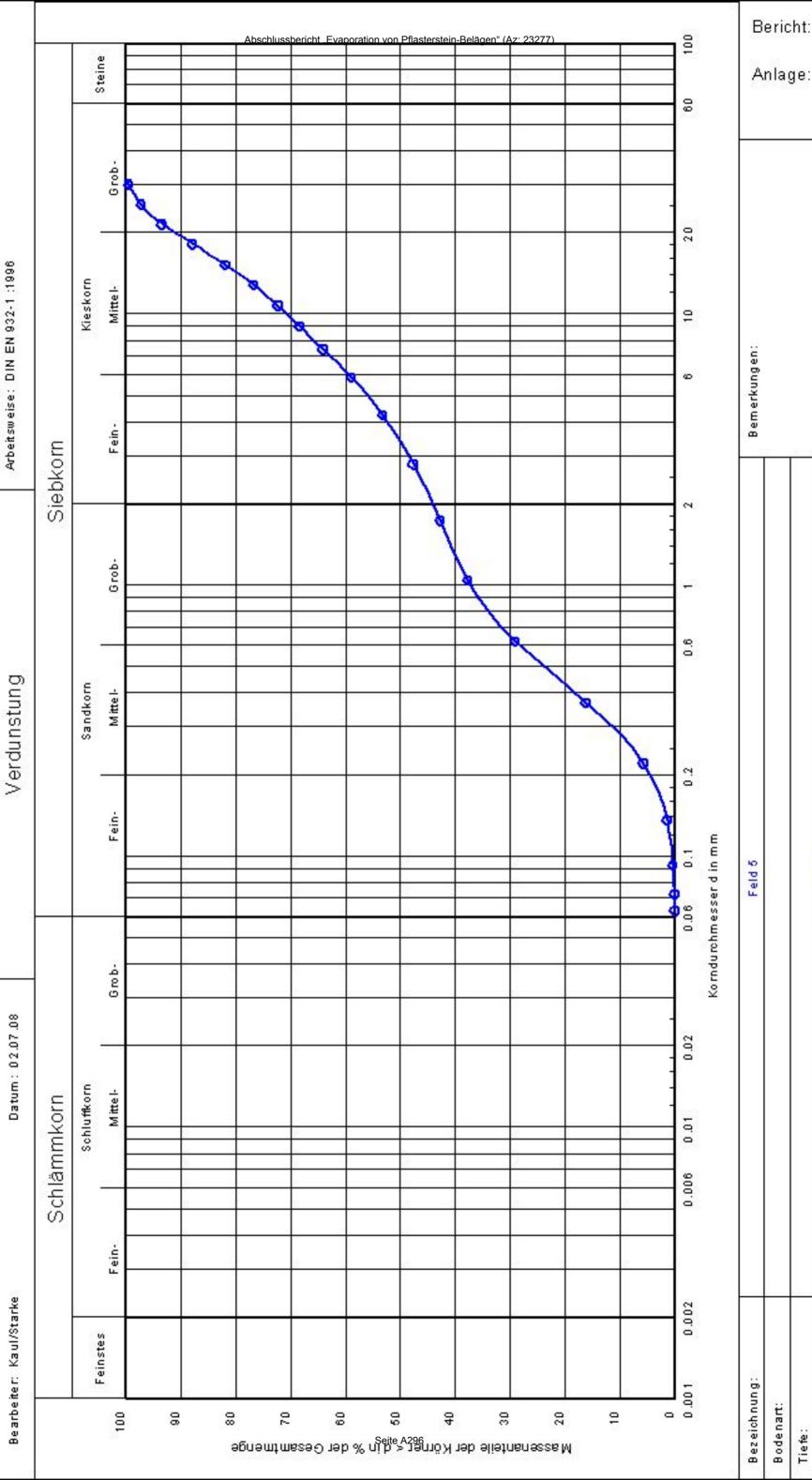
Bezeichnung:

Bodenart:

Entn ahm estelle

U/Co

Feld 4


21.8/0.3



# Körnungslinie **DBU-Projekt**

Probe entnommen am: 05.06.2008 Prüfungsnummer: Feld 5

Art der Entnahme: Haufwerksbeprobung Arbeitsweise: DIN EN 932-1:1996



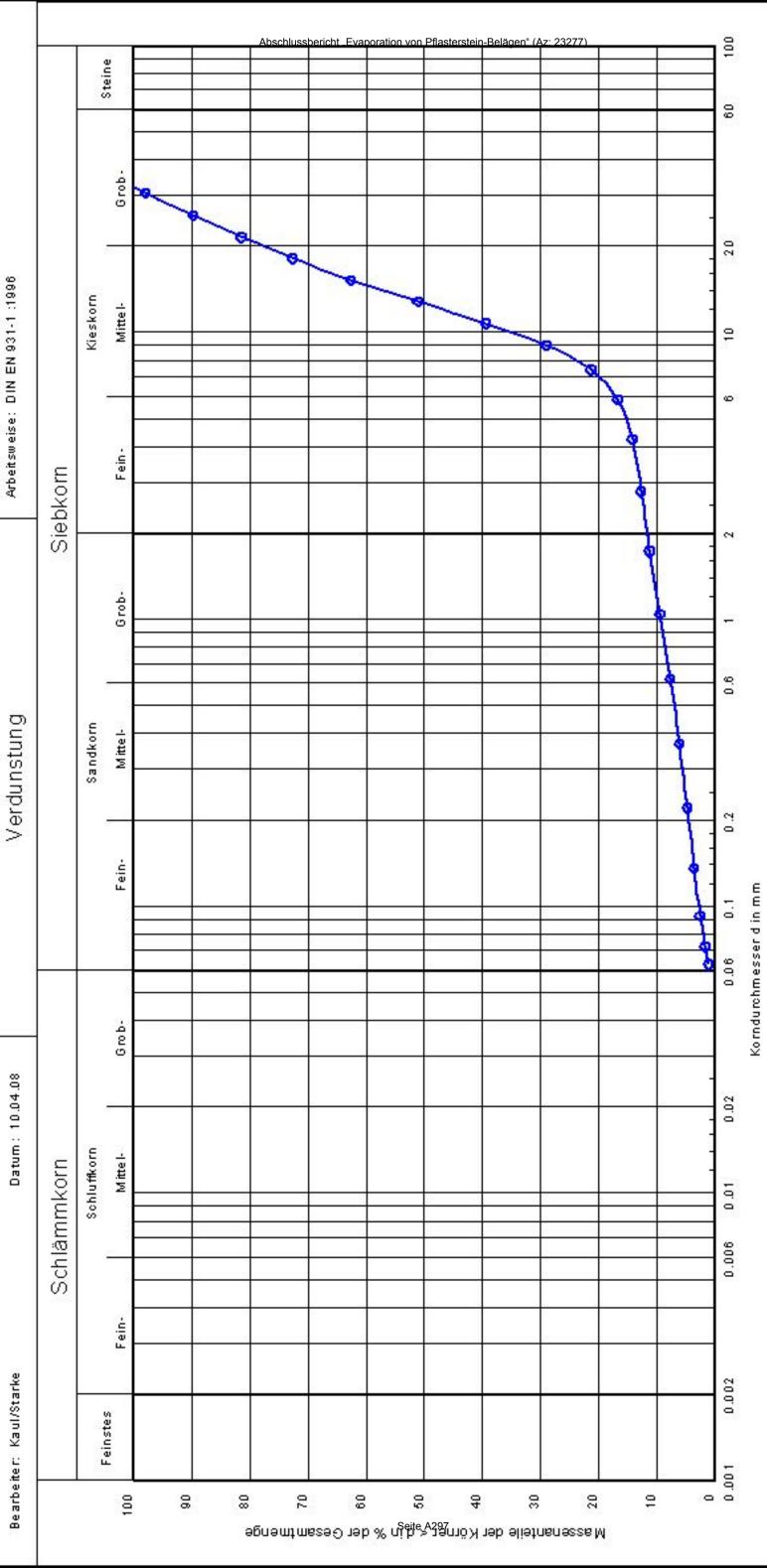
9.2 × 10.4

21.9/0.2

Entnahmestelle:

U/Co

k [m /s] (Hazen):




# Körnungslinie **DBU-Projekt**

Prüfungsnummer: HKS Klostermann (Sanssouci) Probe entnommen am: 26.03.2008

Art der Entnahme: Haufwerksbeprobung

Arbeitsweise: DIN EN 931-1:1996



Bericht:

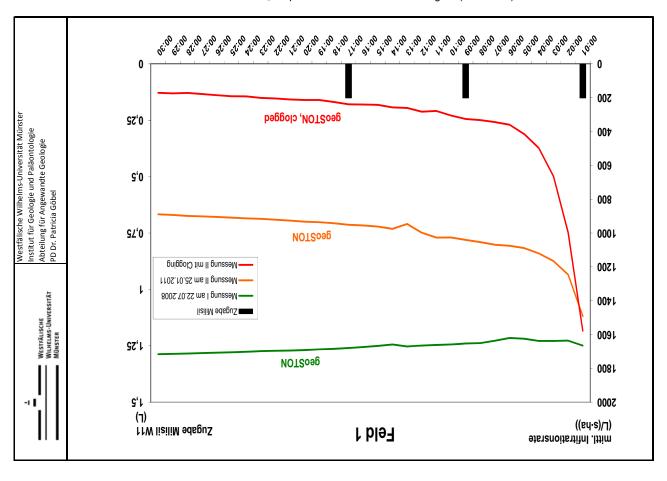
Anlage:

Bemerkungen:

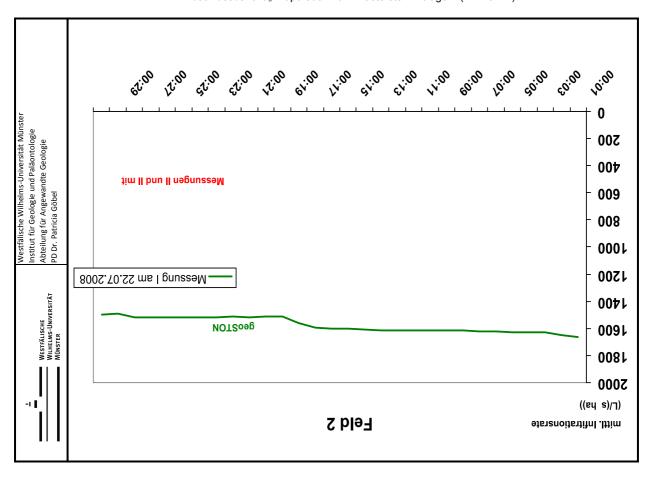
HKS Klostermann

1.7 × 10 -2

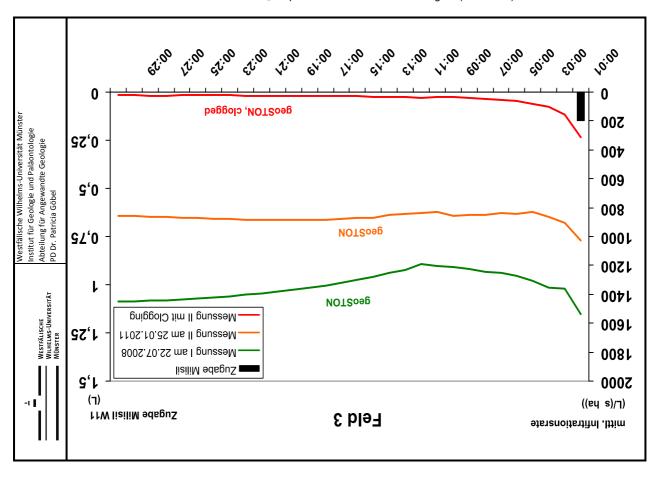
k [m/s] (Hazen):


Bezeichnung:

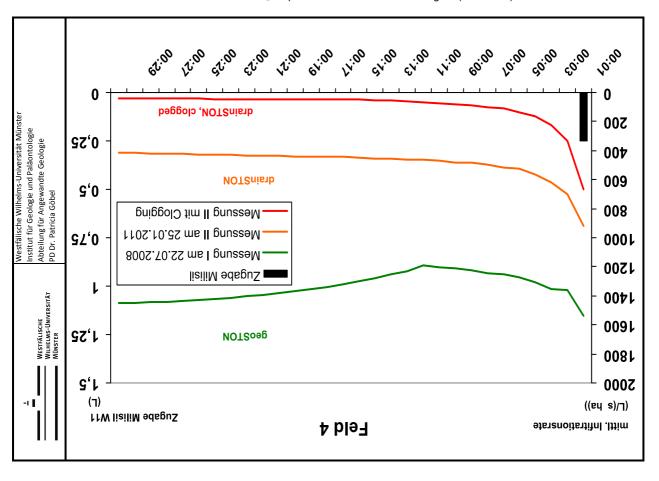
Bodenart:


Entn ahm estelle

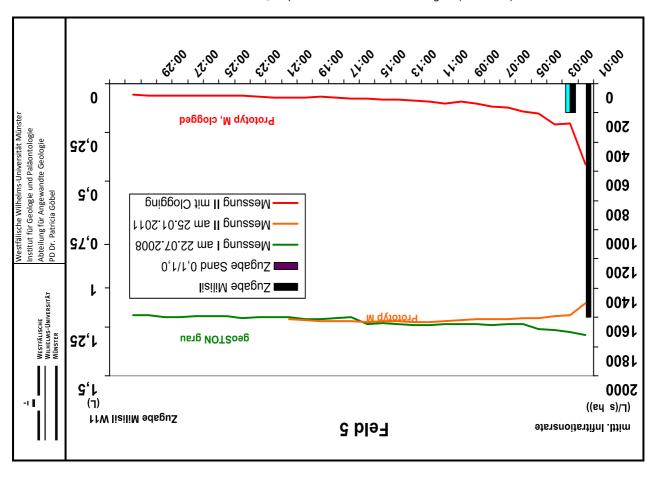
U/Co


12.0/4.7

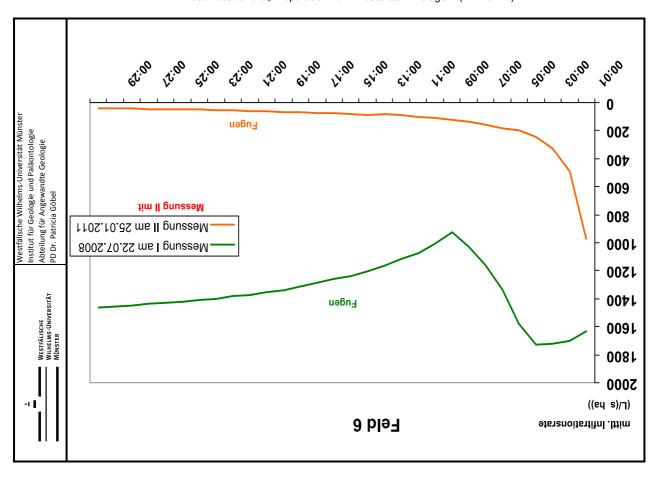



|                        |                                      | material Additional and addition adapting the about | touth A this control of        |                  |
|------------------------|--------------------------------------|-----------------------------------------------------|--------------------------------|------------------|
| -1 <b>[</b>            | ,                                    | Institut für Geologie und Paläontologie             | nd Paläontologie               | Į.               |
|                        | WESTFÄLISCHE<br>WILHELMS-UNIVERSITÄT | Abteilung für Angewandte Geologie                   | ndte Geologie                  |                  |
|                        | Münster                              | PD Dr. Patricia Göbel                               |                                |                  |
|                        |                                      | Fold 1                                              |                                |                  |
|                        | Messungl                             | Messung II                                          | Messung II                     |                  |
| Versuch Nr.            | am 22.07.2008                        | am 25.01.2011                                       | mit Clogging                   |                  |
| Datum                  | 22.07.2008                           | geos i ON grau<br>25.01.2011                        | geos i Oin gi au<br>25.01.2011 |                  |
| Zug. Clogging-Material | H                                    |                                                     | 0,15 I Milisil W11             |                  |
| 1                      | mittl.                               | mittl.                                              | mittl.                         | Z. carlo Marillo |
| versucnszeit           | Infitrationsrate                     | Infitrationsrate                                    | Infitrationsrate               | Zugabe Millsii   |
| [ss:ww:uu]             | [i/(sxna)]                           | [/(sxna)]                                           | [l/(sxna)]                     |                  |
| 00.100                 | 0,00                                 | 0,00                                                | 0,00                           | 0.4              |
| 00:0:00                | 1636                                 | 1246                                                | 266                            | 2.5              |
| 00:03:00               | 1638                                 | 1166                                                | 999                            |                  |
| 00:04:00               | 1638                                 | 1120                                                | 498                            |                  |
| 00:90:00               | 1625                                 | 1089                                                | 415                            |                  |
| 00:00:00               | 1620                                 | 1075                                                | 360                            |                  |
| 00:20:00               | 1637                                 | 1069                                                | 344                            |                  |
| 00:00:00               | 1651                                 | 1054                                                | 332                            |                  |
| 00:03:00               | 1659                                 | 1041                                                | 305                            | 0,13             |
| 00:11:00               | 1662                                 | 1027                                                | 278                            |                  |
| 00:15:00               | 1665                                 | 866                                                 | 282                            |                  |
| 00:13:00               | 1671                                 | 946                                                 | 260                            |                  |
| 00:14:00               | 1659                                 | 975                                                 | 257                            |                  |
| 00:15:00               | 1667                                 | 961                                                 | 242                            |                  |
| 00:16:00               | 16/4                                 | 955                                                 | 240                            |                  |
| 00:17:00               | 1680                                 | 951                                                 | 239                            | 0,13             |
| 00:18:00               | 1687                                 | 942                                                 | 223                            |                  |
| 00:20:00               | 1692                                 | 833<br>833                                          | 213                            |                  |
| 00:21:00               | 1695                                 | 926                                                 | 210                            |                  |
| 00:22:00               | 1696                                 | 921                                                 | 204                            |                  |
| 00:23:00               | 1698                                 | 916                                                 | 201                            |                  |
| 00:24:00               | 1702                                 | 913                                                 | 192                            |                  |
| 00:52:00               | 1705                                 | 908                                                 | 191                            |                  |
| 00:27:00               | 1710                                 | 901                                                 | 178                            |                  |
| 00:28:00               | 1712                                 | 668                                                 | 172                            |                  |
| 00:53:00               | 1714                                 | 893                                                 | 174                            |                  |
| 00:30:00               | 1716                                 | 889                                                 | 171                            |                  |
| 00:31:00               |                                      |                                                     | 167                            |                  |
| 00:32:00               |                                      |                                                     | 168                            |                  |
| 00:33:00               |                                      |                                                     | 164                            |                  |
| 00:35:00               |                                      |                                                     | 161                            |                  |
| 00:98:00               |                                      |                                                     | 158                            |                  |
| 00:37:00               |                                      |                                                     | 154                            |                  |
| 00:38:00               |                                      |                                                     | 155                            |                  |
| 00:68:00               |                                      |                                                     | 151                            |                  |
| 00:40:00               |                                      |                                                     | 152                            |                  |
|                        |                                      |                                                     |                                |                  |

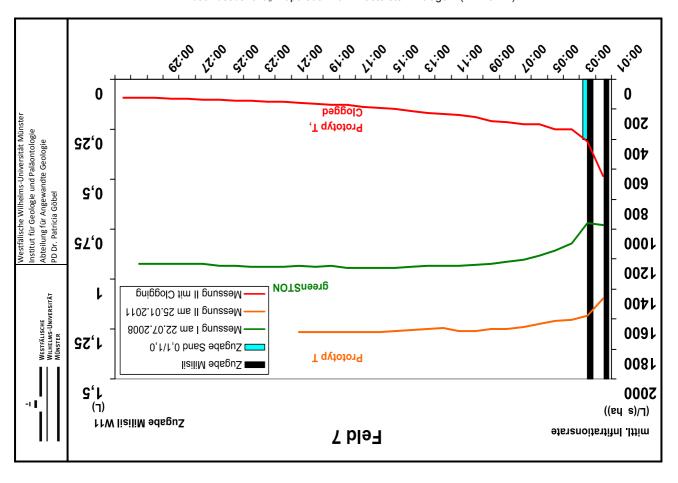



| ter                                                                                                                                                |        |             |              |           |                          |                         |            |      |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|--------------|-----------|--------------------------|-------------------------|------------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--|--|--|
| -Universität Münsi<br>nd Paläontologie<br>idte Geologie                                                                                            |        | II_clogging | asphalt      | 25.1.2011 |                          |                         |            |      |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |  |  |  |  |  |
| Westfälische Wilhelms-Universität Münster<br>Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel | Feld 2 | =           | asphalt      | 75.1.2011 |                          |                         |            |      |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |  |  |  |  |  |
| Westfälische<br>Wilhelms-Universität<br>Münster                                                                                                    |        | _           | geoSTON grau | 22.7.2008 |                          | mittl. Infitrationsrate | [l/(sxha)] | 00'0 | 1661     | 1647     | 1626     | 1626     | 1623     | 1621     | 1616     | 1615     | 1613     | 1614     | 1612     | 1607     | 1603     | 1598     | 1562     | 1511     | 1514     | 1516     | 1515     | 1519     | 1521     | 1522     | 1522     | 1520     | 1494     | 1496     |  |  |  |  |  |
| L WESTE                                                                                                                                            |        | Versuch Nr. |              | Datum     | zug. ciogging-iviaterial | Versuchszeit            | [hh:mm:ss] |      | 00:01:00 | 00:07:00 | 00:04:00 | 00:02:00 | 00:90:00 | 00:02:00 | 00:08:00 | 00:03:00 | 00:11:00 | 00:12:00 | 00:13:00 | 00:14:00 | 00:15:00 | 00:15:00 | 00:17:00 | 00:19:00 | 00:50:00 | 00:21:00 | 00:22:00 | 00:23:00 | 00:24:00 | 00:22:00 | 00:22:00 | 00:28:00 | 00:29:00 | 00:30:00 |  |  |  |  |  |




