Fraunhofer Institut Umwelt-, Sicherheit-, Energietechnik UMSICHT Osterfelderstr. 3 46047 Oberhausen

Untersuchung und Optimierung eines Verfahrens zur solaren Kälteerzeugung auf Basis von Parabolrinnenkollektoren und einer Dampfstrahlkältemaschine

> Abschlussbericht zum Forschungsvorhaben, gefördert unter dem AZ 22692 von der Deutschen Bundesstiftung Umwelt

> > Clemens Pollerberg Dr. Christian Dötsch

Fraunhofer Institut UMSICHT, Oberhausen

Oberhausen, Juni 2006

| Deutsch                                      | Projektkennblatt<br>der<br>nen Bundesstiftung                                                    | Umwelt                                              | DBU C<br>Deutsche Bundesstiftung Umwelt                                                          |
|----------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Az <b>22692</b>                              | Referat <b>24/0</b>                                                                              | Fördersumme                                         | 50.000,00 €                                                                                      |
| Antragstitel                                 | Untersuchung und Optir<br>gung auf Basis von Para<br>maschine                                    | nierung eines Verfahren<br>abolrinnenkollektoren un | s zur solaren Kälteerzeu-<br>d einer Dampfstrahlkälte-                                           |
| Stichworte                                   | Energie, Solarthermie                                                                            |                                                     |                                                                                                  |
| Laufzeit                                     | Projektbeginn                                                                                    | Projektende                                         | Projektphase(n)                                                                                  |
| 9 Monate                                     | 26.11.2004                                                                                       | 03.03.2006                                          |                                                                                                  |
| Zwischenberichte                             | 26.08.2005                                                                                       |                                                     |                                                                                                  |
| Bewilligungsempfänger<br>Kooperationspartner | Fraunhofer Institut Umwelt<br>Energietechnik UMSICHT<br>Osterfelder Straße 3<br>46047 Oberhausen | -, Sicherheits-,                                    | Tel0208/8598-1195Fax0208/8598-1423ProjektleitungDr. Christian DötschBearbeiterClemens Pollerberg |

### Zielsetzung und Anlass des Vorhabens

Die Möglichkeit mittels einer solaren Dampfstrahlkältemaschine (DSKM) mit Parabolrinnenkollektoren und Wasser als Kältemittel Kälte zu erzeugen wurde bislang nur theoretisch untersucht. Gegenstand des Projektes ist der Bau einer Versuchsanlage mit der das reale Verhalten einer solaren DSKM untersucht werden kann. Mit Hilfe dieser Versuchsanlage soll die Funktionsfähigkeit dieses Konzeptes praktisch gezeigt und die bisher vorliegenden nur theoretischen Berechnungen unter realen Versuchsbedingungen überprüft werden. Dabei soll insbesondere das Betriebsverhalten optimiert und die Einsatzgrenzen ausgelotet werden. Das über das Projekt hinzuweisende Ziel ist die Grundlagen für eine Pilotanlage zu ermitteln.

### Darstellung der Arbeitsschritte und der angewandten Methoden

Auf Basis vorhandener Kenntnisse wird eine solare DSKM mit Parabolrinnenkollektor als Versuchsanlage konzipiert. Die Einzelkomponenten werden für eine Kälteleistung von 1-2 kW dimensioniert. Der Planung schließt sich der Bau der Versuchsanlage an. Mit Hilfe der Versuchsanlage werden die Funktionalität und das Betriebsverhalten der solaren DSKM untersucht. Dies geschieht zunächst im Rahmen von Freilandversuchen. Die bei den Versuchen aufgenommenen Betriebsdaten werden ausgewertet und insbesondere das Betriebsverhalten der PRK sowie des Strahlverdichter mit 1,7 mm Treibdüse analysiert. Anschließend werden kleinere technische Optimierungen an der Versuchsanlage durchgeführt und die Anlage für Indoor-Versuche am Kollektorteststand an der Ruhr-Uni-Bochum vorbereitet. Mit den Versuchsfahrten am Kollektorteststand wird dann das Betriebsverhalten des Strahlverdichters mit einer 1,5 mm Treibdüse sowie das "Umkipp-Verhalten" des Strahlverdichters untersucht. Ferner werden bei diesen Versuchen alternativ zu dem Parabolrinnenkollektoren auch ein Vakuumröhrenkollektor eingesetzt. Abschließend werden die Messdaten ausgewertet und Wirkungsgrade der Anlage bestimmt und ein Regelkonzept zum Betrieb des Strahlverdichters erarbeitet.

Deutsche Bundesstiftung Umwelt £ An der Bornau 2 £ 49090 Osnabrück £ Tel 0541/9633-0 £ Fax 0541/9633-190 £ http://www.dbu.de

### Ergebnisse und Diskussion

Die Kennwerte der PRK konnten im Rahmen der Freilandversuche ermittelt werden. Die PRK zeigt ähnliche gute Wirkungsgrade wie der VRK. Die spezifische Wärmekapazität der VRK ist deutlich höher als die des PRK, was sich durch geringere Leistungsschwankungen bei Wolkendurchgängen bemerkbar machen dürfte. Der Wirkungsgrad der Versuchsanlage liegt bei der 1,7 mm Treibdüse bei 0,15 - 0,5 und bei der 1,5 mm Treibdüse bei 0,3 – bis 0,7. Die Treibdüsenwirkungsgrade sind mit 0,7 für die 1,5 mm und 0,55 für die 1,7 mm Treibdüse geringer als erwartet. Im Rahmen von "Umkippversuchen" wird die Charakteristik des Strahlverdichters, die das Betriebsverhalten der DSKM bestimmt, untersucht und ein mindestens erforderlicher Treibdampfdruck p<sub>tr</sub> ermittelt. Dieser mindestens erforderliche Treibdampfdruck  $p_{r}$  wird als Funktion des Saugdampfdruckes  $p_{r}$  und des Kondensatordruckes  $p_{r}$ dargestellt und als Regelgröße für den Treibdampf vorgeschlagen. Ferner wird der Zusammenhang zwischen Wirkungsgrad und Rückkühltemperatur sowie Kaltwassertemperatur dargestellt und auf den daraus resultierenden hohen jährlichen mittleren Wirkungsgrad einer DSKM hingewiesen. Die Jahresertragsrechnung und anschließende wirtschaftliche Betrachtung zeigt, dass die solare DSKM durchaus mit solaren Absorptionskältemaschinen konkurrieren kann. Dabei schneidet die solare DSKM besonders an Standorten mit niedriger durchschnittlicher Feuchtkugeltemperatur  $T_f$  gut ab. Dies sind gleichzeitig auch oft Standorte mit hoher Direktstrahlung  $I_{dir}$ , so dass die Parabolrinnenkollektoren und die DSKM sich gut ergänzen. Unter ökologischen Gesichtspunkten scheint die solare DSKM gegenüber anderen Kältemaschinen vorteilhafter.

### Öffentlichkeitsarbeit und Präsentation

Eine Veröffentlichung der Projektergebnisse ist durch eine Fachveröffentlichung und Vortrag auf der Solar Heating and Cooling International Session 61st ATI National Congress in Perugia, Italien 2006, geplant.

### Fazit

Die solare DSKM ist unter ökonomischen und ökologischen Gesichtspunkten eine interessante Alternative zu anderen Verfahren der solaren Kühlung. Bislang wurde jedoch dieser Technik kaum Beachtung geschenkt, so dass Demonstrationsanlagen bislang nicht realisiert wurden.

Eine genauere Betrachtung des Betriebsverhaltens der DSKM zeigt jedoch, dass die DSKM im Teillastbereich und bei guten Rückkühlbedingungen hohe COP Werte erreichen kann, was sich bei einer Jahresbetrachtung durch einen guten mittleren COP bemerkbar macht.

Nach Abschluss des Projektes wäre nun der Bau einer ersten Demonstrationsanlage der folgerichtige Schritt diese Technik weiter voranzutreiben und am Markt zu etablieren.

Deutsche Bundesstiftung Umwelt £ An der Bornau 2 £ 49090 Osnabrück £ Tel 0541/9633-0 £ Fax 0541/9633-190 £ http://www.dbu.de

# Inhaltsverzeichnis

| 1             | Zusammenfassung                                               | 9        |
|---------------|---------------------------------------------------------------|----------|
| 2             | Aufgabenstellung und Zielsetzungen des<br>Forschungsvorhabens | 11       |
| 3<br>3.1      | Stand der Technik<br>Solarkollektoren                         | 12<br>12 |
| 3.2<br>3.3    | Dampfstrahlkältemaschinen<br>Solare Dampfstrahlkältemaschinen | 14<br>15 |
| 4             | Beschreibung und Bau der                                      | 10       |
| 4.1           | Allgemeines zur Versuchsanlage Solar DSKM                     | 19       |
| 4.2           | Der Dampfprozess                                              | 20       |
| 4.2.1         | Beschreibung des Dampfprozesses                               | 20       |
| 4.2.2         | Inbetriebnahme der Dampfprozesses                             | 22       |
| 4.2.3         | Nachfuhrung des PRKs                                          | 25       |
| 4.3<br>// 3.1 | Der Kalleprozess<br>Beschreibung der DSKM mit                 | 30       |
| 4.5.1         | Kaltwasserkreislauf                                           | 30       |
| 4.3.2         | Inbetriebnahme des Kälteprozesses                             | 32       |
| 4.4           | Messdatenerfassung                                            | 35       |
| 5             | Versuchsfahrten                                               | 37       |
| 5.1           | Freilandmessungen                                             | 37       |
| 5.2           | Versuchsfahrten am Kollektorteststand                         | 40       |
| 5.2.1         | Beschreibung des Kollektorteststandes                         | 40       |
| 5.2.2         | Indoor-Versuchstahrten                                        | 44       |
| 6             | Betriebsverhalten der Solar DSKM                              | 48       |
| 6.1           | Betriebsverhalten der Solarkollektoren                        | 48       |
| 6.2           | Betriedsvernalten und Wirkungsgrad der                        | 50       |
| 621           | Betriehsverhalten des Strahlverdichsters                      | 52       |
| 6.2.2         | "Umkippverhalten" des Strahlverdichters                       | 55       |
| 6.2.3         | Leistung und COP der DSKM                                     | 59       |
| 6.3           | Regeltechnische Maßnahmen zur Absicherung                     |          |
|               | eines stabilen Betriebes des Strahlverdichters                | 63       |
| 7             | Ökologische und Ökonomische                                   |          |
|               | Betrachtung unter Berücksichtigung                            |          |
|               | verschiedener Anlagenkonzepte                                 | 66       |
|               |                                                               |          |

| 7.1 | Erzielbarer Wärmepreis bei der Verwendung<br>von VRK und PRK                               | 66 |
|-----|--------------------------------------------------------------------------------------------|----|
| 7.2 | Wirtschaftlicher Vergleich einer solaren DSKM<br>mit anderen solarthermischen Kälteanlagen | 70 |
| 7.3 | Ökologische Vergleich einer Solaren DSKM mit                                               | 70 |
|     | konventionellen Systemen                                                                   | 15 |
| 8   | Angaben zu internationalen Kontakten,<br>wissenschaftlichen Arbeiten                       | 79 |
| 9   | Fazit                                                                                      | 80 |
| 10  | Literaturverzeichnis                                                                       | 81 |
| 11  | Anhang                                                                                     | 84 |

# Verzeichnis von Abbildungen und Tabellen

| Abbildung 1: Zeitplan für die Umsetzung des Forschungsvorhabens                                   | 11  |
|---------------------------------------------------------------------------------------------------|-----|
| Abbildung 2: Funktionsweise eines Parabolspiegels                                                 | 12  |
| Abbildung 3: Betriebsverhalten eines Strahlverdichter nach /3/                                    | 15  |
| Abbildung 4: Verfahrensschema des Dampfprozesses                                                  | 20  |
| Abbildung 5: Solar DSKM, Dampfprozess nicht isoliert                                              | 21  |
| Abbildung 6: Solar DSKM bei der Inbetriebnahme des Dampfprozesses                                 | 22  |
| Abbildung 7: Betriebsparameter während der Inbetriebnahme des Dampfprozesses                      | 23  |
| Abbildung 8: Parabolrinne mit Blick in den Parabolspiegel während des Betriebes                   | 24  |
| Abbildung 9: Solare Einstrahlung während der Inbetriebnahme des Dampfprozesses                    | 24  |
| Abbildung 10: Dampftrommel der Solar DSKM                                                         | 25  |
| Abbildung 11: Funktionsskizze des Solarsensors                                                    | 28  |
| Abbildung 12: Nachführung des Parabolrinnenkollektors                                             | 29  |
| Abbildung 13: Schaltschrank mit der "Mini-SPS" sowie Antrieb der Nachführung                      | 30  |
| Abbildung 14: Verfahrensschema der DSKM                                                           | 31  |
| Abbildung 15: Solar DSKM bei der Inbetriebnahme des Kälteprozesses                                | 33  |
| Abbildung 16: Betriebsdrücke während der Inbetriebnahme                                           | 34  |
| Abbildung 17: Temperaturverläufe des Verdampfers und des Kaltwasserkreises                        | 35  |
| Abbildung 18: Messstellenliste der Versuchsanlage solar DSKM                                      | 35  |
| Abbildung 19: Visualisierung der Versuchsanlage solar DSKM                                        | 36  |
| Abbildung 20: Einstrahlung und Kollektortemperaturen                                              | 37  |
| Abbildung 21: Dampftrommeldruck und Treibdampfdruck während verschiedenen Versuchsfahrten         | 38  |
| Abbildung 22: Treibdampfdruck, Saugdampfdruck und Kondensatordruck der DSKN                       | Л39 |
| Abbildung 23: Verdampfertemperaturen während der Versuchsfahrten, exemplarisc                     | h40 |
| Abbildung 24: Schematische Darstellung des Kollektorteststandes an der Ruhr<br>Universität Bochum | 41  |
| Abbildung 25: Spektrum Thorn-Strahler und Sonnenspektrum //                                       | 42  |
| Abbildung 26: Spezifische Einstrahlungsleistung des Kollektorteststandes                          | 43  |
| Abbildung 27: Abnahme der Einstrahlungsleistung vom Zentrum des "Beams"                           | 44  |
| Abbildung 28: VRK bei den Versuchsfahrten am Kollektorteststand                                   | 44  |
| Abbildung 29: Einstrahlung auf den VRK                                                            | 45  |

| Abbildung 30: | PRK bei den Versuchsfahrten am Kollektorteststand                                                                   | 46       |
|---------------|---------------------------------------------------------------------------------------------------------------------|----------|
| Abbildung 31: | Direktstrahlung entlang des PRK                                                                                     | 47       |
| Abbildung 32: | Wirkungsgrad des PRKs mit Fehlerbalken 10% vom Absolutwert                                                          | 49       |
| Abbildung 33  | berechnet Wirkungsgradkurven und gemessene Werte bei<br>unterschiedlichen Betriebsbedingungen                       | 50       |
| Abbildung 34  | Wirkungsgrad der VRK und Wirkungsgrad PRK                                                                           | 50       |
| Abbildung 35: | Kollektorleistung während des Anfahrvorganges der DSKM                                                              | 51       |
| Abbildung 36  | Saugmassenstrom in Abhängigkeit des Verdampferdrucks                                                                | 52       |
| Abbildung 37  | Treibdampfmassenstrom in Abhängigkeit des Treibdampfdrucks                                                          | 53       |
| Abbildung 38  | Berechnete und ermittelter Treibmassenstrom zweier Versuchsfahrten                                                  | 54       |
| Abbildung 39  | Thermografieaufnahme des Strahlverdichters                                                                          | 55       |
| Abbildung 40  | Thermografieaufnahmen während des "Umkippversuches"                                                                 | 56       |
| Abbildung 41: | Betriebsdaten während des "Umkippversuches"                                                                         | 57       |
| Abbildung 42: | Grenzdrücke des Strahlverdichters mit 1,5 mm Treibdüse                                                              | 58       |
| Abbildung 43  | Grenzdrücke des Strahlverdichters mit 1,7 mm Treibdüse                                                              | 59       |
| Abbildung 44  | Antriebswärmebedarf entsprechend Kondensatortemperatur, 1,5 mm<br>Treibdüse                                         | 60       |
| Abbildung 45: | Antriebswärmebedarf entsprechend Kondensatortemperatur, 1,7 mm<br>Treibdüse                                         | 60       |
| Abbildung 46  | Saugmassenstrom gegen Kondensatortemperatur für einen<br>Saugdampfdruck von 10 mbar                                 | 61       |
| Abbildung 47  | COP-Werte in Abhängigkeit der Verdampfertemperatur                                                                  | 62       |
| Abbildung 48  | COP-Werte in Abhängigkeit der Verdampfertemperatur und der Kondensatortemperatur, gerechnet mit den Auslegungsdaten | 62       |
| Abbildung 49  | Notwendiger Treibdampfdruck, Treibdampfdüse 1,5 mm                                                                  | 63       |
| Abbildung 50  | Notwendiger Treibdampfdruck, Treibdampfdüse 1,7 mm                                                                  | 64       |
| Abbildung 51: | Funktion zur Berechnung des Treibdampfes, Treibdüse 1,5 mm                                                          | 65       |
| Abbildung 52  | Erzielbarer Wärmepreis der Solarthermie für die Standorte Toulouse u<br>Safi                                        | nd<br>69 |
| Abbildung 53  | Erzielbarer Wärmepreis der Solarthermie für die Standorte Genova un St. Katrine                                     | d<br>69  |
| Abbildung 54  | Wirtschaftlicher Vergleich der Kälteanlagen an unterschiedlichen<br>Standorten mit unterschiedlichen Leistungen     | 75       |
| Abbildung 55  | Kohlendioxidemissionen der verglichenen solaren Kältemaschinen                                                      | 77       |

| Abbildung 56: Kohlendioxidemissionen der solaren DSKM und einer elektrischen<br>Kältemaschine      | 78      |
|----------------------------------------------------------------------------------------------------|---------|
| Tabelle 1: Auslegungsdaten des Antriebes                                                           | 28      |
| Tabelle 2: Kennwerte des PRKs und des VRKs, wobei Kennwerte des VRKs aus []                        | 52      |
| Tabelle 3: Kennwerte der Kollektoren für die Ertragsrechnung                                       | 66      |
| Tabelle 4: Ergebnisse der Ertragsrechnungen für die Solarthermie                                   | 67      |
| Tabelle 5: Wirtschaftlichkeitsrechnung der Solarthermie für eine Kollektortemperatur<br>von 130 °C | r<br>68 |
| Tabelle 6: Lastprofile und COP-Werte der einzelnen Standorte                                       | 71      |
| Tabelle 7: Wirtschaftliche Rahmenbedingungen                                                       | 71      |
| Tabelle 8: Wirtschaftlichkeitsrechnung einer 200 kW 1-stufigen ABS                                 | 72      |
| Tabelle 9: Wirtschaftlichkeitsrechnung einer 200 kW 2-stufigen ABS                                 | 73      |
| Tabelle 10: Wirtschaftlichkeitsrechnung einer 200 kW DSKM                                          | 74      |
| Tabelle 11: Kennwerte zur Berechnung der Kohlendioxidemissionen                                    | 76      |

# Abkürzungen

| СОР  | Coefficient ot pertormance         |
|------|------------------------------------|
| DSKM | Dampf Strahl Kältemaschine         |
| PRK  | Parabolrinnenkollektor             |
| RMT  | Roof Mount Parabolic Troughs       |
| SPS  | Speicher programmierbare Steuerung |
| SPS  | Speicherprogrammierbare Steuerung  |
| VRK  | Vakuumröhrenkollektor              |

# Formelzeichen

| Α            | Fläche                     |
|--------------|----------------------------|
| С            | Konzentrationsverhältnis   |
| С            | Wärmekapazität             |
| К            | Kosten                     |
| <i>k</i> 1   | Lineare Wärmeverluste      |
| <i>k</i> 2   | Quadratische Wärmeverluste |
| Ι            | Strahlung                  |
| 7 <b>8</b> 2 | Massenstrom                |
| m            | Masse                      |
| n            | Tag im Jahr                |
| p            | Druck                      |
| Č            | Wärmeleistung              |
| Q            | Wärmearbeit                |
| Τ            | Temperatur                 |
| t            | Zeit                       |
| u            | Drehzahl                   |

| а | Absorptionsgrad     |
|---|---------------------|
| g | Auffangfaktor       |
| b | Neigungswinkel      |
| d | Deklination         |
| e | Emissionsgrad       |
| j | Breitengrad         |
| W | Stundenwinkel       |
| r | Reflexionsgrad      |
| t | Transmissionsgrad   |
| Θ | Einstrahlungswinkel |
| h | Wirkungsgrad        |

# Indizes

| 0      | Kälte/unteres Niveau/optisch |
|--------|------------------------------|
| а      | Apertur                      |
| A      | Absorber                     |
| a      | Kapital                      |
| b      | Betrieb                      |
| Diff   | Diffusor                     |
| dir    | direkt                       |
| Düs    | Düse                         |
| F      | feuchte                      |
| grenz  | Grenze                       |
| hor    | horizontal                   |
| invest | Investition                  |
| k      | Kondensator                  |
| Kol    | Kollektor                    |
| m      | Mittel/mittlerer             |
| N – S  | Nord – Süd                   |
|        |                              |

| O-W  | Ost – West |
|------|------------|
| p    | isobar     |
| R    | Rücklauf   |
| S    | Saugdampf  |
| tr   | Treibdampf |
| Trom | Trommel    |
| U    | Umgebung   |
| V    | isochor    |
| V    | Vorlauf    |

## 1 Zusammenfassung

Gegenstand des Projektes ist der Bau einer kleinen solaren Dampfstrahlkältemaschine (DSKM) mit einer Kälteleistung  $\mathcal{G}_0$  von 1 kW als Versuchsanlage. Mit Hilfe der Versuchsanlage sollen die technische Basis für eine Pilotanlage und deren effizienter Betrieb geschaffen werden. Ferner wird abschließend ein ökonomischer Vergleich der solaren DSKM mit solar betriebenen Absorptionskältemaschinen durchgeführt.

Die hier untersuchte solare DSKM wird mit Wasser als Kältemittel und Treibmittel in einem "offenen System" betrieben. Aufgrund der Verwendung von Wasserdampf als Treibmittel werden Parabolrinnenkollektoren (PRK) und Vakuumröhrenkollektoren (VRK) verwendet, die auch bei höheren Temperaturen noch gute Wirkungsgrade erzielen.

Die Versuchsanlage kann in einem Dampf- und in einem Kälteprozess unterteilt werden. Der Dampfprozess besteht aus einem 10,5 m<sup>2</sup> großem PRK und einer Dampftrommel nebst Speisewasserversorgung. Der Kollektorkreislauf wird als Druckwasserkreislauf bis max. 8 bar (ü) betrieben. Die Dampftrommel dient zur Treibdampferzeugung und wird mit Hilfe einer Speisewasserpumpe mit Speisewasser versorgt. Die Nachführung der PRK erfolgt mit Hilfe einer "Mini-SPS", die entsprechend des Sonnenstandes die PRK ausrichtet. Der Kälteprozess besteht aus dem Strahlverdichter, dem Verdampfer, einem Plattenwärmetauscher als Kondensator und einem Gebläselüfter als Kälteverbraucher. Der Strahlverdichter ist für die Nennbedingungen Treibdampfdruck  $p_t$  3 bar (abs) Verdampferdruck  $p_s$  0,01 mbar (abs) und Kondensatordruck  $p_k$  0,05 mbar (abs) ausgelegt. Eine Wasserringvakuumpumpe dient zur Evakuierung des Kälteprozesses. Die gesamte Anlage ist mobil und kann somit an verschiedenen Orten betrieben werden. Ferner ist die Versuchsanlage mit einem Datenerfassungssystem ausgerüstet, welches gleichzeitig eine Prozessvisualisierung ermöglicht.

Während der Sommermonate 2005 wurden Versuchsfahrten auf dem Freilandgelände des Institutes durchgeführt. Im Winterhalbjahr 2005/06 wurden weitere Versuchsfahrten am Kollektorteststand der Ruhr-Universität Bochum absolviert, wobei neben der PRK auch ein VRK eingesetzt wurde.

Die Kennwerte der PRK konnten im Rahmen der Freilandversuche ermittelt werden. Die PRK zeigt ähnliche gute Wirkungsgrade wie der VRK. Die spezifische Wärmekapazität der VRK ist deutlich höher als die des PRK, was sich durch geringere Leistungsschwankungen bei Wolkendurchgängen bemerkbar

machen dürfte. Der COP der Versuchsanlage liegt bei der 1,7 mm Treibdüse bei 0,15 - 0,5 und bei der 1,5 mm Treibdüse bei 0,3 - bis 0,7. Die Treibdüsenwirkungsgrade sind mit 0,7 für die 1,5 mm und 0,55 für die 1,7 mm Treibdüse geringer als erwartet. Im Rahmen von "Umkippversuchen", bei den der Strahlverdichter aus einem stabilen Betriebszustand in den instabilen Betriebszustand fällt, wird die Charakteristik des Strahlverdichters, die das Betriebsver-DSKM untersucht halten der bestimmt, und ein erforderlicher Mindesttreibdampfdruck  $p_{tr}$  ermittelt. Dieser mindestens erforderliche Treibdampfdruck  $p_{tr}$  wird als Funktion des Saugdampfdruckes  $p_s$  und des Kondensatordruckes p<sub>k</sub> dargestellt und als Regelgröße für den Treibdampf vorgeschlagen. Ferner wird der Zusammenhang zwischen COP und Rückkühltemperatur sowie Kaltwassertemperatur dargestellt und auf den daraus resultierenden hohen jährlichen mittleren COP einer DSKM hingewiesen.

Abschließend wird auf Basis einer Jahresertragsrechnung ein ökologischer und ökonomischer Vergleich einer solaren DSKM mit solaren Absorptionskältemaschinen durchgeführt. Es zeigt sich, dass die solare DSKM durchaus mit solaren Absorptionskältemaschinen wirtschaftlich konkurrieren kann. Dabei schneidet die solare DSKM besonders an Standorten mit niedriger durchschnittlicher Feuchtkugeltemperatur  $T_f$ , also Standorten mit einem sehr trockenen Klima,

gut ab. Dies sind gleichzeitig auch oft Standorte mit hoher Direktstrahlung  $I_{dir}$ , so dass die PRK und die DSKM sich gut ergänzen. Unter ökologischen Gesichtspunkten scheint die solare DSKM gegenüber anderen Kältemaschinen vorteilhafter.

# 2 Aufgabenstellung und Zielsetzungen des Forschungsvorhabens

Gegenstand des Projektes ist der Bau einer kleinen Versuchsanlage Parabolrinnen-DSKM mit einer Kälteleistung von 1 kW, die mit einem konzentrierenden Kollektorsystem von 10 m<sup>2</sup> betrieben wird.

Ziel des Forschungsvorhabens ist es, anhand der Versuchsanlage die technische Basis für eine Pilotanlage und deren effizienten Betrieb zu schaffen, wobei insbesondere folgende Fragestellungen untersucht werden:

- 1. Wie kann eine Parabolrinnenkollektor-DSKM optimal geplant und ausgelegt werden, um zu minimalen jährlichen Gesamtkosten zu gelangen?
- 2. Wie ist das Betriebsverhalten der solaren DSKM unter wechselnden Betriebsbedingungen? Welche Wirkungsgrade können erzielt werden, welche Faktoren können optimiert werden?
- 3. Welche regeltechnischen Maßnahmen können zur Absicherung des stabilen Betriebes der Anlage (des Strahlverdichters) herangezogen werden?

Ferner wird abschließend eine ökologische und ökonomische Bilanzierung des Verfahrens in Abgrenzung zum Stand der Technik vorgenommen. Die Abbildung 1 zeigt den geplanten Zeitplan für die Umsetzung des Forschungsvorhabens.



Abbildung 1: Zeitplan für die Umsetzung des Forschungsvorhabens

Herzlichen Dank an die Deutsche Bundesstiftung Umwelt für die Bereitstellung der Fördergelder ohne diese die Durchführung des Forschungsvorhabens nicht möglich gewesen wäre.

## 3 Stand der Technik

#### 3.1 Solarkollektoren

Solarkollektoren lassen sich in konzentrierende und nichtkonzentrierende Kollektorsysteme unterscheiden. Zu den konzentrierenden oder fokussierenden Systemen zählen beispielsweise Parabolrinnenkollektoren (PRK), Paraboloide und Fresnellinsenkollektoren. Nichtkonzentrierende Systemen sind zum Beispiel Vakuumröhrenkollektoren (VRK), Flach- und Luftkollektoren. Für die hier untersuchte DSKM mit Wasser als Treib.- und Kältemittel werden entsprechend hohe Temperaturen zur Erzeugung des Treibdampfes benötigt. Dies erfordert solarthermische Kollektoren, die auch noch bei Temperaturen über 100 °C gute Wirkungsgrade erzielen. Für den Antrieb der DSKM wurden demzufolge Parabolrinnenkollektoren der Fa. Industrial Solar Technology Corp., USA, eingesetzt, sowie alternativ ein Vakuumröhrenkollektor der Fa. Paradigma, Deutschland. An dieser Stelle herzlichen Dank an die Fa. Paradigma für den gespendeten Kollektor.

Parabolrinnenkollektoren bestehen aus einem parabelförmigen Spiegel und einem in seiner Brennlinie positioniertem Absorber. Die Parabolrinne nutzt die Eigenschaft der Parabel, parallel zur Parabelachse einfallende Strahlung in einem Brennpunkt entsprechend Abbildung 2 zu fokussieren.



Abbildung 2: Funktionsweise eines Parabolspiegels

Die Parabel errechnet sich nach Bartsch /1/ mit Gleichung 3-1, wobei die Länge p bzw.  $\frac{p}{2}$  aus Abbildung 2 ersichtlich ist.

Gleichung 3-1

$$y = \pm \sqrt{2 px} \qquad \qquad x > 0$$

Durch die Fokussierung eines Parabolrinnenspiegels wird die Solarstrahlung in einer Brennlinie konzentriert und vom Absorber aufgenommen und als Wärmeenergie an ein Wärmeträgermedium abgegeben. Der Absorber besteht aus einem Absorberrohr, welches sich in einem Glashüllrohr befindet um Wärmeverlust zu reduzieren. Das Absorberrohr ist mit einer Selektivbeschichtung versehen, die die kurzwellige Sonnenstrahlung maximal absorbiert und die längerwellige Wärmestrahlung minimal emittiert. Diese Spezialbeschichtungen bestehen aus Metalloxiden und Sulfiden und haben meist eine mattschwarze Farbe wie z.B.: Schwarznickel (NiS-ZnS) und Schwarzchrom (Cr-Cr2O3). Bei Absorptionsgraden a um 0.95 weisen sie Emissionsgrade e von 0.08 bei 80 °C auf. Moderne Varianten, wie zum Beispiel Tinox oder Sunselect, schimmern bläulich und erreichen  $\alpha$ - Werte von 0,95 bei  $\epsilon$ - Werten von 0,05 – sie verlieren also weniger Wärme durch Abstrahlung. Wichtige Kenngrößen eines PRK ist das Konzentrationsverhältnis C. Das Konzentrationsverhältnis C ist entsprechend Gleichung 3-2 definiert als das Verhältnis der Aperturfläche  $A_a$  zur Fläche des Sonnenbildes in der Brennebene, welche im Idealfall der Absorberfläche  $A_A$  entspricht.