|                              |                                                 |                                                            | Westiansone willenns-Office sitat munster |                |
|------------------------------|-------------------------------------------------|------------------------------------------------------------|-------------------------------------------|----------------|
| -ı <b>I</b>                  |                                                 | Institut für Geologie und Paläontologie                    | ınd Paläontologie                         |                |
| 332                          | WESTFÄLISCHE<br>Wilhelms-Universität<br>Münster | Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel | ndte Geologie                             |                |
|                              |                                                 |                                                            |                                           |                |
|                              |                                                 | Feld 3                                                     |                                           |                |
| Versuch Nr.                  | _                                               | =                                                          | II_clogging                               |                |
|                              | geoSTON ant.                                    | geoSTON ant.                                               | geoSTON ant.                              |                |
| Datum 7119 Clogging-Material | 22.7.2008                                       | 25.1.2011                                                  | 25.1.2011                                 |                |
| zug. Ciogging-Iviaterial     | -                                               |                                                            | 0,15   Milisil W11                        |                |
| Versuchszeit                 | mittl. Infitrationsrate                         | mittl. Infitrationsrate                                    | mittl. Infitrationsrate                   | Zugabe Milisil |
| [hh:mm:ss]                   | [l/(sxha)]                                      | _                                                          | [l/(sxha)]                                |                |
|                              | 00'0                                            | 0                                                          |                                           |                |
| 00:01:00                     | 1539                                            | 1025                                                       | 314                                       | 0,15           |
| 00:05:00                     | 1363                                            | 806                                                        | 157                                       |                |
| 00:03:00                     | 1352                                            | 862                                                        | 105                                       |                |
| 00:04:00                     | 1304                                            | 831                                                        | 79                                        |                |
| 00:00:00                     | 1255                                            | 140                                                        | 63                                        |                |
| 00:00:00                     | 1244                                            | 847                                                        | 45                                        |                |
| 00:08:00                     | 1222                                            | 852                                                        | 39                                        |                |
| 00:60:00                     | 1211                                            | 858                                                        | 35                                        |                |
| 00:10:00                     | 1201                                            | 831                                                        | 31                                        |                |
| 00:11:00                     | 1193                                            | 835                                                        | 39                                        |                |
| 00:12:00                     | 1229                                            | 844                                                        | 36                                        |                |
| 00:13:00                     | 1249                                            | 847                                                        | 33                                        |                |
| 00:14:00                     | 1277                                            | 870                                                        | 31                                        |                |
| 00:15:00                     | 1301                                            | 8/4                                                        | 29                                        |                |
| 00:19:00                     | 1321                                            | 6/8                                                        | 27                                        |                |
| 00:17:00                     | 1355                                            | 887                                                        | 22                                        |                |
| 00:19:00                     | 1369                                            | 882                                                        | 28                                        |                |
| 00:20:00                     | 1382                                            | 883                                                        | 27                                        |                |
| 00:21:00                     | 1393                                            | 884                                                        | 26                                        |                |
| 00:22:00                     | 1403                                            | 881                                                        | 25                                        |                |
| 00:23:00                     | 1413                                            | 878                                                        | 23                                        |                |
| 00:24:00                     | 1421                                            | 875                                                        | 23                                        |                |
| 00:25:00                     | 1428                                            | 872                                                        | 22                                        |                |
| 00:56:00                     | 1435                                            | 869                                                        | 21                                        |                |
| 00:27:00                     | 1441                                            | 865                                                        | 25                                        |                |
| 00:28:00                     | 1445                                            | 862                                                        | 24                                        |                |
| 00:53:00                     | 1449                                            | 860                                                        | 23                                        |                |
| 00:30:00                     | 1449                                            | 859                                                        | 22                                        |                |
| 00:31:00                     |                                                 | 857                                                        |                                           |                |
| 00:32:00                     |                                                 | 855                                                        |                                           |                |
| 00:33:00                     |                                                 | 845                                                        |                                           |                |
| 00:35:00                     |                                                 | 843                                                        |                                           |                |
| 00:36:00                     |                                                 | 842                                                        |                                           |                |
| 00:37:00                     |                                                 | 839                                                        |                                           |                |
| 00:38:00                     |                                                 | 839                                                        |                                           |                |
| 00:39:00                     |                                                 | 837                                                        |                                           |                |
| 00:40:00                     |                                                 | 836                                                        |                                           |                |
|                              |                                                 |                                                            |                                           |                |




| WIL                    | HELMS-UNIVERSITAT       |                         | nate Geologie                           |                |
|------------------------|-------------------------|-------------------------|-----------------------------------------|----------------|
|                        | Münster                 | PD Dr. Patricia Göbel   | 000000000000000000000000000000000000000 |                |
|                        |                         | 7 7 7                   |                                         |                |
| Versuch Nr             | -                       | reig 4                  | II clopaing                             |                |
|                        | geoSTON grau            | drainSTON               | drainSTON                               |                |
| Datum                  | 22.7.2008               | 25.1.2011               | 25.1.2011                               |                |
| Zug. Clogging-Material |                         |                         | 0,15 I Milisil W11                      |                |
| Versuchszeit           | mittl. Infitrationsrate | mittl. Infitrationsrate | mittl. Infitrationsrate                 | Zugabe Milisil |
| [hh:mm:ss]             | [l/(sxha)]              | [l/(sxha)]              | [/(sxha)]                               |                |
|                        | 00'0                    | 00'0                    | 00'0                                    |                |
| 00:01:00               | 1539                    | 915                     |                                         | 0,25           |
| 00:05:00               | 1363                    | 704                     | 332                                     |                |
| 00:03:00               | 1352                    | 617                     | 222                                     |                |
| 00:00:00               | 1274                    | 523                     | 133                                     |                |
| 00:90:00               | 1255                    | 514                     | 112                                     |                |
| 00:02:00               | 1244                    | 499                     | 103                                     |                |
| 00:08:00               | 1222                    | 486                     | 06                                      |                |
| 00:00:00               | 1211                    | 486                     | 08                                      |                |
| 00:10:00               | 1201                    | 472                     | 72                                      |                |
| 00:11:00               | 1193                    | 464                     | 92                                      |                |
| 00:12:00               | 1249                    | 454                     | 57                                      |                |
| 00:14:00               | 1277                    | 455                     | 54                                      |                |
| 00:15:00               | 1301                    | 449                     | 51                                      |                |
| 00:16:00               | 1321                    | 445                     | 51                                      |                |
| 00:17:00               | 1339                    | 441                     | 48                                      |                |
| 00:18:00               | 1355                    | 443                     | 49                                      |                |
| 00:19:00               | 1369                    | 439                     | 46                                      |                |
| 00:20:00               | 1382                    | 436                     | 47                                      |                |
| 00:22:00               | 1403                    | 432                     | 47                                      |                |
| 00:23:00               | 1413                    | 428                     | 45                                      |                |
| 00:24:00               | 1421                    | 428                     | 45                                      |                |
| 00:25:00               | 1428                    | 426                     | 43                                      |                |
| 00:26:00               | 1435                    | 424                     | 41                                      |                |
| 00:27:00               | 1441                    | 423                     | 40                                      |                |
| 00:28:00               | 1445                    | 421                     | 40                                      |                |
| 00:23:00               | 1449                    | 418                     | 40                                      |                |
| 00:08:00               | 1449                    | 418                     | 33                                      |                |
|                        |                         | 415                     | 39                                      |                |
|                        |                         | 412                     | 39                                      |                |
|                        |                         | 411                     | 38                                      |                |
|                        |                         | 410                     | 39                                      |                |
|                        |                         | 408                     | 38                                      |                |
|                        |                         | 408                     | 37                                      |                |
|                        |                         | 407                     | 36                                      |                |
|                        |                         | 404                     | 36                                      |                |
|                        |                         | 707                     |                                         |                |