Gleichung 3-2

$$C = \frac{A_a}{A_A}$$

Der Wirkungsgrad eines Solarkollektors wird durch die optischen und thermischen Verluste bestimmt. Mit steigendem Konzentrationsverhältnis C nimmt der Einfluss von optischen Verlusten gegenüber von thermischen Verlusten an dem Wirkungsgrad zu. Die optischen Verluste werden nach /2/ durch den Reflexionsgrad r des Konzentrators, den Transmissionsgrad t des Glashüllrohrs und den Absorptionsgrad a des Absorbers bestimmt. Zur genauen Quantifizierung der Auffangverluste wird ein Auffangfaktor g herangezogen. Der Auffangfaktor g stellt den Anteil der vom Konzentrator reflektierten Strahlung dar, der von der energieabsorbierenden Oberfläche des Receivers aufgefangen wird. Der Auffangfaktor g ist einerseits eine Eigenschaft des Konzentrators (mikroskopische Unregelmäßigkeiten, Konturfehler des Spiegels) und seiner Orientierung bei der Projektion des Sonnenbildes, andererseits eine Eigenschaft des Empfängers und seiner Stellung relativ zum Konzentrator. Der Auffangfaktor g beträgt üblicherweise Werte zwischen 0,9 bis 0,95. Die thermischen Verluste sind abhängig von der Temperatur des Absorberrohrs und der Art der Absorberbeschichtung. Bei höheren Absorbertemperaturen darf der Einfluss des Emissionsgrades e nicht mehr vernachlässigt werden. PRKs können nur direkte Solarstrahlung nutzen, da nur diese Strahlung sich fokussieren lässt.

Vakuumröhrenkollektoren VRK bestehen aus mehreren, nebeneinander befestigten und evakuierten Glasröhren in denen ein Absorber, in der Regel aus Kupfer, montiert ist. Der Absorber besteht aus einem Blech mit Selektivbeschichtung, das mit einem Rohr verbunden ist. Infolge solarer Einstrahlung erwärmt sich das Blech und leitet die Wärmeenergie zu dem Rohr, das mit einem Wärmeträgermedium durchströmt wird und die Wärmeenergie abtransportiert. Das evakuierte Glasrohr reduziert die Wärmeverluste des Absorbers infolge Wärmekonvektion und Wärmeleitung. VRK können direkte und diffuse Solarstrahlung nutzen.

#### 3.2 Dampfstrahlkältemaschinen

Die Dampfstrahlkältemaschine DSKM ist eine thermisch angetriebene Kältemaschine, die Treibdampf als Antriebsenergie für einen Strahlverdichter nutzt. Der Dampfstrahlkälteprozess gehört zu den Kaltdampfprozessen, bei denen ein Kältemittel bei niedrigem Druck- und Temperaturniveau verdampft und auf einem höheren Druck- und Temperaturniveau wieder kondensiert wird. Die beim Verdampfen aufgenommene Wärmeenergie stellt die Kälteleistung  $Q_0$ dar. Die notwendige Verdichtungsarbeit um das dampfförmige Kältemittel vom Verdampferdruck  $p_s$  auf den Kondensatordruck  $p_k$  zu verdichten leistet ein Strahlverdichter.

DSKMs besitzen in der Regel ein niedrigeres Wärmeverhältnis, im englischen auch Coefficient of Performance COP genannt, bei Nennlast als andere thermische Kältemaschinen. Hingegeben ist das Wärmeverhältnis im Teillastbereich oft sehr hoch. Da Kältemaschinen überwiegend über das Jahr gesehen im Teillastbereich arbeiten, kann mit der DSKM ein hohes mittleres jährliches Wärmeverhältnis erreicht werden, welches durchaus Werte über eins erreichen.

Die DSKM erlaubt eine offene Prozessführung. Das heißt, bei Einsatz von Wasser als Kältemittel benötigt die DSKM keine hydraulische Trennung zum Kaltwasserkreislauf der Kälteversorgung. Wird Wasser ebenfalls als Wärmeträgermedium im Solarkollektor und als Treibmedium für den Strahlverdichter eingesetzt, kann auch auf eine hydraulische Trennung auf der Antriebsseite verzichtet werden. Eine derartige Prozessführung senkt die Investitionskosten, da Wärmetauscher eingespart werden können, und vermeidet die sonst notwendige Wärmeübertragungen und die dazugehörige Entropiezuwächse.

Kernkomponente der DSKM ist der Strahlverdichter, der das Betriebsverhalten der DSKM charakterisiert. Das Diagramm in Abbildung 3 zeigt das Betriebsverhalten eines Strahlverdichters nach /3/. Dabei ist der Saugmassenstrom  $r\mathcal{R}_{s}$  direkt proportional zur Kälteleistung  $Q_{0}$  der DSKM.



Abbildung 3: Betriebsverhalten eines Strahlverdichter nach /3/

Der Saugmassenstrom  $n \mathbf{k}_s$  ist abhängig vom Verdampferdruck  $p_s$ . Bis zu einem gewissen Gegendruck fördert der Strahlverdichter mit konstantem Saugmassenstrom  $n \mathbf{k}_s$ . Bei Überschreitung diesen Gegendruckes bricht der Saugmassenstrom  $n \mathbf{k}_s$  zusammen.

#### 3.3 Solare Dampfstrahlkältemaschinen

Kakabaev und Davletov konstruierten 1966 /4/ eine erste solar DSKM als Versuchsanlage mit einer Kälteleistung von 1 kW. Die Anlage besteht aus einem 12 m<sup>2</sup> Parabolspiegel und einer Dampfstrahlkältemaschine die zur Klimatisierung eines 37 m<sup>3</sup> großen Raumes genutzt wird. Ein Freon dient als Treib- und als Kältemittel. Das Treibmittel wird im Parabolspiegel direkt erhitzt. Zur Rückkühlung wird Wasser verwendet. Der Gesamtwirkungsgrad der Versuchsanlage bezogen auf die solare Einstrahlung liegt zwischen 0,14-0,22.

Anderson /5/ untersuchte theoretisch eine solar angetriebene Dampfstrahlkältemaschine mit Butan als Kältemittel und verglich das Verfahren mit solarbetriebenen Absorptionskältemaschinen. Bei niedrigen Antriebstemperaturen ist der Wirkungsgrad der solaren Dampfstrahlkältemaschine höher als der Wirkungsgrad der absortiven Kälteverfahren.

Zhadan /6/ untersuchte theoretisch den Einfluss von verschiedenen Kältemittel und Betriebsparametern auf den Gesamtwirkungsgrad einer solaren DSKM. Für die untersuchten Kältemitteln 12V1, 142, 114 und S318 ergab sich eine optimale Antriebstemperatur der DSKM von 85 °C.

Alkasab /7/ meldete ein Patent auf ein Verfahren zum Heizen und Kühlen an. Unter Verwendung von Flachkollektoren und Wasser als Wärmeträger wird zunächst ein Wärmespeicher geladen. Die Wärme aus dem Wärmespeicher dient zu Heizzwecken oder zum Betrieb einer Dampfstrahlkältemaschine. Als Kältemittel für die DSKM wird R-11 vorgeschlagen. Die Rückkühlung erfolgt über einen Trockenkühler.

Abdel-Aal und Al-Zakri /8/ schlagen die Kombination von solarer Klimatisierung und Meerwasserentsalzung vor. Dabei soll Salzwasser mit Hilfe von Strahlverdichter in einem Flashverdampfer gekühlt werden. Das gekühlte Meerwasser dient zur Klimatisierung. Das beim Flashprozess verdampfende Wasser soll als Trinkwasser verwendet werden. Die notwendige Wärmeenergie für den Treibdampf soll mit Hilfe von Flachkollektoren solarthermisch erzeugt werden.

Chai und Lansing /9/ entwickelten ein Nomogramm mit dessen Hilfe man die Leistung einer solaren DSKM unter Berücksichtigung verschiedener Betriebsparametern ermitteln kann. Ferner weisen sie auf den starken Einfluss des Treibdüsen- und Diffusorwirkungsgrades hin, deren Kurven in das Nomogramm mit einfließen.

Sokolov /10/ untersucht eine solare DSKM mit R-114 als Kältemittel. Zur Erzeugung der Antriebswärme schlägt er Flachkollektoren mit Wasser als Wärmeträgermedium vor. Der Kälteprozess ist vom Solarkreislauf hydraulisch getrennt. Sokolov errechnet einen Gesamtwirkungsgrad von 0,13 - 0,26.

Neben der solaren Klimatisierung wurde auch die Möglichkeit der solaren Lebensmittelkühlung erforscht. So baute Hofer /11/ eine kleine Versuchsanlage bestehend aus einer DSKM mit dem Kältemittel Wasser. Zur Erzeugung der Antriebswärme wird ein Paraboloid verwendet, der die Solarstrahlung auf einen Dampferzeuger fokussiert. Die Kälteleistung des DSKM ist so bemessen, dass ein kleiner Kühlschrank betrieben werden kann. Aufgrund des Kältemittels Wasser können Temperaturen unter 0 °C nicht erreicht werden. Das vorgeschlagene Verfahren ist nicht automatisiert und für "sonnenreiche" Länder der dritten Welt angedacht.

Wolpert und Riffat /12/ planen eine 7 kW Versuchsanlage zur Klimatisierung eines Krankenhauses in Mexiko. Als Kälte- sowie Treibmittel soll Wasser verwendet werden. Bei fehlender solarer Einstrahlung soll die DSKM mit Hilfe eines gasgefeuerten Dampferzeugers betrieben werden. Weitere Informationen zu der Anlage oder ihrer Realisierung wurden bislang nicht veröffentlicht.

Von Huang, Petrenko und Chang /13/ wurde eine solare DSKM mit Flachkollektoren und R-141b als Kältemittel entwickelt. Aufgrund der Verwendung von R-141b liegt die Antriebstemperatur der DSKM bei 95 °C, was den Einsatz von Flachkollektoren erlaubt. Der solare Gesamtwirkungsgrad der Anlage liegt bei 0,22 bei einer Antriebstemperatur von 95 °C und einer solaren Einstrahlung von 700 W/m<sup>2</sup>. Ferner untersuchen Petrenko, Bulavin und Samofatov /14/ praktisch und theoretisch die Kältemittel R-142b, R-141b, R-600 und R-600a, wobei das Kältemittel R-142b bei den Untersuchungen als das Effizienteste benannt wird. Neben dem Einsatz von R-142b wird auch ein mehrstufiger Kälteprozess in Kaskade vorgeschlagen. Ferner stellen Huang und Petrenko /15/ einen kombinierten Prozess zur Wärme und Kälteversorgung vor. Mit Hilfe von Flachkollektoren und einen Heizwassererzeuger wird Wärmeenergie erzeugt, die dann wahlweise zur Wärmeversorgung oder als Antriebswärme für die DSKM verwendet wird. Als Kältemittel für die DSKM wird R-141b vorgeschlagen. Der kombinierte Prozess ist für den Einsatz in der Industrie gedacht, wobei insbesondere Industrieanlagen mit hohem Wärmeverbrauch und gleichzeitigem Kältebedarf als potentielle Anwender dieser Technik gesehen werden.

Noeres, Hölder und Hennecke /16/ schlagen in ihrer Patentschrift die Kombination von Parabolrinnenkollektoren mit einer DSKM vor. Als Kälte- und Treibmittel soll Wasser verwendet werden, wobei das Treibmittel direkt im Kollektor verdampft und dem Strahlverdichter zugeführt wird. Lechner /17/ untersuchte theoretisch diese Verfahrensvariante. Mit Hilfe eines statischen Modells und Wetterdaten führte er erste Jahressimulationen durch. Das DLR und UMSICHT /18/ untersuchen das Konzept der solaren mehrstufigen DSKM mit Parabolrinnenkollektoren zur Gebäudeklimatisierung. Es werden verschiedene anlagentechnische Aspekte betrachtet und sinnvolle Ausführungen aufgezeigt. Als Treib- und Kältemittel wird Wasser vorgeschlagen. Jahressimulationen zeigen, dass die solare DSKM durchaus mit solarthermisch betriebenen Absorptionskältemaschinen konkurrieren kann. Pridasawas /19/ betrachtet verschiedene Möglichkeiten der solaren Kälteerzeugung. Dabei bewertet er die solare DSKM als kostengünstige Lösung, aber mit geringen Wirkungsgraden.

Bislang wurde noch keine solare DSKM mit Wasser als Kälte- und Treibmittel zur Gebäudeklimatisierung realisiert. Bei den bisher ausgeführten Versuchsanlagen wurden konventionelle Kältemittel verwendet. Diese haben den Vorteil, dass Antriebswärme auf relativ niedrigem Temperaturniveau zum Betrieb der DSKM ausreicht und kostengünstige Flachkollektoren verwendet werden können. Die dabei erzielbaren Wirkungsgrade sind entsprechend gering.

Aus ökologischen und ökonomischen Aspekten ist Wasser allerdings als natürliches Kältemittel konventionellen Kältemitteln vorzuziehen. Ferner ermöglicht Wasser die offene Prozessgestaltung des Gesamtsystems ohne hydraulische Trennung zum Kälteverbraucher bzw. zum Solarkollektor, was den Wirkungsgrad der Gesamtanlage erhöht. Die für die höhere Antriebstemperatur notwendigen effizienteren Solarkollektoren wie beispielsweise Parabolrinnenkollektoren (PRK) oder Vakuumröhrenkollektoren (VRK) lassen sich, neben der solaren Klimatisierung, auch zur Energieversorgung in ein vorhandenes Versorgungskonzept gut integrieren.

## 4 Beschreibung und Bau der Versuchsanlage

#### 4.1 Allgemeines zur Versuchsanlage Solar DSKM

Der Bau und Betrieb des Solarkreislaufs und die Nachführung der Parabolrinnenkollektoren stellen die größte Unsicherheit dar. Die Inbetriebnahme der solaren DSKM erfolgte somit in zwei Phasen. In einer ersten Phase wurde der Solarkreislauf einschließlich Dampftrommel und Speisewasserversorgung in Betrieb genommen, wobei insbesondere die Erzeugung von Dampf angestrebt wurde, in der zweiten Phase wurde der Kälteprozess in Betrieb genommen.

Entsprechend des Zeitplanes wurde in den Arbeitswochen 1 bis 5 das genaue Konzept der solaren DSKM festgelegt und die Versuchsanlage ausgelegt. Anschließend fand die geplante Bauphase bis einschließlich Arbeitswoche 31 statt. Im Anschluss an die Bauphase erfolgte die Inbetriebnahme des Dampfprozesses und des Kälteprozesses im Rahmen von ersten Freilandversuchen. Ab Arbeitswoche 34 erfolgten unterschiedliche Versuchsfahrten zur Charakterisierung des Betriebsverhaltens der Versuchsanlage und der Einzelkomponenten. Parallel zu den Versuchsfahrten erfolgt die Auswertung der Messdaten. Ab Arbeitswoche 42 wurden die Versuchsfahrten am Kollektorteststand der Ruhr-Universität in Bochum fortgesetzt.

Um den apparativen Aufwand möglichst zu Minimieren und maximale Mobilität der Versuchsanlage zu erzielen, wurde die Kälteleistung der Versuchsanlage so gering wie möglich gehalten. Die geringste Kälteleistung ergibt sich aus der kleinstmöglichsten noch zu fertigen Treibdampfdüse im Strahlverdichter. Nach Rücksprache verschiedener Strahlverdichterherstellen liegt der kleinste noch zu fertigende Durchmesser bei 1,5 mm. Allerdings ist dieser Durchmesser zu gering um bei den angenommenen Betriebsbedingungen von Treibdampfdruck  $p_{tr} = 3$  bar, Verdampferdruck  $p_0 = 10$  mbar und Kondensatordruck  $p_k = 30$ mbar einen stabilen Betrieb des Strahlverdichters zu gewährleisten, so dass eine Treibdampfdüse mit einem Durchmesser von 1,7 mm verwendet wird. Für die späteren Messungen am Solarkollektorteststand wurde von günstigeren Rückkühlbedingungen ausgegangen, so dass der Kondensatordruck entsprechend geringer ist und eine 1,5 mm Düse verwendet werden konnte.

Zum Betrieb der DSKM wird eine Antriebswärmeleistung von 2-3 kW benötigt. Die 2 – 3 kW Antriebswärmeleistung wird mit einem 10,5 m<sup>2</sup> grossen Parabolrinnekollektor bereitgestellt. Ferner werden Dampftrommel und Verdampfer so dimensioniert, dass sie als thermische Energiespeicher Sonnendurchgänge und Spitzenlasten abfangen können. Das Volumen der Dampftrommel wird mit 75 I und das des Verdampfers mit 150 I gewählt.

Aufgrund der geringen Rückkühlleistung wird auf ein Rückkühlwerk für die Versuchsanlage verzichtet. Die Rückkühlung geschieht mit Frischwasser, das direkt dem Kondensator zugeführt wird.

#### 4.2 Der Dampfprozess

#### 4.2.1 Beschreibung des Dampfprozesses

Der Dampfprozess besteht aus der Dampftrommel B1, dem Solarkreislauf der als Druckwasserkreislauf ausgeführt ist und der Speisewasserversorgung. Die Abbildung 4 zeigt das Verfahrensschema des Dampfprozesses.



Abbildung 4: Verfahrensschema des Dampfprozesses

Der für den Betrieb der DSKM notwendige Treibdampf wird am Kopf der Dampftrommel B1 entnommen. Die Dampftrommel ist für einen Füllstand von 30% konzipiert. Das Wärmeträgerfluid Wasser wird mit der Solarkreispumpe P1 durch die Parabolrinne gegen eine Drossel gefördert, die den Druck in der Parabolrinnen gegenüber der Dampftrommel erhöht. Der erhöhte Druck in der Parabolrinne verhindert das vorzeitige Sieden der Flüssigkeit. Hinter der Drossel entspannt das Wasser in der Dampftrommel. Diese Betriebsweise kann als Druckwasserkreislauf bezeichnet werden. Mit der Speisewasser P3 wird Kondensat aus der Kondensatvorlage B3 in die Dampftrommel B1 gefördert. Die Pumpe P3 wird über einen Mindeststandskontakt an der Dampftrommel B1 und einer Abfallverzögerung geschaltet. Die Hysterese des Kontaktschalters beträgt 1,5 cm bezogen auf die Füllhöhe der Dampftrommel B1, so dass bei einem Schaltintervall und einer Abfallverzögerung von 0 s ca. 2 I Kondensat aus der Kondensatvorlage B3 in die Dampftrommel B1 gefördert werden. Bei einem Dampfverbrauch von 3,8 kg/h würde die Pumpe P3 halbstündig fördern.

Der gesamte Druckwasserkreislauf einschließlich Dampftrommel B1 würde am 13.07.05 vom TÜV Nord entsprechend Druckgeräterichtlinie als Dampferzeuger der Kategorie II abgenommen. Der maximale zulässige Betriebsdruck des Systems beträgt 8 bar (ü). Vom Sachverständigen wurde eine Stagnationstemperatur der Parabolrinne von 420 °C bei einer Globaleinstrahlung von 810 W/m<sup>2</sup> ermittelt. Die Abbildung 4 zeigt die Solare DSKM unisoliert am Tage der TÜV Abnahme.



Abbildung 5: Solar DSKM, Dampfprozess nicht isoliert

Rechts im Bild befindet sich das Gestell, das den Kälteprozess sowie die Dampftrommel und Speisewasserversorgung beinhaltet. Die Parabolrinnen ist mit Dampfschläuchen an dem Dampfprozess angebunden, so dass für einen Transport beide Einheiten getrennt werden können. Das Gestell ist mit Rollen versehen und kann geschoben werden. Die drei Module der Parabolrinnen sind nicht wie vom Hersteller üblich verschweißt, sondern mit Hilfe von Verschraubungen gekoppelt was eine Modifikation der Kollektoren erforderte. Für einen späteren Transport lassen sich die Module trennen und einzeln transportieren. Die gesamte Anlage ist somit mobil und kann an verschiedenen Orten getestet werden.

### 4.2.2 Inbetriebnahme der Dampfprozesses

Nach der technischen Abnahme durch den TÜV Nord wurde der Druckwasserkreislauf sowie die Dampftrommel isoliert und in Betrieb genommen. Die Abbildung 6 zeigt die Versuchsanlage bei der Inbetriebnahme des Dampfprozesses.



Abbildung 6: Solar DSKM bei der Inbetriebnahme des Dampfprozesses

Während der Inbetriebnahme wurde zeitweise Dampf über die Entlüftung der Dampftrommel an die Umgebung abgegeben. Die Abbildung 7 zeigt die Betriebsparameter Vorlauftemperatur des Solarkreislaufes, Treibdampfdruck und Globaleinstrahlung während der Inbetriebnahme des Dampfkreislaufes.



Abbildung 7: Betriebsparameter während der Inbetriebnahme des Dampfprozesses

Die Vorlauftemperatur des Solarkreislaufes, die der Temperatur in der Dampftrommel entspricht, steigt ab 10:00 Uhr kontinuierlich bis auf 138 °C. Der Druck der Dampftrommel erreichte 2,8 bar (ü). Die Einstrahlung erreichte ihr Maximum mit Werten zwischen 850 – 900 W/m<sup>2</sup> zwischen 12:00 – 13:00 Uhr. Ab 13:30 Uhr zogen größere Wolkenfelder vorüber, so dass während der Dampfabnahme von 14:32 -15:07 Uhr die Treibdampfbedingungen nicht gehalten werden konnten.

Die Abbildung 8 zeigt die Parabolrinne mit Blick in den Parabolspiegel während der Inbetriebnahme des Dampfprozesses.



Abbildung 8: Parabolrinne mit Blick in den Parabolspiegel während des Betriebes

Ist die Parabolrinnen optimal zur Sonne ausgerichtet, lässt sich die Fokallinie auf der Unterseite des Absorbers beobachten. Deutlich sieht man den hell erleuchteten Absorber sowie seine Reflektion im Parabolspiegel. Die Abbildung 9 zeigt die Solareinstrahlung während der Inbetriebnahme des Dampfprozesses.



Abbildung 9: Solare Einstrahlung während der Inbetriebnahme des Dampfprozesses

Die Globalstrahlung wird von einem Strahlungsmesser am Institut aufgezeichnet. Die Diffusstrahlung und Direktstrahlung wird mit Hilfe eines Pyranometers, das uns freundlicherweise vom Deutschen Zentrum für Luft- und Raumfahrt in Köln zur Verfügung gestellt wurde, per Handmessung ermittelt und während der Versuchsmessung in regelmäßigen Abständen protokolliert. Ab 13:30 Uhr zogen mehrere Wolkenfelder vorüber, so dass die Globalstrahlung starke Schwankungen aufzeigt. Während des Nachmittages verdichten sich dann die Wolkenfelder. Dies zeigt sich darin, dass der Diffusstrahlungsanteil an der Globalstrahlung zunimmt, wobei der Direktstrahlungsanteil abnimmt. Dementsprechend weißt die Kurve der Direktstrahlung einen stärkeren Abfall auf als die Globalstrahlungskurve und Diffusstrahlungskurve.

Die Abbildung 10 zeigt die Dampftrommel der Solar DSKM während der Inbetriebnahme des Dampfprozesses.



Abbildung 10: Dampftrommel der Solar DSKM

Während der Inbetriebnahme des Dampfprozesses wurde Dampf über die Entlüftung der Dampftrommel entnommen. Der Druckwasserkreislauf wird gegenüber der Dampftrommel mit einem höheren Druck von ca. 1 – 1,5 bar betrieben.

#### 4.2.3 Nachführung des PRKs

Da nur senkrecht zur Parabelöffnung einfallende Direktstrahlung vom Parabolspiegel fokussiert werden kann, müssen PRKs kontinuierlich dem Sonnenverlauf einachsig nachgefahren werden. Dies geschieht durch Änderung des Neigungswinkels. Der Neigungswinkel ist der Winkel zwischen der Horizontalen und der Geraden die waagerecht zur Öffnung der Parabel verläuft. Die dafür notwendige Nachführung besteht aus einer Antriebseinheit die den PRK bewegt um den Neigungswinkel zu ändert und einer Steuereinheit die mit Hilfe der Antriebseinheit den PRK zur Sonne ausrichtet. Zur Ausrichtung des PRK können zwei Methoden angewendet werden. Zum einen kann mit Hilfe der Ortszeit und der Ortskoordinaten der Neigungswinkel berechnet werden oder der optimale Neigungswinkel wird mit Hilfe eines Sensors der den Sonnenstand misst ermittelt. Da beide Methoden Vor- und Nachteile besitzen empfiehlt es sich in der Praxis beide Methoden zu kombinieren. So ist es sinnvoll den PRK entsprechend der Ortszeit und Ortskoordinaten nachzufahren und dann eine Feinausrichtung entsprechend des gemessenen Sonnenstandes vorzunehmen.

Der notwendige Neigungswinkel in Abhängigkeit der Ortszeit und der Ortskoordinaten kann über der Formel für den Einstrahlungswinkel  $\Theta$  ermittelt werden. Der Einstrahlungswinkel  $\Theta$  zwischen der Direktstrahlung und der Normalgeraden senkrecht zum Kollektor kann nach Duffie und Beckman/2/ für ein PRK mit der Ausrichtung der Drehachse Ost-West mit Gleichung 4-1 bzw. mit der Ausrichtung der Drehachse Nord-Süd mit Gleichung 4-2 berechnet werden.

Gleichung 4-1

 $\cos \Theta = \sin d \sin j \, \cos b - \sin d \cos j \, \sin b$  $+ \cos d \cos j \, \cos b \cos w$  $+ \cos d \sin j \, \sin b \cos w$ 

Gleichung 4-2

 $\cos \Theta = \sin d \sin j \, \cos b + \cos d \cos j \, \cos b \cos w$  $+ \cos d \sin b \sin w$ 

Das *d* steht für den Deklinationswinkel, *j* für den Breitengrad und v gibt den Stundenwinkel an. Der Winkel *b* entspricht dem Neigungswinkel des PRKs. Die Berechnung der Deklination erfolgt mit Gleichung 4-3, wobei *n* für den Tag im Jahr steht.

Gleichung 4-3

$$d = 23,45 \cdot \sin\left(360\frac{284+n}{365}\right)$$

Der Stundenwinkel kann Werte von – 180° bis 180° annehmen und ändert – sich stündlich um 15°. Um 12:00 Uhr Ortszeit ist der Wert des Stundenwinkels null. Eine genaue Definition und Berechnung der Ortszeit kann der Literatur von Rapp /20/ entnommen werden.

Der Wirkungsgrad der PRK erhöht sich mit abnehmenden Einfallswinkeln  $\Theta$ und erreicht sein Maximum bei  $\Theta = 0$ , wobei der Ausdruck  $\cos(\Theta) = 1$  wird. Gleichzeitig besitzt, bei senkrecht zur Parabelöffnung einfallender Einstrahlung, der Einfallswinkel  $\Theta$  sein Minimum, so dass  $\cos(\Theta)$  maximal ist. Der dazugehörige Neigungswinkel *b* lässt somit durch Extremwertbestimmung wie folgt berechnen:  $\cos(\Theta) = \max$  bei f'(b) = 0.

Für die Ost-West Ausrichtung lautet die Ableitung nach b entsprechend Gleichung 4-4:

Gleichung 4-4

 $\frac{d\cos(\Theta)}{db} = \cos b(\cos d\sin j \,\cos w - \sin d\cos j \\ -\sin b(\sin d\sin j + \cos d\cos j \,\cos w)$ 

Daraus ergibt sich durch Nullsetzen und Auflösen zu b der optimale Neigungswinkel für die Ost-West Ausrichtung entsprechend Gleichung 4-5.

Gleichung 4-5

$$\frac{(\sin b)}{(\cos b)} = \frac{(\cos d \sin j \, \cos w - \sin d \cos j)}{(\sin d \sin j + \cos d \cos j \, \cos w)} = \tan b$$

Für die Nord-Süd Ausrichtung lautet die Ableitung nach b entsprechend Gleichung 4-6.

Gleichung 4-6

$$\frac{d\cos(\Theta)}{db} = \cos b(\cos d\sin w) - \sin b(\sin d\sin j + \cos d\cos j \cos w)$$

Daraus ergibt sich durch Nullsetzen und Auflösen zu b der optimale Neigungswinkel für die Nord-Süd Ausrichtung entsprechend Gleichung 4-7. Gleichung 4-7

 $\frac{(\sin b)}{(\cos b)} = \frac{(\cos d \sin w)}{(\sin d \sin j + \cos d \cos j \cos w)} = \tan b$ 

In Hinblick auf die relativ kleine Kollektorfläche der Versuchsanlage bestehend aus nur drei Modulen, speziell für die hier verwendeten RMTs (Roof Mount Parabolic Troughs) empfiehlt der Hersteller eine Mindestmodulzahl von 32 Stück mit einer Mindestleistung von 52 kW thermisch, wurde aus Kostengründen auf eine marktverfügbare Nachführung verzichtet und eine eigene kostengünstige Nachführung auf Basis einer "Mini-SPS" als Steuerung entwickelt… Da die Anlage nur beaufsichtigt betrieben wird und der Programmieraufwand gering gehalten werden sollte, wurde eine zeitliche Nachführung nicht realisiert. Die Ausrichtung des PRKs erfolgt manuell über ein Tastaturfeld und im Automatikbetrieb mit Hilfe eines Solarsensors. Als Solarsensor werden vier Fotowiderstände verwendet, die die Helligkeitsdifferenz beidseitig einer zur Parabel stehenden Senkrechten messen. Die Abbildung 11 zeigt das Funktionsprinzip des Solarsensors.



Abbildung 11: Funktionsskizze des Solarsensors

Erreicht die Differenz den Wert null, so steht die Sonne genau senkrecht zum Parabolspiegel und der Kollektor ist ausgerichtet. Eine Hysterese gibt dabei die erlaubte Abweichung vom Wert null an. Die "Mini-SPS" Schaltet einen Gleich strommotor der über einen Kettenantrieb den PRK zur Sonne ausrichtet. Bei der Auslegung des Antriebes ist, neben dem Drehmoment, die Stellgeschwindigkeit des PRK entscheidend. Dabei soll der PRK möglichst präzise dem Sonnengang nachgefahren werden, aber ein zu häufiges Takten des Motors vermieden werden. Die Tabelle 1 zeigt die Auslegungsdaten des Antriebes.

| abelle 1: Auslegungsdaten des Antriebes |
|-----------------------------------------|
|-----------------------------------------|

| Drehzahl  |      | Motor        |       |
|-----------|------|--------------|-------|
| Rohr [mm] | 25,4 | u [i/min]    | 1850  |
| Abstand   |      |              |       |
| [mm]      | 550  | Stirngetribe | 1:100 |

| Stellwinkel   | 2 64555314 | Interdecimal  | 1.10  |
|---------------|------------|---------------|-------|
| Stollzoit [c] | 2,01000011 | Interdecimal  | 1:10  |
|               | 9,5        | Interdecimai  | 1.10  |
| Stellgeschw.  | 0,27847928 |               |       |
| Kette_Übers   | 4          |               |       |
| n [1/min]     | 0,18565285 | u_end [1/min] | 0,185 |

In der ersten Spalte wird die notwendige Drehzahl berechnet. Hierfür wird zunächst mit der Breite des Absorberrohrs und der maximalen Fokallänge der Stellwinkel bestimmt, der benötigt wird damit die Brennlinie über die gesamte Absorberrohrbreite wandert. Mit einer vorgegeben Laufzeit des Motors von 9,5 s und einer Kettenübersetzung 1:4 ergibt sich nun die Drehzahl des Gleichstrommotor. Um diese Drehzahl zu erreichen wurden dem Gleichstrommotor ein Stirnradgetriebe und zwei Interdecimalgetriebe entsprechend Spalte 2 der obigen Tabelle vorgeflanscht. Der Antrieb kann ein Drehmoment von 24 Nm aufnehmen und ist aufgrund seiner hohen Untersetzung "selbst-blockierend". Das Spiel des Antriebes beträgt 0,25°. Die Abbildung 12 zeigt die komplette Nachführung.