| West, state of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Machine Milholm                               | to all the increase that A All and | 5       |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------|---------|-------------|
| Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page   Page    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Institut für Geologie u                       | nd Paläontologie                   | 5       |             |
| Feld 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | VESTFALISCHE<br>Vilhelms-Universität<br>Nünster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Abteilung für Angewa<br>PD Dr. Patricia Göbel | ndte Geologie                      |         |             |
| Feld 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                    |         |             |
| BeoSTON grau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Feld 5                                        | ,                                  |         |             |
| The color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the | Versuch Nr.            | eeoSTON grau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | II<br>Prototva M                              | II_clogging<br>Prototvp M          |         |             |
| mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate         mitt. inftrationsrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Datum                  | 22.7.2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.1.2011                                     | 25.1.2011                          |         |             |
| mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (V(schal))         mitt. inftrationsrate (                                                                                                                                                                                                                                                                                                                                                                                              | Zug. Clogging-Material | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               | 0,15   Milisil W11                 |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vorsakorosi            | i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian i titalian | mitting incidental                            | mittl.                             | Zugabe  | Zugabe Sand |
| 0,00         0,00         1,12           1719         1,506         551         0,15           1888         1584         276         0,15           1688         1584         276         0,15           1677         1607         1607         10,15           1649         1649         161         10,16           1640         1652         131         126           1640         1652         131         124           1640         1622         131         124           1650         163         100         100           1642         1623         100         100           1650         163         100         100           1644         1652         100         100           1650         1652         94         100           1650         1662         93         100           1651         92         100         100           1652         1623         83         100           1653         1662         93         100           1650         160         81         100           1651         162         100 <td>[ss:mm:yel</td> <td>[I/(sxha)]</td> <td>[[/(sxha)]</td> <td>Infitrationsrate<br/>[I/(sxha)]</td> <td>Milisil</td> <td>0,1/1,0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [ss:mm:yel             | [I/(sxha)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [[/(sxha)]                                    | Infitrationsrate<br>[I/(sxha)]     | Milisil | 0,1/1,0     |
| 1719         1506         551         0.15           1702         1583         275         0.15           1688         1694         275         0.01           1649         1609         161         207           1649         1609         161         161           1640         1613         156         161           1640         1625         136         173           1640         1625         136         100           1640         1625         136         100           1640         1625         136         100           1640         1623         136         100           1641         1628         100         100           1642         1628         100         100           1643         1623         89         100           1644         1623         89         100           1650         1623         89         100           1600         1621         93         160           1600         1623         89         160           1600         1623         82         160           1600         1623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                          | 00.0                               | 1.2     |             |
| 1702     1583       1688     1594       1677     1607       1678     1608       1649     1613       1640     1613       1641     1612       1642     1622       1643     1622       1644     1623       1645     1623       1646     1623       1647     1630       1648     1623       1649     1623       1640     1623       1641     1623       1607     1623       1608     1623       1609     1623       1600     1623       1601     1623       1602     1623       1603     1623       1604     1623       1605     1629       1596     1596       1584     1586       1586     1586       1586     1586       1587     1586       1588     1588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00:01:00               | 1719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |                                    | 0,15    | 0,15        |
| 1688     1594       1648     1608       1648     1608       1649     1609       1650     1613       1640     1615       1641     1625       1642     1631       1643     1631       1644     1632       1645     1632       1640     1632       1641     1630       1642     1632       1643     1632       1644     1632       1650     1623       1601     1623       1602     1623       1603     1634       1630     1634       1630     1634       1630     1637       1631     1639       1530     1634       1536     1536       1536     1536       1536     1536       1536     1536       1536     1536       1536     1536       1537     1536       1538     1536       1539     1536       1536     1536       1537     1536       1538     1536       1539     1536       1530     1536       1530     1536 <t< td=""><td>00:02:00</td><td>1702</td><td>1583</td><td>275</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00:02:00               | 1702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1583                                          | 275                                |         |             |
| 1677     1607       1648     1608       1649     1608       1650     1613       1647     1615       1648     1622       1649     1623       1650     1631       1650     1632       1648     1625       1649     1632       1640     1632       1641     1630       1602     1623       1601     1623       1602     1623       1603     1623       1604     1623       1605     1620       1590     1621       1590     1634       1596     1536       1586     1586       1586     1586       1586     1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00:03:00               | 1688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1594                                          | 276                                |         |             |
| 1648     1608       1649     1609       1650     1613       1650     1613       1640     1622       1640     1625       1650     1631       1650     1632       1642     1625       1643     1628       1644     1623       1645     1629       1601     1621       1601     1621       1602     1623       1603     1623       1604     1621       1605     1629       1580     1631       1590     1632       1580     1631       1580     1631       1580     1632       1586     1584       1586     1586       1586     1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00:04:00               | 1677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1607                                          | 207                                |         |             |
| 1669   1609   1609   1650   1650   1613   1647   1613   1648   1625   1625   1635   1648   1625   1636   1636   1648   1636   1636   1644   1607   1627   1607   1607   1621   1607   1607   1629   1605   1590   1596   1596   1596   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586    | 00:50:00               | 1648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1608                                          | 193                                |         |             |
| 1650     1613       1647     1613       1649     1615       1640     1625       1650     1631       1650     1631       1642     1625       1642     1628       1642     1629       1602     1621       1603     1621       1604     1621       1605     1621       1606     1602       1607     1611       1608     1609       1596     1596       1586     1584       1586     1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00:90:00               | 1649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1609                                          | 161                                |         |             |
| 1646     1652       1646     1622       1650     1635       1650     1635       1650     1635       1642     1635       1642     1636       1643     1628       1644     1630       1607     1629       1607     1621       1601     1611       1602     1621       1603     1602       1604     1611       1596     1536       1584     1584       1586     1586       1586     1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00:02:00               | 1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1613                                          | 156                                |         |             |
| 1649     1625       1669     1625       1650     1631       1650     1631       1648     1632       1642     1638       1643     1630       1644     1630       1607     1623       1610     1621       1611     1621       1602     1623       1603     1602       1604     1630       1605     1630       1596     1584       1586     1586       1586     1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00:08:00               | 1647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1615                                          | 136                                |         |             |
| 1699   1623   1624   1625   1631   1660   1635   1636   1636   1636   1636   1636   1636   1644   1626   1630   1630   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641   1641    | 00:03:00               | 1646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1622                                          | 121                                |         |             |
| 1600   1635   1648   1658   1648   1658   1649   1658   1658   1664   1659   1602   1601   1611   1611   1621   1690   1601   1611   1601   1601   1601   1601   1601   1601   1601   1601   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600   1600    | 00:10:00               | 1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1621                                          | 130                                |         |             |
| 1648     1625       1642     1628       1644     1620       1607     1629       1607     1627       1610     1627       1611     1621       1601     1623       1601     1621       1602     1632       1603     1631       1590     1590       1594     1596       1586     1586       1586     1586       1586     1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00:11:00               | 1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1635                                          | 114                                |         |             |
| 1642   1628   1629   1640   1640   1640   1620   1620   1620   1621   1611   1621   1621   1621   1621   1621   1621   1621   1621   1621   1622   1602   1602   1602   1602   1602   1602   1602   1602   1602   1602   1606   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580   1580    | 00:13:00               | 1648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1625                                          | 111                                |         |             |
| 1644   1630   1602   1629   1607   1627   1627   1627   1611   1611   1611   1601   1602   1599   1590   1596   1596   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586   1586    | 00:14:00               | 1642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1628                                          | 107                                |         |             |
| 1602     1629       1607     1623       1610     1623       1611     1621       1601     1621       1602     1639       1603     1605       1604     1607       1605     1608       1606     1590       1596     1586       1586     1586       1586     1586       1586     1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00:15:00               | 1644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1630                                          | 100                                |         |             |
| 1607 1627  1610 1623  1611 1621  1602 1605  1605 1590  1605 1590  11596 1596  11586 1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00:16:00               | 1602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1629                                          | 100                                |         |             |
| 1610 1623 1611 1611 1601 1602 1605 1605 1605 1606 1606 1607 1608 1608 1608 1608 1609 1608 1608 1608 1608 1608 1608 1608 1608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00:17:00               | 1607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1627                                          | 94                                 |         |             |
| 1611 1621<br>1601 1611<br>1590 1602<br>1602 1603<br>1603 1603<br>1604 1596<br>1596 1596<br>1584 1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00:18:00               | 1610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1623                                          | 89                                 |         |             |
| 1599 1611<br>1599 1602<br>1605 1605<br>1590 1594<br>1594 1596<br>1596 1596<br>1584 1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00:13:00               | 1611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1621                                          | 97                                 |         |             |
| 1602<br>1602<br>1602<br>1605<br>1590<br>1594<br>1596<br>1596<br>1586<br>1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00:20:00               | 1601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1611                                          | 92                                 |         |             |
| 1602<br>1605<br>1500<br>1530<br>1594<br>1596<br>1596<br>1586<br>1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00:21:00               | 1599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | 93                                 |         |             |
| 1592<br>1592<br>1594<br>1596<br>1596<br>1596<br>1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00:22:00               | 1602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | 89                                 |         |             |
| 1592<br>1594<br>1596<br>1596<br>1596<br>1584<br>1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00:23:00               | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | 9                                  |         |             |
| 1596<br>1596<br>1596<br>1584<br>1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00.24.00               | 1590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | 87                                 |         |             |
| 1586<br>1584<br>1584<br>1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00:26:00               | 1594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | 25                                 |         |             |
| 1586<br>1584<br>1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00:27:00               | 1596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | 81                                 |         |             |
| 1586<br>1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00:28:00               | 1596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | 81                                 |         |             |
| 1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00:29:00               | 1584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | 79                                 |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00:30:00               | 1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | 76                                 |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00:31:00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 167                                |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00:32:00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 168                                |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00:33:00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 164                                |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00:34:00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 161                                |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00:35:00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 160                                |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00:36:00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 158                                |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00:37:00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 154                                |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00:38:00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 155                                |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00:38:00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 151                                |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00:40:00               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 761                                |         |             |



| Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste   Missiste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                 |                                                                |                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|----------------------------------------------------------------|----------------------------|
| Feld 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | ГЕСТЕЙПІСНЕ                     | westianstife williems-Omver<br>Institut für Geologie und Paläc | sitat Munster<br>ontologie |
| Feld 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | /ILHELMS-UNIVERSITÄT<br>IÜNSTER | Abteilung für Angewandte Ge<br>PD Dr. Patricia Göbel           | ologie                     |
| Feld to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | L                               | ¢                                                              |                            |
| mittl. Inffrationsrate   mittl. Inffrationsrate   1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/(sxha)    1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :                        | Fe                              |                                                                |                            |
| mittl. inffrationsate mittl. inffrationsate (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Versuch Nr.              | l<br>gefügedicht                | II<br>gefügedicht+Frige dicht                                  | II_clogging                |
| mittl. Inffrationsate mittl. Inffrationsate (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V(sxha)) (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Datum                    | 22.7.2008                       | 25.1.2011                                                      |                            |
| (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(sxha))   (V(s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zugabe Clogging-Material |                                 |                                                                | 0,15 I Milisil W11         |
| ((sxha))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Varciichezeit            | mittl Infitrationsrate          | mitt Infitrationsrate                                          |                            |
| 0,00 1631 1631 1689 1721 1721 1731 1731 1733 1138 1008 1008 1007 1008 1109 1109 1119 1158 1288 1288 1288 1384 1384 1384 1384 1384 1400 1400 1430 1446 1446 1446 1446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [hh:mm:ss]               | [l/(sxha)]                      | [l/(sxha)]                                                     |                            |
| 1631<br>1699<br>1721<br>1731<br>1731<br>1733<br>1333<br>1025<br>1025<br>1026<br>1028<br>1008<br>1072<br>1119<br>1119<br>1165<br>1288<br>1288<br>1288<br>1384<br>1394<br>137<br>137<br>137<br>137<br>137<br>137<br>137<br>137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | 0000                            |                                                                |                            |
| 1699 1721 1731 1731 1731 1733 1333 1158 1025 924 1008 1008 1008 1008 1119 1119 11165 11286 1288 1288 1288 1384 1314 1317 1337 1347 1348 1348 1440 1410 1421 1421 1456 1466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00:01:00                 | 1631                            | 973                                                            |                            |
| 1721<br>1731<br>1539<br>1333<br>1158<br>1008<br>1008<br>1008<br>1008<br>1008<br>1008<br>1019<br>1119<br>1119<br>1119<br>1185<br>1288<br>1288<br>1288<br>1384<br>1314<br>1317<br>137<br>137<br>137<br>137<br>137<br>137<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00:05:00                 | 1699                            | 487                                                            |                            |
| 1579 1579 1333 1158 1008 1072 1008 1072 1119 1119 1165 1288 1288 1288 1384 1314 1317 1373 1348 1348 1346 1446 1456 1466 1466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00:03:00                 | 1721                            | 324                                                            |                            |
| 13.73<br>10.25<br>10.25<br>10.08<br>10.08<br>10.08<br>10.08<br>11.19<br>11.19<br>11.28<br>12.28<br>12.28<br>12.28<br>13.37<br>13.47<br>13.47<br>13.47<br>13.47<br>13.47<br>13.47<br>13.46<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14.10<br>14 | 00:04:00                 | 1731                            | 243                                                            |                            |
| 1188<br>1008<br>1008<br>1008<br>1072<br>119<br>1165<br>1288<br>1288<br>1288<br>1288<br>1384<br>1314<br>1317<br>1373<br>1373<br>140<br>1410<br>1421<br>1456<br>1466<br>1466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00:02:00                 | 1333                            | C81                                                            |                            |
| 1025<br>924<br>924<br>1008<br>1008<br>1109<br>11165<br>1238<br>1238<br>1238<br>1337<br>1337<br>1357<br>1373<br>1373<br>1384<br>1384<br>1384<br>1386<br>1430<br>1430<br>1421<br>1430<br>1455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00:08:00                 | 1333                            | 156                                                            |                            |
| 924 1008 11008 11008 11072 1119 1165 1286 1288 1288 1337 1357 1357 1357 1357 1368 1346 1430 1440 1455 1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00:80:00                 | 1025                            | 136                                                            |                            |
| 1008 1072 1072 1119 1119 1119 1115 1158 1288 1288 1337 1357 1357 1357 1357 1357 1357 1357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00:60:00                 | 924                             | 121                                                            |                            |
| 1072<br>1165<br>1165<br>1206<br>1238<br>1288<br>1288<br>1374<br>1373<br>1373<br>1373<br>1384<br>1410<br>1420<br>1456<br>1466<br>1466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00:10:00                 | 1008                            | 109                                                            |                            |
| 1119 1165 1206 1238 1258 1258 1258 1337 1337 1337 1337 1340 1430 1446 1445 1446 1445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00:11:00                 | 1072                            | 66                                                             |                            |
| 1165<br>1206<br>1238<br>1288<br>1288<br>1314<br>1317<br>1357<br>1357<br>137<br>1410<br>1410<br>1420<br>1456<br>1456<br>1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00:12:00                 | 1119                            | 91                                                             |                            |
| 12406<br>1228<br>1288<br>1288<br>1314<br>1317<br>1357<br>1357<br>1358<br>1410<br>1410<br>1430<br>1436<br>1436<br>1456<br>1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00:13:00                 | 1165                            | 84                                                             |                            |
| 1258<br>1288<br>1288<br>1314<br>1317<br>1327<br>1373<br>1373<br>1373<br>1410<br>1410<br>1430<br>1430<br>1446<br>1455<br>1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00:14:00                 | 1206                            | 88                                                             |                            |
| 1288<br>1314<br>1337<br>1357<br>1373<br>1384<br>1384<br>1410<br>1421<br>1421<br>1436<br>1446<br>1455<br>1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00:16:00                 | 1258                            | 22                                                             |                            |
| 1314<br>1337<br>1357<br>1357<br>1384<br>1384<br>1410<br>1421<br>1430<br>1446<br>1456<br>1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00:17:00                 | 1288                            | 73                                                             |                            |
| 1337 1357 1373 1384 1386 1410 1421 1430 1436 1446 1455 1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00:18:00                 | 1314                            | 69                                                             |                            |
| 1357<br>1373<br>1384<br>1384<br>1410<br>1421<br>1421<br>1436<br>1446<br>1456<br>1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00:19:00                 | 1337                            | 99                                                             |                            |
| 1373<br>1384<br>1398<br>1410<br>1421<br>1436<br>1436<br>1446<br>1455<br>1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00:50:00                 | 1357                            | 62                                                             |                            |
| 1384<br>1410<br>1421<br>1430<br>1436<br>1446<br>1455<br>1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00:21:00                 | 1373                            | 59                                                             |                            |
| 1398<br>1410<br>1421<br>1436<br>1446<br>1455<br>1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00:22:00                 | 1384                            | 26                                                             |                            |
| 1410<br>1430<br>1446<br>1446<br>1464<br>1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00:23:00                 | 1398                            | 54                                                             |                            |
| 1430<br>1446<br>1446<br>1465<br>1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00:24:00                 | 1410                            | 51                                                             |                            |
| 1436<br>1446<br>1455<br>1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00:25:00                 | 1430                            | 74                                                             |                            |
| 1446 1455 1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00:27:00                 | 1436                            | 46                                                             |                            |
| 1455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00:28:00                 | 1446                            | 44                                                             |                            |
| 1464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00:53:00                 | 1455                            | 43                                                             |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00:30:00                 | 1464                            | 43                                                             |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                 |                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                 |                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                 |                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                 |                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                 |                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                 |                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                 |                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                 |                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                 |                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                 |                                                                |                            |