Abbildung 12: Nachführung des Parabolrinnenkollektors

Die Abbildung 13 zeigt den Schaltschrank mit der "Mini-SPS". Ferner ist das Tastaturfeld zur Bedienung der Nachführung sowie das Display zu erkennen. Im Hintergrund des Bildes ist der Antrieb der Nachführung zu sehen.



Abbildung 13: Schaltschrank mit der "Mini-SPS" sowie Antrieb der Nachführung

Mit Hilfe des Tatstaturfeldes und des Displays kann die Nachführung für den PRK bedient werden. Die Nachführung kann auf automatischen oder auf manuellen Betrieb geschaltet werden. Im manuellen Betrieb kann die Parabolrinnen direkt mit Hilfe des Tastaturfeldes zur Sonne ausgerichtet werden. Im automatischen Betrieb wird die Parabolrinnen dem Sonnenstand nachgefahren. Das Nachfahren erfolgt taktend zum kontinuierlichen Gang der Sonne. Die notwendige Hysterese kann zur Feineinstellung über das Tastaturfeld vorgegeben werden.

#### 4.3 Der Kälteprozess

#### 4.3.1 Beschreibung der DSKM mit Kaltwasserkreislauf

Die DSKM besteht aus dem Strahlverdichter V1, dem Verdampfer B 2, den Kondensator WT1 sowie der Kondensatvorlage B3 und der Evakuierung. Der Konvektionslüfter WT 2 simuliert den Kälteabnehmer im Kaltwasserkreislauf. Die Evakuierung der DSKM erfolgt mit Hilfe der Flüssigkeitsring-Vakuumpumpe V2 die über eine Vorlage mit Betriebsflüssigkeit versorgt wird. Die Abbildung 14 zeigt das Verfahrensschema der DSKM mit Kaltwasserkreislauf.



Abbildung 14: Verfahrensschema der DSKM

Die Druckenergie des Treibdampfes wird mit Hilfe einer Düse im Strahlverdichter V1 in kinetische Energie umgesetzt. Dabei fällt der Druck im Strahlverdichter V1 stark ab, so dass Wasserdampf aus dem Verdampfer B2 angesaugt wird. Im Verdampfer B2 stellt sich daraufhin der Verdampferdruck  $p_s$  ein. Der Treibdampfstrom  $n_{k_r}$  und Saugdampfstrom  $n_{k_s}$  mischen sich im Strahlverdichter V1 und werden in einem Diffusor auf Kondensationsdruck  $p_k$  verdichtet. Der Plattenwärmetauscher WT1 fungiert als Kondensator und kondensiert den aus Treibdampf und Saugdampf bestehende Mischmassenstrom  $n_{\mathbf{k}_{L}}$ . Das Kondensat sammelt sich in der nachgeschalteten Kondensatvorlage B3. Aus der Kondensatvorlage B3 werden der Verdampfer B2 und die Dampftrommel B1 des Dampfprozesses rückgespeist. Der aus dem Verdampfer B2 angesaugte Wasserdampf entsteht durch Sieden der Flüssigkeit im Verdampfer B2. Dabei Kühlt das Wasser im Verdampfer B2 stark ab. Die dabei notwendige Verdampfungsenthalpie stellt die Kälteleistung  $\mathcal{G}_0^{\mathbf{k}}$  des Kälteprozesses dar. Die Pumpe P2 fördert das kalte Wasser über den Konvektionslüfter WT2 der den Kälteabnehmer simuliert.

Die DSKM wurde für eine Kälteleistung  $\mathfrak{G}_0$  von 1 kW ausgelegt. Um 1 kW Kälteleistung zu erzeugen. Muss der Strahlverdichter einen Saugmassenstrom  $\mathfrak{R}_s$  von 1,5 kg/s fördern. Dafür benötigt der Strahlverdichter bei Nennbedingungen 3,8 kg/h Treibdampf. Daraus ergibt sich ein theoretischer COP von 0,37. Bei günstigeren Rückkühlbedingungen kann durch Wechsel der Treibdüse, von einem Treibdüsendurchmesser mit 1,7 mm auf 1,5 mm, der Treibdampfbedarf auf 2,9 kg/h gesenkt werden. Der theoretische COP erhöht sich dann auf 0,48. Der Kondensator WT1 ist für eine Rückkühlleitung  $\mathfrak{G}_{\kappa}$  von 5 kW ausgelegt, wobei die Temperaturspreizung des Kühlwassers maximal 6 K betragen soll. Der Kaltwasserkreislauf ist ebenfalls für eine Temperaturspreizung von 6 K konzipiert. Das Gebläse des Konvektionslüfters lässt sich separat zuschalten. Die Auslegungsdaten für den Strahlverdichter V1, dem Verdampfer B2, dem Kondensator WT1 und dem Konvektionslüfter WT 2 können aus dem Anhang entnommen werden.

#### 4.3.2 Inbetriebnahme des Kälteprozesses

Nach erfolgreicher Inbetriebnahme des Dampfprozesses und Erzeugung von Treibdampf für die DSKM wurde der Kälteprozess in Betrieb genommen. Die Abbildung 15 zeigt die Versuchsanlage bei der Inbetriebnahme des Kälteprozesses.



Abbildung 15: Solar DSKM bei der Inbetriebnahme des Kälteprozesses

#### Die Abbildung zeigt:

- 1. Strahlverdichter V1
- 2. Kondensator WT1
- 3. Vakuumpumpe V2
- 4. Kondensatpumpe/Speisewasserpumpe P3
- 5. Wärmetauscher mit Lüfter/Kälteverbraucher WT2
- 6. Verdampfer B2
- 7. Kondensatvorlage B3

Die Abbildung 16 zeigt die Betriebsdrücke während der Inbetriebnahme des Kälteprozesses.


Abbildung 16: Betriebsdrücke während der Inbetriebnahme

Die DSKM wurde um 14:45 Uhr gestartet. Mit Zuschalten des Treibdampfes sinkt der Verdampferdruck  $p_s$  sogleich. Der Kondensatordruck  $p_k$  springt zunächst an, senkt sich anschließend wieder und verläuft konstant. Der zunächst sprunghafte Anstieg des Kondensatordruckes  $p_k$  ist auf die Leckluft der Anlage zurückzuführen, die sich nach Anschalten der DSKM zunächst im Kondensator ansammelt und erst verzögert mit der Vakuumpumpe V2 abgeführt werden kann. Ab 15:15 Uhr ist der Dampftrommeldruck  $p_{trom}$  aufgrund von starken Wolkendurchgängen so weit abgesunken, dass der Treibdampfdruck  $p_{tr}$  für den Betrieb der DSKM nicht mehr ausreicht, so dass die DSKM bis 16:00 Uhr abgeschaltet wurde. In dieser Zwischenzeit steigt der Dampftrommeldruck  $p_{trom}$  erneut auf über 2 bar an, so dass die DSKM bis 16:30 Uhr wieder in Betrieb genommen werden konnte. Die Abbildung 17 zeigt die Temperaturverläufe des Verdampfer und des Kaltwasserkreises.



Abbildung 17: Temperaturverläufe des Verdampfers und des Kaltwasserkreises

Die Temperatur des Verdampfers  $T_0$  kann während der ersten Betriebsphase deutlich um 10 K gegenüber der Ausgangstemperatur gesenkt werden. Auch bei der zweiten Betriebsphase ist eine Temperaturabsenkung von 5 K festzustellen. Die Kaltwasser P2 war während dieser Fahrten im Betrieb.

## 4.4 Messdatenerfassung

Die Abbildung 18 zeigt die Liste aller Messstellen der Versuchsanlage.

|          |            |                                    |                              |         |        |                    |         | Hilfsenergie |             |
|----------|------------|------------------------------------|------------------------------|---------|--------|--------------------|---------|--------------|-------------|
| lfd. Nr. | Messstelle | Bezeichnung                        | Betriebspunkt                | Тур     | Medium | Messbereich        | Anschl. | [W]          | Messerfass. |
| 1        | TI 1       | Temperatur Kollektorkreis Vorlauf  | 110-160 °C                   | analog  | Wasser | 0 - 175 °C         | G 1/2"  | 1            | ja          |
| 2        | TI 2       | Temperatur Kollektorkreis Rücklauf | 110-160 °C                   | analog  | Wasser | 1 - 175 °C         | G 1/2"  | 1            | ja          |
| 3        | TI 3       | Temperatur Verdampfer              | 0-20 °C                      | digital | Wasser |                    |         |              | ja          |
| 4        | TI 4       | Temperatur Kaltwasser Rücklauf     | 0-20 °C                      | digital | Wasser |                    |         |              | ja          |
| 5        | TI 5       | Temperatur Kondensator             | 15-60 °C                     | digital | Dampf  |                    |         |              | ja          |
| 6        | TI 6       | Temperatur Kondensatvorlage        | 15-60 °C                     | digital | Wasser |                    |         |              | ja          |
| 7        | TI 7       | Temperatur Kühlwasser Vorlauf      | 10-30 °C                     | digital | Wasser |                    |         |              | ja          |
| 8        | TI 8       | Temperatur Kühlwasser Rücklauf     | 10-30 °C                     | digital | Wasser |                    |         |              | ja          |
| 9        | PI 1       | Druck Treibdampf                   | 1,5-6 bar (abs)              | analog  | Dampf  | 0 - 10 bar (abs)   | G 1/2"  | 1            | ja          |
| 10       | PI 2       | Druck Saugdampf                    | 6-25 mbar (abs)              | analog  | Dampf  | 0 - 250 mbar (abs) | G 1/2"  | 1            | ja          |
| 11       | PI 3       | Druck Kondensator                  | 15-200 mbar (ab              | analog  | Dampf  | 0 - 250 mbar (abs) | G 1/2"  | 1            | ja          |
| 12       | PI 4       | Druck Kollektorkreis               | 1,5-6 bar (abs)              | analog  | Wasser | (-1) - 9 bar (ü)   | G 1/2"  |              |             |
| 13       | PI 5       | Druck Dampftrommel                 | 1,5-6 bar (abs)              | analog  | Dampf  | (-1) - 9 bar (ü)   | G 1/2"  |              |             |
| 14       | PI 7       | Förderhöhe Speisewasserpumpe       | 0 - 8 bar (abs)              | analog  | Dampf  | (-1) - 9 bar (ü)   | G 1/2"  |              |             |
| 15       | PI 9       | Förderhöhe Kaltwasserpumpe         | 0 - 2,5 bar (abs)            | analog  | Wasser | (-1) - 2,5 bar (ü) | G 1/2"  |              |             |
| 16       | FQI 1      | Durchfluss Kollektorkreislauf      | 0,25-1,5 m³/h                | analog  | Wasser | 0-1,5 m²/h         |         |              |             |
| 17       | FQI 2      | Durchfluss Kaltwasserkreislauf     | 0,05-0,5 m³/h                | analog  | Wasser | 0 - 1 m³/h         |         | 1            | ja          |
| 18       | FQI 3      | Durchfluss Kühlwasserkreislauf     | 0,100-1000 m <sup>3</sup> /h | analog  | Wasser | 0 - 1 m³/h         |         | 1            | ja          |
| 19       | FQI 4      | Durchfluss Kältemittel             | 0-10 l/h                     | analog  | Wasser | 0 - 10 l/h         |         |              |             |
| 20       | LI 1       | Standmessung Dampftrommel          | 25-75%                       | analog  | Wasser | 0 - 100 %          | DN 25   |              |             |
| 21       | LI 2       | Standmessung Verdampfer            | 25-75%                       | analog  | Wasser | 0 - 100 %          | DN 400  |              |             |
| 22       | LI 3       | Standmessung Kondensatvorlage      | 25-75%                       | analog  | Wasser | 0 - 100 %          |         |              |             |
| 23       | QI 1       | Messung der Einstrahlung           | 0-1100 W/m <sup>2</sup>      | analog  | Licht  |                    |         | 1            |             |

Abbildung 18: Messstellenliste der Versuchsanlage solar DSKM

Die Messdatenerfassung der Versuchsanlage erfolgt mit Hilfe des DAVID-Modul, dass bei Fraunhofer UMSICHT entwickelt wurde. DAVID ist ein System zur Überwachung von technischen Anlagen und Objekten. Es zeichnet sich besonders dadurch aus, dass die Informationsbeschaffung, Verarbeitung und Visualisierung durch ein und dasselbe Gerät erfolgt. Die Überwachung kann von jedem beliebigen Computer mittels Webbrowser erfolgen. Die Abbildung 19 zeigt die Visualisierung der Versuchsanlage.



Abbildung 19: Visualisierung der Versuchsanlage solar DSKM

Mit Hilfe eines Laptop, das während des Betriebes an die Versuchsanlage angeschlossen wird, können Temperaturen, Drücke und Volumenströme über die Visualisierung abgelesen werden. Der Druck der Dampftrommel, der Druck vor der Drossel im Solarkreislauf und der Volumenstrom des Solarkreislaufes, sowie die Füllstände im Verdampfer und der Kondensatvorlage müssen vor Ort abgelesen werden. Die Solarstrahlung wird ebenfalls per Hand gemessen.

# 5 Versuchsfahrten

#### 5.1 Freilandmessungen

Bei den Freilandversuchen wurde die solar DSKM morgens aufgebaut und abends wieder abgebaut. Der Aufbau der Anlage mit Befüllung des Solarkreislaufes dauerte ca. 1 Stunde. Aufgrund der Vorortbegebenheiten wurde der PRK mit der Drehachse in Ost-West Richtung ausgerichtet. Zwischen 9:00 – 10:00 Uhr wurde der Kollektorkreislauf in Betrieb genommen. Die Abbildung 20 zeigt die Direktstrahlung  $I_{direkt}$  der Sonne bezogen auf die Horizontale und die mittlere Kollektortemperatur  $T_{m.Kol}$  exemplarisch bei fünf Versuchsfahrten.



Abbildung 20: Einstrahlung und Kollektortemperaturen

Das Einstrahlungsmaximum während dieser Versuchsfahrten liegt bei ca. 13:00 Uhr was dem Sonnenhöchststand (Sommerzeit) entspricht. Der PRK erreicht dabei Temperaturen  $T_{m,Kol}$  von > 150 °C. Ab 13:00 Uhr wurde in der Regel die DSKM zugeschaltet, so dass die Temperaturverläufe stark abflachen und im Verlauf des Nachmittags abfallen. Die Abbildung 21 zeigt den Dampftrommeldruck  $p_{trom}$  und den Treibdampfdruck  $p_{tr}$  exemplarisch von vier Versuchsfahrten.



Abbildung 21: Dampftrommeldruck und Treibdampfdruck während verschiedenen Versuchsfahrten

Der Druck in der Dampftrommel  $p_{trom}$  steigt zur Mittagszeit deutlich über 3,6 bar. Im Betrieb der DSKM wird der Treibdampfdruck  $p_{tr}$  je nach Betriebssituation zwischen 2 bis 3,5 bar gefahren. Der Druckdifferenz zwischen Treibdampfdruck  $p_{tr}$  und Dampftrommeldruck  $p_{trom}$  stellt eine "Energiereserve" dar, wobei die Dampftrommel als Energiespeicher fungiert. Im Laufe des Nachmittags bzw. bei Wolkendurchgängen wird diese Energiereserve aufgezerrt. Die Abbildung 22 zeigt exemplarisch den Verlauf des Treibdampfdruckes  $p_{tr}$ , des Saugdampfdruckes  $p_s$  und des Kondensatordruckes  $p_k$  der DSKM für drei verschiedene Versuchsfahrten.



Abbildung 22: Treibdampfdruck, Saugdampfdruck und Kondensatordruck der DSKM

Der Betriebspunkt Treibdampfdruck  $p_{tr}$  3 bar, Saugdampfdruck  $p_s$  0,01 bar und Kondensatordruck  $p_k$  0,05 bar, für den die DSKM ausgelegt wurde, können gut erreicht werden. Da der Kondensatordruck  $p_k$  in den obigen Versuchfahrten sogar auf ca. 40 mbar gesenkt werden konnte, war ein Treibdampfdruck von 2,5 bar ausreichend um die DSKM zu betrieben. Der Verdampferdruck von 10 mbar konnte über den Nachmittag hinweg gefahren werden und wurde während der Versuchsfahrten sogar teilweise deutlich unterschritten werden. Die Abbildung 23 zeigt exemplarisch die Verdampfertemperatur  $T_0$  von drei Versuchsfahrten. Die angestrebte Verdampfertemperatur  $T_0$  von 6°C konnte sicher erreicht werden.



Abbildung 23: Verdampfertemperaturen während der Versuchsfahrten, exemplarisch

#### 5.2 Versuchsfahrten am Kollektorteststand

#### 5.2.1 Beschreibung des Kollektorteststandes

Der Kollektorteststand an der Ruhr Universität Bochum besteht aus den Teilsystemen: Klimakammer mit Klimakammerkreislauf und Lampensystem. In der Klimakammer wird der Kollektor eingebracht. Die Oberseite der Klimakammer kann mit Glasscheiben abgedeckt werden. Der Klimakammerkreislauf dient zur Simulation von definierten Luftströmungen, hinsichtlich Luftgeschwindigkeit und Lufttemperatur, mit denen die Kollektoren im Teststand beaufschlagt werden. Bei den durchgeführten Versuchen wurde jedoch auf diese Option verzichtet. Das Lampensystem besteht aus den eigentlichen Strahlern und zwei Gebläse, die oberhalb des Lampensystems die Abwärme der Strahler mit einem Luftstrom aus dem Labor fördern. Die Abbildung 24 zeigt schematisch den Kollektorteststand an der Ruhr Universität Bochum.



Abbildung 24: Schematische Darstellung des Kollektorteststandes an der Ruhr Universität Bochum

Das Lampensystem besteht aus 40 Strahlern des Typs Thorn CSI mit einer Wirkleistung von 1 kW. Die kurzwellige Strahlung der Lampen wird durch einen Lichtbogen zwischen zwei Wolframelektroden in einer Hochdruckatmosphäre, die Quecksilber-Jodid enthält, erzeugt. Die spektrale Strahlungscharakteristik der Strahler ähnelt dem A.M.2-Spektrum des Sonnenlichts. Die Abbildung 25 zeigt das Spektrum der Strahlungsemission der Strahler gegenüber des Sonnenspektrums A. M. 2.



Abbildung 25: Spektrum Thorn-Strahler und Sonnenspektrum /21/

Die Lampen sind samt Starterelektronik an einer an der Labordecke schwenkbar installierten Trägerkonstruktion befestigt. Zur Erzielung einer möglichst homogenen Strahlungsdichte kann die Leistung der einzelnen Strahler mittels Regeltransformatoren angepaßt werden. Nach /21/ können die Inhomogenitäten der "Bestrahlungsstärkenverteilung" auf ± 10 bis ± 15 % vom Mittel eingestellt werden. Neben der gebündelten, kurzwelligen Strahlung des Lichtbogens strahlen die Strahler der Lampen infolge ihrer hohen Temperatur von ca. 200°C unerwünschte Wärmestrahlung diffus ab. Diese ungerichtete Wärmestrahlung wird von koaxialen Blechröhren unterhalb der Strahler absorbiert.

Für die durchgeführten Versuche stand weniger eine homogene Bestrahlung des Kollektors im Vordergrund, als mit der zur Verfügung stehenden Einstrahlungsleistung den Kälteprozess betreiben zu können. Demzufolge wurden auch die Abdeckscheiben von der Klimakammer entfernt um die Einstrahlungsleistung weiter zu erhöhen. Danach ergab sich die spezifische Einstrahlungsleistung des Kollektorteststandes entsprechend Abbildung 26.



Abbildung 26: Spezifische Einstrahlungsleistung des Kollektorteststandes

Die spezifische Einstrahlungsleistung erwies sich als relativ inhomogen. Die Strahler erzeugen "Beams" in deren Zwischenräume die Strahlung gegenüber dem Mittelpunkt des "Beams" stark reduziert ist. Die Abbildung 27 zeigt die Abnahme der Einstrahlungsleistung mit zunehmendem Abstand vom "Beam"-Mittelpunkt. Dabei war die erste Messebene 3,04 m von den Strahlern entfernt, die zweite Messebene 2,17 m und die dritte Messebene 1,73 m.



Abbildung 27: Abnahme der Einstrahlungsleistung vom Zentrum des "Beams"

Mit zunehmender Entfernung zu den Strahlern, nimmt die Strahlungsleistung im Mittelpunkte des "Beams" linear zur Entfernung ab. Misst man die Einstrahlungsleistung mit zunehmendem Abstand vom Mittelpunkt des "Beams", lässt sich ab einem Abstand von 20 cm eine deutliche Einstrahlungsabnahme feststellen.

## 5.2.2 Indoor-Versuchsfahrten

Bei den Versuchsfahrten am Kollektorteststand wurden der VRK und die PRK eingesetzt. Wie zu erwarten war, ist der Strahlungsanteil an Diffusstrahlung am Kollektorteststand besonders hoch, so dass der VRK spezifisch deutlich mehr Wärmeleistung  $\mathcal{O}_{H}^{\mathbf{x}}$  erbringt als der PRK. Die Abbildung 28 zeigt den in der Klimakammer des Kollektorteststandes eingebrachtem VRK sowie eine thermografische Aufnahme des Kollektors während des Betriebes.



Abbildung 28: VRK bei den Versuchsfahrten am Kollektorteststand

Der eingesetzte VRK der Fa. Paradigma besteht aus 20 parallel geschalteten Vakuumröhren und besitzt eine Aperturfläche  $A_a$  von 4 m<sup>2</sup>. Die Vakuumröhrenkollektoren sind mit einem CPC-Spiegel hinterlegt, der die sonst nicht genutzte Einstrahlung zwischen den Vakuumröhren reflektiert und dem Absorber der Vakuumröhre zuführt. Die Wärmeverluste des VRKs treten an den Vakuumröhren sowie an dem Sammelkasten auf. Die aus der Thermografieaufnahme abzulesende relativ hohe Temperatur des Sammelkastens ist auf Reflektion der Wärmestrahlung der Strahler zurückzuführen. Temperaturmessungen mit einem Berührungsmessgerätes konnten die angezeigt hohe Temperatur nicht bestätigen. Die Abbildung 29 zeigt die gemessene Strahlung I mit der der VRK während der Versuche beaufschlagt wurde.



Abbildung 29: Einstrahlung auf den VRK

Die Einstrahlungsleistung I auf den VRK ist sehr inhomogen und beträgt im Durchschnitt 1045 W/m<sup>2</sup>. Die Abbildung 30 zeigt den PRK während des Betriebes am Kollektorteststand sowie eine thermografische Aufnahme des Kollektors.



Abbildung 30: PRK bei den Versuchsfahrten am Kollektorteststand

Für die Versuche wurden zwei Module des PRKs oberhalb der Klimakammer aufgebaut. Die Wärmeverluste der PRK treten am Absorberrohr auf, das nur mit einem Glasshüllrohr zur Reduzierung der Wärmekonvektion versehen ist. Im Gegensatz zum VRK wird beim PRK der Wärmeverlust nicht durch Reduzierung des Wärmeübergangs aufgrund von Isolierung und Vakuum vermieden, sondern durch Verringerung der warmen Absorberfläche. Dies geschieht mit Erhöhung des Verhältnisses Aperturfläche  $A_a$  zu Absorberfläche  $A_A$  und wird Konzentrationsverhältnis C genannt. Dem Vorteil des einfacheren Aufbaus steht allerdings der Nachteil gegenüber, dass nur Direktstrahlung  $I_{direkt}$  fokussiert und somit konzentriert werden kann. Der hier verwendete PRK besitzt ein Konzentrationsverhältnis C von 13,6. Die Abbildung 31 zeigt die gemessene Direktstrahlung  $I_{direkt}$  entlang des PRKs während der Versuche, wobei die gemessene Direktstrahlung  $I_{direkt}$  kollektorspezifisch ist und nicht auf andere PRK übertragbar ist.



Abbildung 31: Direktstrahlung entlang des PRK

Die gemessene Direktstrahlung  $I_{direkt}$  bezieht sich auf die gesamte Breite des PRKs. Die Direktstrahlung  $I_{direkt}$  variiert zwischen 180 bis 380 W/m<sup>2</sup> und besitzt einen Durchschnittswert von 285 W/m<sup>2</sup>.

## 6 Betriebsverhalten der Solar DSKM

#### 6.1 Betriebsverhalten der Solarkollektoren

Zur Bestimmung des Wirkungsgrads des PRK wurden die Messungen aus den Freilandversuchen am 28.07.05, 17.08.05, 18.08.05, 29.08.05, 30.08.05 und 31.08.05 genutzt. Diese Tage zeichneten sich durch geringe Wolkendurchgänge aus, so dass eine starke Schwankungen der Solarstrahlung nicht auftrat. Die gemessene horizontale Direktstrahlung  $I_{hor}$  wird zunächst umgerechnet in die Direktstrahlung die auf dem nachgeführten Kollektor  $I_{Kol}$  einfällt. Die Leistung des PRKs, bestehend aus den drei Modulen zuzüglich der Rückführleitung und den Dampfschläuchen, wird mit dem Ansatz entsprechend Gleichung 6-1 berechnet.

Gleichung 6-1

$$\mathbf{\mathcal{G}}_{Kol} = \mathbf{\mathcal{R}}_{Kol} \cdot c_p \cdot (T_{Kol,R} - T_{Kol,V}) - (m_{Kol} \cdot c_{Kol} + m_{Fluid} \cdot c_p) \cdot \frac{dT_{Kol,m}}{dt}$$

Die mittlere Kollektortemperatur  $T_{Kol,m}$  errechnet sich aus den Temperaturen des Kollektorkreisvorlaufs  $T_{Kol,V}$  und des Kollektorkreisrücklaufs  $T_{Kol,R}$ . Die Masse des Kollektors  $m_{Kol}$  wird mit 61 kg und die Wärmekapazität des Kollektors  $c_{Kol}$  mit 0,47 kJ/kg/K für Stahl angenommen. Die Fluidmasse  $m_{Fluid}$  beträgt 16 kg und besitzt die Wärmekapazität  $c_p$  für Wasser von 4,18 kJ/kg/K. Die so ermittelte Kollektorleistung  $\mathcal{O}_{Kol}$  über den entsprechenden Messzeitraum wird ins Verhältnis zur Einstrahlungsleistung  $I_{Kol}$  gesetzt, wobei beide Leistungskurven zuvor noch geglättet werden. Die daraus resultierenden Wirkungsgradkurven des PRKs sind in Abbildung 32 in Abhängigkeit der Einstrahlungsleistung  $I_{Kol}$  und der Temperaturdifferenz zwischen der mittleren Kollektortemperatur  $T_{Kol,m}$  und Umgebungstemperatur  $T_U$  dargestellt.



Abbildung 32: Wirkungsgrad des PRKs mit Fehlerbalken 10% vom Absolutwert

Neben den ermittelten Wirkungsgradkurven ist ein berechneter Wirkungsgrad  $h_{\rm Kol}$  aufgetragen. Der berechnete Wirkungsgrad  $h_{\rm Kol}$  erfolgt mit dem üblichen Ansatz nach Gleichung 6-2, wobei die Wirkungsgradkurven maximal 10 % vom errechneten Wirkungsgrad  $h_{\rm Kol}$  abweichen.

Gleichung 6-2

$$h_{Kol} = h_0 - k1 \cdot \frac{(T_{Kol,m} - T_U)}{I_{Kol}} - k2 \cdot \frac{(T_{Kol,m} - T_U)^2}{I_{Kol}}$$

Der optische Wirkungsgrad  $h_0$  beträgt dabei 0,6 und die linearen und quadratischen Wärmeverluste k1 und k2 betragen 0,1 W/m<sup>2</sup>/K sowie 0,0075 W/m<sup>2</sup>/K<sup>2</sup>. Die Abbildung 33 zeigt mit diesen Werten berechnete Wirkungsgradkurven bei unterschiedlichen Einstrahlungsleistungen  $I_{Kol}$ . Zur Überprüfung sind entsprechende Messwerte mit aufgetragen.



Abbildung 33: berechnet Wirkungsgradkurven und gemessene Werte bei unterschiedlichen Betriebsbedingungen

Der Wirkungsgrad des PRK  $h_{Kol}$  lässt sich mit dem obigen Ansatz sowie den ermittelten Werten für den optischen Wirkungsgrad  $h_0$  sowie für die linearen und quadratischen Wärmeverlusten k1 und k2 gut beschreiben. Im Diagramm der Abbildung 34 sind die Wirkungsgrade des PRKs und des einsetzten VRKs aufgetragen.



Abbildung 34: Wirkungsgrad der VRK und Wirkungsgrad PRK

Beide Kollektortypen weisen einen ähnlich guten Wirkungsgrad  $h_{Kol}$  auf. An dieser Stelle muss darauf hingewiesen werden, dass PRKs im Gegensatz zu den VRKs nur die Direktstrahlung der Solarstrahlung nutzen können. Zur Berechnung des Wirkungsgrades  $h_{Kol}$  des VRKs wurde auf die Kennwerte des Herstellers zurückgegriffen. Die Abbildung 35 zeigt die Kollektorleistung  $\mathfrak{G}_{Kol}$  beim anfahren der DSKM während des Freilandversuches am 31.08.05 mit PRK und während der Versuchfahrt am Kollektorteststand am 24.10.05 mit VRK.



Abbildung 35: Kollektorleistung während des Anfahrvorganges der DSKM

Das Anfahren der DSKM ist mit einem Rückgang der Dampftrommeltemperatur  $T_{Trom}$  verbunden. Das Sinken der Dampftrommeltemperatur  $T_{Trom}$  bewirkt eine Abnahme der mittleren Kollektortemperatur  $T_{Kol,m}$ , wodurch die sensible Wärme des Kollektors aufgrund seiner Wärmekapazität  $c_{Kol}$  abgegeben wird und die Kollektorleistung  $\mathcal{O}_{Kol}$  demzufolge ansteigt. Aus dem Temperaturgradienten  $\frac{dT_{Kol,m}}{dt}$  sowie dem plötzlichen Leistungsanstieg  $\mathcal{O}_{Kol}$  kann die Wärmekapazität  $c_{Kol}$  ermittelt werden. Die Tabelle 2 listet die Kenngrößen beider Kollektortypen.

| Kennwert         | PRK         | VRK           |
|------------------|-------------|---------------|
| $h_0$            | 0,6         | 0,64          |
| <i>k</i> 1       | 0,1         | 0,688         |
| <i>k</i> 2       | 0,0075      | 0,004         |
| C <sub>Kol</sub> | 7,5 kJ/m²/K | 13,06 kJ/m²/K |

Tabelle 2: Kennwerte des PRKs und des VRKs, wobei Kennwerte des VRKs aus [22]

Die Wärmekapazität  $c_{Kol}$  des VRK ist aufgrund seiner größeren thermischen Masse höher als bei dem PRK. Daraus lässt sich ein günstigeres Betriebsverhalten der VRK bei Wolkendurchgängen ableiten, da der Kollektor selber als Wärmespeicher fungiert. Der höhere Aufwand bei der hydraulischen Einbindung der einzelnen Röhren erzeugt hingegen bei den VRK höhere Druckverluste.

## 6.2 Betriebsverhalten und Wirkungsgrad der DSKM

## 6.2.1 Betriebsverhalten des Strahlverdichsters

Kernkomponente der DSKM ist der Strahlverdichter. Das Betriebsverhalten des Strahlverdichters charakterisiert das Betriebsverhalten der DSKM. Der Saugmassenstrom  $n\mathbf{k}_{rr}$  ist dabei direkt proportional zur Kälteleistung  $\mathbf{\mathcal{Q}}_{0}$  sowie zum Antriebswärmestrom  $\mathbf{\mathcal{Q}}_{rr}$ . Die Abbildung 36 zeigt den Saugmassenstrom  $n\mathbf{k}_{r}$  in Abhängigkeit des Verdampferdruckes  $p_{s}$ .