| rsität Münster<br>liäontologie<br>e Geologie<br>bel                                                                                                |        |             |            |           |                          | Zugabe Milisil 2ugabe Sand 0,1/1,0 |            | 1,5   | 1,5 0,3  |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |     |     |     |     |     |     |     |     |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|------------|-----------|--------------------------|------------------------------------|------------|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Westfällsche Wilhelms-Universität Münster<br>Institut für Geologie und Paläontologie<br>Abteilung für Angewandte Geologie<br>PD Dr. Patricia Göbel |        | II clossins | Prototyp T | 25.1.2011 | 0,15   Milisil W11       | mittl. Infitrationsrate            | [/(sxha)]  |       | 647      | 416      | 336      | 302      | 299      | 286      | 278      | 255      | 922      | 228      | 212      | 197      | 188      | 183      | 172      | 167      |          | 153      | 152      | 146      | 140      | 138      | 133      | 131      | 120      | 124      | 120      | 118 | 114 | 115 | 113 | 111 | 108 | 109 | 107 | 105 |
| Westfäli<br>Institu<br>Abte                                                                                                                        | Feld 7 | =           | Prototyp T | 25.1.2011 |                          | mittl. Infitrationsrate            | [l/(sxha)] |       | 1460     | 1577     | 1615     | 1634     | 1652     | 1664     | 1670     | 1679     | 1680     | 1670     | 1676     | 1679     | 1685     | 1687     | 1687     | 1687     | 1685     | 7007     |          |          |          |          |          |          |          |          |          |     |     |     |     |     |     |     |     |     |
| WESTFÄLISCHE<br>Wilhelms-Universität<br>Münster                                                                                                    |        |             | greenSTON  | 22.7.2008 |                          | mittl. Infitrationsrate            | [[/(sxha)] | 00'00 | 975      | 957      | 1092     | 1179     | 1202     | 1216     | 1232     | 1241     | 1246     | 1248     | 1252     | 1257     | 1260     | 1261     | 1258     | 1248     | 1252     | 1250     | 1251     | 1252     | 1247     | 1245     | 1230     | 1233     | 1233     | 1223     | 7071     |     |     |     |     |     |     |     |     |     |
| 1153W WILHE                                                                                                                                        |        | Versiich Nr |            | Datum     | Zugabe Clogging-Material | Versuchszeit                       | [hh:mm:ss] |       | 00:01:00 | 00:05:00 | 00:03:00 | 00:02:00 | 00:90:00 | 00:05:00 | 00:80:00 | 00:60:00 | 00:11:00 | 00:11:00 | 00:13:00 | 00:14:00 | 00:15:00 | 00:16:00 | 00:17:00 | 00:18:00 | 00:13:00 | 00:20:00 | 00:22:00 | 00:23:00 | 00:24:00 | 00:25:00 | 00:26:00 | 00:27:00 | 00:28:00 | 00:53:00 | 00:00:00 |     |     |     |     |     |     |     |     |     |