Abbildung 36: Saugmassenstrom in Abhängigkeit des Verdampferdrucks

Mit sinkendem Verdampferdruck  $p_s$  sinkt der Saugmassenstrom  $n_s$  und somit die Förderleistung des Strahlverdichters. Darüber hinaus ist zu erkennen, dass der Durchmesser der Treibdüse keinen Einfluss auf die Förderleistung des Strahlverdichters besitzt. Die Abbildung 37 zeigt die Abhängigkeit des Treibmassenstroms vom Treibdampfdruck für beide Treibdüsen.



Abbildung 37: Treibdampfmassenstrom in Abhängigkeit des Treibdampfdrucks

Mit steigendem Treibdampfdruck  $p_{tr}$  steigt der Treibmassenstrom  $n_{tr}$  an. Zur Bestimmung der Wirkungsgrade der beiden Treibdüsen wurde mit Gleichung 6-3 aus /23/ der Treibmassenstrom  $n_{tr}$  in Abhängigkeit des Treibdampfdruckes  $p_{tr}$  berechnet und mit den ermittelten Treibdampfverbräuchen zweier Versuchen zusammen in einem Diagramm entsprechend Abbildung 38 aufgetragen.

Gleichung 6-3

$$\mathbf{n}_{tr} = A_{Diis} \cdot \mathbf{h}_{Diis} \cdot \left(\frac{2}{k+1}\right)^{\frac{1}{k+1}} \sqrt{\frac{k}{k+1}} \cdot \sqrt{2 \cdot \frac{p_{tr}}{u_{tr}}}$$





Abbildung 38: Berechnete und ermittelter Treibmassenstrom zweier Versuchsfahrten

Durch sukzessives Approximieren wird die berechnete Kurve in Deckung mit der ermittelten Kurve gebracht. Für die beiden verwendeten Treibdüsen ergeben sich somit ein Wirkungsgrad  $h_{Düs}$  von 0,7 für die Treibdüse mit 1,5 mm Durchmesser und 0,55 für die Treibdüse mit 1,7 mm Durchmesser. Diese Werte erscheinen, verglichen mit Literaturwerten z. B. von Bauer /24/, sehr gering. Hier muss allerdings berücksichtigt werden, dass die verwendeten Treibdüsen sehr geringe Durchmesser besitzen und eine untere Fertigungsgrenze erreicht wurde. Treibdüsen mit einem Durchmesser < 1,5 mm lassen sich kaum noch anfertigen. Bei derart kleinen Treibdüsen haben kleine Fertigungsabweichungen einen hohen Einfluss auf den Wirkungsgrad der Treibdüse. Der Einfluss der Wandreibung ist bei kleineren Düsen größer.

## 6.2.2 "Umkippverhalten" des Strahlverdichters

Der Strahlverdichter fördert das Kältemittel  $n\mathbf{k}_s$  mit Hilfe des Treibmassenstroms  $n\mathbf{k}_r$  aus dem Verdampfer in den Kondensator. Dabei wird das Kältemittel vom Verdampferdruck  $p_s$  auf den Kondensatordruck  $p_k$  verdichtet und das Treibmittel vom Treibmitteldruck  $p_{tr}$  auf Kondensatordruck  $p_k$  entspannt. Ist der Kondensatordruck  $p_k$  zu groß bzw. der Treibdampfdruck  $p_{tr}$  zu gering kann der Strömungsprozess nicht aufrechterhalten werden, so dass der Strahlverdichter kein Kältemittel mehr fördert. Diese unerwünschte Betriebssituation wird als "Umkippen" des Strahlverdichters bezeichnet und muss während des Betriebes der DSKM vermieden werden. Da sich die Druckänderungen der Strömung im Strahlverdichter auch in entsprechenden Temperaturänderungen äußern, können mit Hilfe einer Thermografiekamera die Vorgänge im Strahlverdichter werden.



Abbildung 39: Thermografieaufnahme des Strahlverdichters

Die Abbildung 39 zeigt eine Thermografieaufnahme des Strahlverdichters im stabilen, statischen Betrieb. Der Treibdampfdruck  $p_{tr}$  betrug 3,2 bar, der

Saugdampfdruck  $p_s$  betrug 8 mbar und der Kondensatordruck  $p_k$  45 mbar. Die Entspannung des Treibdampfes wird durch einen hohen negativen Temperaturgradienten im Bereich des Treibdampfflansches zur Mischkammer hin angezeigt. Die niedrigste Temperatur herrscht im Bereich der Mischkammer. Der folgende positive Temperaturgradient zwischen Mischkammer und Kondensatorflansch zeigt die Verdichtung des Mischstroms, bestehend aus Treibmittel und Kältemittel, an.



Abbildung 40: Thermografieaufnahmen während des "Umkippversuches"

Mit Hilfe der Thermografieaufnahmen eins bis vier in der Abbildung 40 lässt sich das "Umkippen" des Strahlverdichters dokumentieren. Dabei wurde der Treibdampfdruck  $p_{tr}$  des Strahlverdichters bei konstantem Kondensatordruck  $p_k$  und konstanten Verdampferdruck  $p_s$  entsprechend dem Diagramm in Abbildung 41 abgesenkt. Der "Umkipp-Vorgang" findet plötzlich statt und wird durch den Anstieg des Verdampferdrucks  $p_s$  angezeigt. Die Thermografieaufnahmen zeigen die Temperaturänderung der Strahlverdichteroberfläche die aufgrund der "thermischen Masse" des Strahlverdichters relativ träge reagiert. Die Temperatur steigt im gesamten Bereich der Mischkammer an. Die kühlere Zone, die sich als Ring in der Aufnahme drei und vier am Anfang der Mischkammer zeigt, ist auf die Bauteilstärke am Eingang der Mischkammer

zurückzuführen. Im "umgekippten" Zustand nimmt die Mischkammer des Strahlverdichters die Temperatur am Ausgang des Strahlverdichters an.



Abbildung 41: Betriebsdaten während des "Umkippversuches"

Mit dem Ziel das "Umkippverhalten" des Strahlverdichters zu charakterisieren wurden mehrer "Umkippversuche" durchgeführt, die bei unterschiedlichen Treibdampfdruck  $p_{tr}$ , Verdampfdruck  $p_s$  und Kondensatordruck  $p_k$  stattfanden. Ferner wurden bei den Versuchen zwei unterschiedliche Treibdüsen, mit einem Bohrungsdurchmesser von 1,5 mm und 1,7 mm, verwendet. Aus den aufgenommenen Messdaten wurden die Betriebspunkte extrahiert, bei denen der Strahlverdichter gerade "kippt". Mit diesen Betriebspunkten lassen die Grenzdrücke  $p_{grenz}$  in Abbildung 42 und Abbildung 43 ermitteln. Dabei befindet sich der Strahlverdichter links von den eingezeichneten Grenzdruckgeraden, die jeweils einem unterschiedlichen Treibdampfdruck  $p_{tr}$  zugeordnet werden können, in einem stabilen Betrieb, rechts davon ist der Strahlverdichter "gekippt".



Abbildung 42: Grenzdrücke des Strahlverdichters mit 1,5 mm Treibdüse

Es zeigt sich, dass mit steigendem Treibdampfdruck  $p_{tr}$  höhere Kondensatordrücke p<sub>k</sub> gefahren werden können. Gleichzeitig ist auch der Einfluss des Verdampfdruckes  $p_s$  zu erkennen. Mit zunehmendem Verdampferdruck  $p_s$ können ebenfalls höhere Kondensatordrücke  $p_k$  gefahren werden. Daraus folgt, dass bei hohen Verdampfdrücken p<sub>s</sub> bzw. geringen Kondensatordrücken  $p_k$  der Treibdampfdruck  $p_{tr}$  gesenkt werden kann. Die Grenzdruckgeraden können in erster Nährung als lineare Funktionen zwischen Verdampferdruck  $p_s$  und Kondensatordruck  $p_k$  beschrieben werden. Bei den Versuchen mit der 1,7 mm Treibdüse zeigt sich, dass der Strahlverdichter erst bei höheren Kondensatordrücken  $p_k$  bzw. kleinen Verdampferdrücken  $p_s$  bei gleichen Treibdampfdruck  $p_{tr}$  seinen Grenzdruck  $p_{grenz}$  erreicht. Die Grenzdruckgeraden sind dementsprechend im Diagramm der Abbildung 43 nach rechts verschoben. Gleichzeitig ist erkennbar, dass die Grenzdruckgeraden für die Treibdampfdrücke  $p_{tr}$  2,2 und 2,8 bar näher zueinander stehen als zur der Gerade des Treibdampfdruckes  $p_{tr}$  3,2 bar, obwohl Druckdifferenz geringer ist. Dieses Verhalten ist im Diagramm in Abbildung 42 für die 1,5 mm Düse nicht erkennbar.



Abbildung 43: Grenzdrücke des Strahlverdichters mit 1,7 mm Treibdüse

#### 6.2.3 Leistung und COP der DSKM

Wie zuvor dargestellt bestimmt die Temperatur im Kondensator  $T_{kon}$  den notwendigen Treibdampfdruck  $p_{tr}$  für den Dampfstrahlverdichter. Diesem Treibdampfdruck  $p_{tr}$  wiederum kann ein Treibdampfmassenstrom  $n_{tr}$  zugeordnet werden, der dem mindestens erforderlichen Treibdampfbedarf und somit der notwendigen Antriebswärmeleistung  $\mathcal{G}_{tr}$  entspricht. Die Abbildung 44 und Abbildung 45 zeigen die erforderlichen Antriebswärmeleistungen  $\mathcal{G}_{tr}$  in Abhängigkeit der Kondensatortemperatur  $T_{kon}$  sowie des Saugdampfdrucks  $p_s$ .



Abbildung 44: Antriebswärmebedarf entsprechend Kondensatortemperatur, 1,5 mm Treibdüse



Abbildung 45: Antriebswärmebedarf entsprechend Kondensatortemperatur, 1,7 mm Treibdüse

Mit sinkender Kondensatortemperatur  $T_{kon}$ , aufgrund günstiger Rückkühlbedingungen, benötigt die DSKM weniger Antriebswärmeleistung  $\mathcal{G}_{tr}$ . Ferner kommt die DSKM mit steigendem Saugdampfdruck  $p_s$  mit einer geringeren Antriebswärmeleistung  $\mathcal{G}_{tr}$  aus. Geringere Saugdampfdrücke  $p_s$  werden beispielsweise durch Anhebung der Verdampfertemperatur  $T_0$  im Teillastbereich ermöglicht. Da der Saugmassenstrom  $rk_s$  von der Kondensatortemperatur  $T_{kon}$  im "stabilen" Strahlverdichterbetrieb nicht beeinflusst wird, bleibt die Kälteleistung  $\mathcal{Q}_0$  bei wechselnder Kondensatortemperatur  $T_{kon}$  konstant.



Abbildung 46: Saugmassenstrom gegen Kondensatortemperatur für einen Saugdampfdruck von 10 mbar

Aus diesem Zusammenhang wird der Vorteil, den die DSKM in Teillast und bei günstigen Rückkühlbedingungen aufgrund niedriger Feuchtkugeltemperaturen  $T_f$  besitzt, deutlich. Da über das Jahr betrachtet diese Betriebsbedingungen vorherrschen, kann mit hohen mittleren jährlichen COP-Werten gerechnet werden. Die Abbildung 47 zeigt die ermittelten COP Werte in Abhängigkeit der Verdampfertemperatur  $T_0$ .



Abbildung 47: COP-Werte in Abhängigkeit der Verdampfertemperatur

Zur Charakterisierung des Betriebsverhaltens wurden anhand der Auslegungsdaten und der theoretischen Kennlinie des verwendeten Strahlverdichter die COP Werte der DSKM berechnet und in Abbildung 48 für verschiedene Verdampfertemperaturen  $T_0$  in Abhängigkeit der Kondensatortemperatur  $T_{kon}$ dargestellt. So kann bereits ab einer Kondensatortemperatur  $T_{kon}$  von 25 °C und einer Verdampfertemperatur  $T_0$  11 °C COP-Werte > 1 erreicht werden.



Abbildung 48: COP-Werte in Abhängigkeit der Verdampfertemperatur und der Kondensatortemperatur, gerechnet mit den Auslegungsdaten

6.3 Regeltechnische Maßnahmen zur Absicherung eines stabilen Betriebes des Strahlverdichters

Die Höhe des Treibdampfdruckes  $p_{tr}$  ist entscheidend für den Treibdampfverbrauch einer DSKM, wobei sich eine Anhebung des Treibdampfdruckes  $p_{tr}$ im stabilen Betriebsbereich kaum auf die Förderleistung des Strahlverdichters auswirkt. Demzufolge ist ein möglichst niedriger Treibdampfdruck  $p_{tr}$  anzustreben, um den Wirkungsgrad COP des DSKM zu maximieren. Der mindestens erforderliche Treibdampfdruck  $p_{tr}$  wird durch den Grenzdruck  $p_{grenz}$ festgelegt, beim dem der Strahlverdichter noch fördert. Da der Grenzdruck  $p_{grenz}$  abhängig vom Verdampferdruck und Kondensatordruck ist, kann der notwendige Treibdampfdruck  $p_{tr}$  in Abhängigkeit des Verdampferdruckes  $p_s$ und des Kondensatordruckes  $p_k$  entsprechend den Diagrammen in Abbildung 49 und Abbildung 50 bestimmt werden.



Abbildung 49: Notwendiger Treibdampfdruck, Treibdampfdüse 1,5 mm

In erster Nährung kann ein linearer Zusammenhang zwischen Treibdampfdruck  $p_{tr}$  und Kondensatordruck  $p_k$  festgestellt werden. Mit steigendem Verdampferdruck  $p_s$  können höhere Kondensatordrücke  $p_k$  bei gleichem Treibdampfdruck  $p_{tr}$  gefahren werden. Eine größere Treibdampfdüse ermöglicht ebenfalls höhere Kondensatordrücke  $p_k$ . Allerdings erhöht sich bei letzterem auch der Treibmassenstrom  $r\mathbf{k}_{tr}$ .



Abbildung 50: Notwendiger Treibdampfdruck, Treibdampfdüse 1,7 mm

Es lässt sich nun eine lineare Funktion der Form von Gleichung 5-1

$$p_{tr} = f(p_s, p_k)$$

Gleichung 6-4

herleiten die als Algorithmus programmierbar ist. Diese Funktion bildet eine Fläche die in Abbildung 51 beispielhaft für den Strahlverdichter mit 1,5 mm Treibdüse dargestellt ist.



Abbildung 51: Funktion zur Berechnung des Treibdampfes, Treibdüse 1,5 mm

Der Geltungsbereich der dargestellten Funktion beschränkt sich entsprechend der durchgeführten Versuchsfahrten auf: 10 mbar <  $p_s$  < 30 mbar und 35 mbar <  $p_k$  < 55 mbar. Mit Hilfe einer SPS, die mit dem Algorithmus programmiert wird, und einem entsprechenden Treibdampfregelventil kann der notwendige Treibdampf  $p_{tr}$  entsprechend der Betriebssituation des Strahlverdichters gefahren werden. Um eventuellen Messfehlern sowie der Idealisierung Rechnung zu tragen, sollte der Treibdampfdruck  $p_{tr}$  gegenüber dem errechneten notwendigen Treibdampfdruck um 10 – 15 % angehoben werden.

# 7 Ökologische und Ökonomische Betrachtung unter Berücksichtigung verschiedener Anlagenkonzepte

## 7.1 Erzielbarer Wärmepreis bei der Verwendung von VRK und PRK

Für den Betrieb einer solaren DSKM wird Treibdampf benötigt. Zur Erzeugung des Treibdampfes werden Solarkollektoren benötigt, die auch bei höheren Temperaturen noch gute Wirkungsgrade besitzen. Dies sind Vakuumröhren-kollektoren VRK und Parabolrinnenkollektoren PRK. In der nachfolgenden Wirtschaftlichkeitsbetrachtung werden VRK und PRK gegenübergestellt. Es erfolgt zunächst eine Ertragsrechnung für beide Kollektortypen für fünf Standorte, anschließend wird ein spezifischer Wärmepreis  $K_{Wärme}$  für die Solarthermie ermittelt.