#### Wirtschaftlichkeitsberechnung

Musterparkplatz: 38 Stellplätze - Größe ca. 1000  $\mathrm{m}^2$  einschl. 125  $\mathrm{m}^2$  Grün



| Ausf  | ührung:   |                                                                                                                                                                  | Star             | ndard                    | gehobene          | r Standard               | nach              | n abZ                    |
|-------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------------|
| Pos.  | Menge     | Leistung                                                                                                                                                         | EPreis           | GesPreis                 | EPreis            | GesPreis                 | EPreis            | GesPreis                 |
| 1     | 1000 m²   | Baufeld freimachen / Abbruch<br>(Aufnehmen von Oberflächenbefestigungen/<br>Grün rohden/ Abbau von Gegenständen)                                                 | 4,90 €           | 4.900,00 €               | 4,90 €            | 4.900,00 €               | 4,90 €            | 4.900,00 €               |
| 2     | 500 m³    | Erdarbeiten<br>(Bodenabtrag bis 50 cm incl. Planunm und<br>Handschachtungsarbeiten)                                                                              | 15,50 €          | 7.750,00 €               | 15,50 €           | 7.750,00 €               | 15,50 €           | 7.750,00 €               |
| 3     | 875 m²    | Oberflächenentwässerung<br>(4 Abläufe ca. 1000,-€<br>100 m Leitungsgräben+Leitungen ca. 4000,-€<br>1 Rvisionsschacht ca. 1000,-€<br>1 Kanalanschluß ca. 1500,-€) | 8,50 €           | 7.437,50 €               | 8,50 €            | 7.437,50 €               | 8,50 €            | entfällt                 |
| 4     | 875 m²    | Oberbauarbeiten<br>(Schottertragschichten 2-lagig einbauen - ca. 3,-€/m²<br>Material: HKS 0/56 - 0/32 mm - ca. 11,-€/to)                                         | 12,50 €          | 10.937,50 €              | 12,50 €           | 10.937,50 €              | 15,00 €           | 13.125,00 €              |
| 5     |           | Oberflächenbefestigung                                                                                                                                           |                  |                          |                   |                          |                   |                          |
| 5.1   | 175 m     | Einfassung mit Tiefbord 8 x 25 einschl. Unterbeton und Rückenstütze B 15                                                                                         | 14,75 €          | 2.581,25 €               | 14,75 €           | 2.581,25 €               | 14,75 €           | 2.581,25 €               |
| 5.2   | 135 m     | Rinne, Betonstein 24/16/ 14, 2-reihig einschl.<br>Unterbeton B 15                                                                                                | 22,00 €          | 2.970,00 €               | 22,00 €           | 2.970,00 €               | 22,00 €           | entfällt                 |
| 5.3   | 875 m²    | Pflasterbettung 4 cm                                                                                                                                             | 4,00 €           | 3.500,00 €               | 4,00 €            | 3.500,00 €               | 4,50 €            | 3.937,50 €               |
| 5.4   | 355 m²    | Fahrspur, Betonsteinpflaster 20/10/8 cm<br>im Winkelverband einschl. Verfugung<br>Material: Rechteckpflaster 20/10/8 cm Grau<br>Verlegen und Verfugen            | 8,30 €<br>7,50 € | 2.946,50 €<br>2.662,50 € |                   |                          |                   |                          |
|       | 355 m²    | Fahrspur, Betonsteinpflaster 23/16/8 cm<br>in Reihe mit Gliederung einschl. Verfugung<br>Material: citySTON 23/16/8 cm Grau-Schwarz<br>Verlegen und Verfugen     |                  |                          | 16,90 €<br>8,50 € | 5.999,50 €<br>3.017,50 € |                   |                          |
|       | 400 m²    | Fahrspur, Betonsteinpflaster 20/10/8 cm<br>im Winkelverband einschl. Verfugung nach ABZ<br>Material: geoSTON protect 20/10/8 cm Grau<br>Verlegen und Verfugen    |                  |                          |                   |                          | 12,50 €<br>9,00 € | 5.000,00 €<br>3.600,00 € |
| 5.5   | 475 m²    | Stellplätze, Betonsteinpflaster 20/10/8, 23/16/8 cm                                                                                                              |                  |                          |                   |                          |                   |                          |
|       |           | in Reihe mit Gliederung einschl. Verfugung<br>Material: RE, citySTON, geoSTON protect<br>Verlegen und Verfugen                                                   | 8,30 €<br>7,80 € | 3.942,50 €<br>3.705,00 € | 16,90 €<br>8,80 € | 8.027,50 €<br>4.180,00 € | 12,50 €<br>9,30 € | 5.937,50 €<br>4.417,50 € |
| 6     | 2 Stk.    | Ausstattung, Mastleuchten einschl. Kabelarbeiten incl. Erdarbeiten                                                                                               | 2.000,00 €       | 4.000,00 €               | 2.000,00 €        | 4.000,00 €               | 2.000,00€         | 4.000,00 €               |
| 7     | 125 m²    | Begrünung, Oberbodeneinbau sowie Vorbereitung der Vegetationsflächen, Heckenpflanzung Hainbuche                                                                  | 17,50 €          | 2.187,50 €               | 17,50 €           | 2.187,50 €               | 17,50 €           | 2.187,50 €               |
|       |           | Summe netto                                                                                                                                                      |                  | 59.520,25 €              |                   | 67.488,25 €              |                   | 57.436,25 €              |
|       |           | 19%                                                                                                                                                              | -                | 11.308,85 €              | -                 | 12.822,77 €              | _                 | 10.912,89 €              |
|       |           | Summe brutto                                                                                                                                                     | =                | 70.829,10 €              | =                 | 80.311,02 €              | _                 | 68.349,14 €              |
| Woite | ere Koste | n die nicht zu spezifizieren sind:                                                                                                                               |                  |                          |                   |                          | ca.*              | 2.500,00 €               |
| - Ab  |           | handlungskosten                                                                                                                                                  |                  |                          |                   |                          | _                 | 70.849,14 €              |

<sup>-</sup> Niederschlagsgebühren

<sup>-</sup> Wartung und Reinigung (bei Ausführung nach abZ)

<sup>\*)</sup> Zustäzliche begleitende Prüfungen (5 Infiltrationsmessungen/2 Absiebungen/Abschlussbericht)