Zur Ertragsrechnung wurden die in Tabelle 3 gelisteten Kollektorkennwerte verwendet.

| Kollektorart | VRK   | PRK      |  |
|--------------|-------|----------|--|
| $h_0$        | 0,64  | 0,6931   |  |
| <i>k</i> 1   | 0,688 | 0,4755   |  |
| k2           | 0,004 | 0,003125 |  |

Tabelle 3: Kennwerte der Kollektoren für die Ertragsrechnung

Die Ertragsrechnung basiert auf stündlichen Wetterdaten die mit Hilfe der Meteonorm Datenbank /25/ für die Standorte Essen in Deutschland, Toulouse in Frankreich, Genova in Italien, Safi in Marokko und St. Katrine in Ägypten generiert wurden. Die Berechnung wurde für die Temperaturniveaus 100, 130 und 150 °C durchgeführt. Bei den VRK wurde mit der Globalstrahlung gerechnet bzw. bei den PRK mit der Direktstrahlung. Der Einstrahlungswinkel wurde bei der Ertragsberechnung berücksichtigt. Ferner wurde der Ertrag der PRK für eine Nord-Süd bzw. Ost-West Ausrichtung der Parabolrinne errechnet. Die Tabelle 4 zeigt die Ergebnisse der Ertragsrechnungen.

| Parameter                                   |              |            |            |           |             |             |
|---------------------------------------------|--------------|------------|------------|-----------|-------------|-------------|
| T <sub>Kol</sub>                            | 130          |            |            |           |             | [°C]        |
| Standort                                    | Essen        | Toulouse   | Genova     | Safi      | St. Katrine |             |
| Breitengrad                                 | 51,2         | 43,4       | 44,3       | 32,2      | 28,4        | [°]         |
| Feuchttemp./Lutttemp.                       | 0,90625      | 0,89147287 | 0,84177215 | 0,9558011 | 0,62032086  | [-]         |
| Vern. I <sub>dir</sub> /I <sub>global</sub> | 0,36         | 0,48       | 0,44       | 0,57      | 0,69        |             |
| IVRK                                        | 1054         | 1492       | 1411       | 1935      | 2217        | [KVVN/m²/a] |
| I <sub>PRK,O-W</sub>                        | 491          | 856        | 764        | 1241      | 1671        | [kWh/m²/a]  |
| PRK,N-s                                     | 510          | 906        | 784        | 1342      | 1836        | [kWh/m²/a]  |
| Q <sub>VRK</sub>                            | 300          | 524        | 486        | 787       | 960         | [kWh/m²/a]  |
| Q <sub>PRK,O-W</sub>                        | 172          | 352        | 308        | 575       | 854         | [kWh/m²/a]  |
| Q <sub>PRK,N-S</sub>                        | 171          | 370        | 306        | 626       | 953         | [kWh/m²/a]  |
| $\eta_{VRK}$                                | 0,28         | 0,35       | 0,34       | 0,41      | 0,43        | [-]         |
| η <sub>PRK,O-W</sub>                        | 0,35         | 0,41       | 0,4        | 0,46      | 0,51        | [-]         |
| $\eta_{PRK,N-S}$                            | 0,33         | 0,41       | 0,39       | 0,47      | 0,52        | [-]         |
| -                                           | 400          |            |            |           |             | 1901        |
| I <sub>Kol</sub><br>Standort                | 100<br>Eccon | Toulouso   | Gonova     | Sofi      | St. Katrina | [.0]        |
| Breitengrad                                 | 51.2         | 43 4       | 44 3       | 32.2      | 28.4        | [0]         |
| Feuchttemp./Lufttemp.                       | 0,90625      | 0,89147287 | 0,84177215 | 0.9558011 | 0,62032086  | [°C]        |
| Verh. I <sub>dir</sub> /I <sub>dlobal</sub> | 0,36         | 0,48       | 0,44       | 0,57      | 0,69        | [-]         |
| Q <sub>VRK</sub>                            | 393          | 648        | 606        | 930       | 1110        | [kWh/m²/a]  |
| Q <sub>PRK.O-W</sub>                        | 215          | 423        | 372        | 667       | 956         | [kWh/m²/a]  |
| Q <sub>PRK N-S</sub>                        | 220          | 448        | 377        | 727       | 1062        | [kWh/m²/a]  |
| n <sub>vrk</sub>                            | 0.37         | 0.43       | 0.43       | 0.48      | 0.5         | [-]         |
|                                             | 0.44         | 0.49       | 0.49       | 0.54      | 0.57        | [-]         |
|                                             | 0.43         | 0.49       | 0.48       | 0.54      | 0.58        | [-]         |
| in KK, N-5                                  | 0,10         | 0,10       | 0,10       | 0,01      | 0,00        |             |
| T <sub>Kol</sub>                            | 150          |            |            |           |             | [°C]        |
| Standort                                    | Essen        | Toulouse   | Genova     | Safi      | St. Katrine |             |
| Breitengrad                                 | 51,2         | 43,4       | 44,3       | 32,2      | 28,4        | [°]         |
| Feuchttemp./Lufttemp.                       | 0,90625      | 0,89147287 | 0,84177215 | 0,9558011 | 0,62032086  | [°C]        |
| vern. I <sub>dir</sub> /I <sub>global</sub> | 0,36         | 0,48       | 0,44       | 0,57      | 0,69        | [-]         |
| Q <sub>VRK</sub>                            | 242          | 443        | 407        | 687       | 855         | [kWh/m²/a]  |
| Q <sub>PRK,O-W</sub>                        | 145          | 305        | 266        | 511       | 782         | [kWh/m²/a]  |
| Q <sub>PRK,N-S</sub>                        | 140          | 317        | 260        | 553       | 874         | [kWh/m²/a]  |
| η <sub>vrk</sub>                            | 0,23         | 0,3        | 0,29       | 0,36      | 0,39        | [-]         |
| $\eta_{PRK,O-W}$                            | 0,3          | 0,36       | 0,35       | 0,41      | 0,47        | [-]         |
| $\eta_{PRK,N-S}$                            | 0,27         | 0,35       | 0,33       | 0,41      | 0,48        | [-]         |

Tabelle 4: Ergebnisse der Ertragsrechnungen für die Solarthermie

Mit zunehmendem Verhältnis der jährlichen Direktstrahlung  $I_{dir}$  zur jährlichen Globalstrahlung  $I_{global}$  ist die VRK der PRK überlegen. Bei höheren Kollektortemperaturen  $T_{Kol}$  ist dieser Sachverhalt stärker ausgeprägt. Darüber hinaus zeigt sich, dass mit zunehmendem Breitengrad des Aufstellortes eine Nord-Süd Ausrichtung der PRK vorteilhafter gegenüber einer Ost-West Ausrichtung ist. In diesem Zusammenhang muss berücksichtigt werden, dass es sich hier um eine Jahresbetrachtung handelt. Wird nur das Sommerhalbjahr betrachtet, würde

die Nord-Süd Ausrichtung bei den vorgegebenen Standorten noch besser gegenüber der Ost-West Ausrichtung abschneiden.

Mit Hilfe der Jahresertragsberechnung und den Kollektorkosten wird nun ein spezifischer Wärmepreis  $K_{\text{Wärme}}$  für die Kollektorgrößen 100, 500 und 5000 m<sup>2</sup>, sowie den drei Kollektortemperaturen  $T_{Kol}$  100, 130 und 150 °C berechnet. Die Montagekosten des Kollektorfeldes werden mit 25 % der Materialkosten angenommen. Die Tabelle 5 zeigt exemplarisch die Wirtschaftlichkeitsberechnung der Solarthermie für 130 °C Kollektortemperatur  $T_{Kol}$ . Die Berechnungen für die Kollektortemperaturen  $T_{Kol}$  100 und 150 °C befinden sich im Anhang.

| Zaitrours                                   | 15 [0          | 1 ~       |           | 1.00 [    | 1                    |    |
|---------------------------------------------|----------------|-----------|-----------|-----------|----------------------|----|
| Zeittaum                                    | 6] CI          | կ գ<br>/1 |           | 1,00 [-   | ]                    |    |
| р<br>Т                                      | ۲] b<br>130 آ° | 6]<br>Cl  |           |           |                      |    |
| Standort                                    | Essen          | Toulouse  | Genova    | Safi      | St. Katrine          |    |
| Breitengrad                                 | 51.2           | 43.4      | 44.3      | 32.2      | 28.4 [°]             |    |
| Verh. I <sub>dir</sub> /I <sub>global</sub> | 0,36           | 0,48      | 0,44      | 0,57      | 0,69 [-]             |    |
| dQ/dt_VBK                                   | 300            | 524       | 486       | 787       | 960 [kWh/m²/a        | 1  |
| dQ/dt_PRK                                   | 172            | 370       | 308       | 626       | 953 [kWh/m²/a        | al |
| Q <sub>PRK 100m<sup>2</sup></sub>           | 17200          | 37000     | 30800     | 62600     | 95300 [kWh/a]        | 3  |
| Q <sub>PRK 500m<sup>2</sup></sub>           | 86000          | 185000    | 154000    | 313000    | 476500 [kWh/a]       |    |
| Q <sub>PRK 5000m<sup>2</sup></sub>          | 860000         | 1850000   | 1540000   | 3130000   | 4765000 [kWh/a]      |    |
| Q <sub>VRK.100m<sup>2</sup></sub>           | 30000          | 52400     | 48600     | 78700     | 96000 [kWh/a]        |    |
| Q <sub>VRK.500m<sup>2</sup></sub>           | 150000         | 262000    | 243000    | 393500    | 480000 [kWh/a]       |    |
| Q <sub>VRK,5000m<sup>2</sup></sub>          | 1500000        | 2620000   | 2430000   | 3935000   | 4800000 [kWh/a]      |    |
| PRK Kinvest 100m <sup>2</sup>               | 55150          | 55150     | 55150     | 55150     | 55150 [€]            |    |
| PRK Kinvest.500m <sup>2</sup>               | 208500         | 208500    | 208500    | 208500    | 208500 [€]           |    |
| PRK Kinvest.5000m <sup>2</sup>              | 1546875        | 1546875   | 1546875   | 1546875   | 1546875 [€]          |    |
| VRK Kinvest.100m <sup>2</sup>               | 86593,75       | 86593,75  | 86593,75  | 86593,75  | 86593,75 [€]         |    |
| VRK Kinvest.500m <sup>2</sup>               | 342025         | 342025    | 342025    | 342025    | 342025 [€]           |    |
| VRK Kinvest.5000m <sup>2</sup>              | 3125000        | 3125000   | 3125000   | 3125000   | 3125000 [€]          |    |
| PRK KA.100m <sup>2</sup>                    | 5678,40        | 5678,40   | 5678,40   | 5678,40   | 5678,40 [€/a]        |    |
| PRK K <sub>A,500m<sup>2</sup></sub>         | 21467,74       | 21467,74  | 21467,74  | 21467,74  | 21467,74 [€/a]       |    |
| PRK KA,5000m <sup>2</sup>                   | 159270,53      | 159270,53 | 159270,53 | 159270,53 | 159270,53 [€⁄a]      |    |
| VRK K <sub>A,100m<sup>2</sup></sub>         | 8915,93        | 8915,93   | 8915,93   | 8915,93   | 8915,93 [€⁄a]        |    |
| VRK K <sub>A,500m<sup>2</sup></sub>         | 35215,81       | 35215,81  | 35215,81  | 35215,81  | 35215,81 [€⁄a]       |    |
| VRK K <sub>A,5000m<sup>2</sup></sub>        | 321758,64      | 321758,64 | 321758,64 | 321758,64 | 321758,64 [€⁄a]      |    |
| PRK K <sub>B,100m<sup>2</sup></sub>         | 312,31         | 312,31    | 312,31    | 312,31    | 312,31 [€⁄a]         |    |
| PRK K <sub>B,500m<sup>2</sup></sub>         | 1180,73        | 1180,73   | 1180,73   | 1180,73   | 1180,73 [€⁄a]        |    |
| PRK K <sub>B,5000m<sup>2</sup></sub>        | 8759,88        | 8759,88   | 8759,88   | 8759,88   | 8759,88 [€⁄a]        |    |
| VRK K <sub>B,100m<sup>2</sup></sub>         | 7,81           | 7,81      | 7,81      | 7,81      | 7,81 [€⁄a]           |    |
| VRK K <sub>B500m<sup>2</sup></sub>          | 29,52          | 29,52     | 29,52     | 29,52     | 29,52 [€⁄a]          |    |
| VRK K <sub>B,5000m<sup>2</sup></sub>        | 219,00         | 219,00    | 219,00    | 219,00    | 219,00 [€/a]         |    |
| PRK K <sub>Wärme,100m<sup>2</sup></sub>     | 0,348          | 0,162     | 0,195     | 0,096     | <b>0,063</b> [€/kWh] |    |
| PRK K <sub>Wārme,500m<sup>2</sup></sub>     | 0,263          | 0,122     | 0,147     | 0,072     | <b>0,048</b> [€/kWh] |    |
| PRK K <sub>Wärme,5000m<sup>2</sup></sub>    | 0,195          | 0,091     | 0,109     | 0,054     | <b>0,035</b> [€/kWh] |    |
| VRK K <sub>Wärme,100m<sup>2</sup></sub>     | 0,297          | 0,170     | 0,184     | 0,113     | 0,093 [€/kWh]        |    |
| VRK K <sub>Wārme,500m<sup>2</sup></sub>     | 0,235          | 0,135     | 0,145     | 0,090     | 0,073 [€/kWh]        |    |
| VRK K <sub>Wärme.5000m<sup>2</sup></sub>    | 0.215          | 0.123     | 0.133     | 0.082     | 0.067 [€/kWh]        |    |

Tabelle 5: Wirtschaftlichkeitsrechnung der Solarthermie für eine Kollektortemperatur von 130 °C

Hier zeigt sich, dass ab einem Verhältnis der jährlichen Direktstrahlung  $I_{dir}$  zur jährlichen Globalstrahlung  $I_{global}$  von ca. 0,45, dass mit der Parabolrinne ein geringerer spezifische Wärmepreis  $K_{Wärme}$  erreicht werden kann. Ferner zeigen

sich die PRK auch bei Großanlagen vorteilhafter. Die beiden Diagramme in Abbildung 52 und Abbildung 53 zeigen die erzielbaren spezifischen Wärmepreise  $K_{Warme}$  für die Standorte Toulouse, Safi, Genova und St. Katrine.



Abbildung 52: Erzielbarer Wärmepreis der Solarthermie für die Standorte Toulouse und Safi



Abbildung 53: Erzielbarer Wärmepreis der Solarthermie für die Standorte Genova und St. Katrine
Es zeigt sich, dass bei entsprechender Anlagengröße bereits interessante Wärmepreise  $K_{Wärme}$  im nordafrikanischen Raum erzielt werden können.

7.2 Wirtschaftlicher Vergleich einer solaren DSKM mit anderen solarthermischen Kälteanlagen

Nachfolgend wird die solare DSKM mit einer solarthermisch angetrieben 1stufigen und 2-stufigen LiBr-Absorptionskältemaschine ABS verglichen. Für den wirtschaftlichen Vergleich wird zunächst ein Lastprofil für die fünf Standorte Essen, Toulouse, Genova, Safi und St. Katrine erstellt. Dabei wird auf die Wetterdaten der Meteonorm Datenbank /25/ wieder zurückgegriffen. Die Kältelast wird so definiert, dass sie zwischen einer Kühlgrenztemperatur und der maximalen Lufttemperatur linear entsprechend der gegenwärtigen Lufttemperatur zwischen 0 und 100% interpoliert wird. Entsprechend der berechneten Kältelast wird ein Lastprofil mit drei Leistungsstufen für 50, 75 und 100% festgelegt. Für die einzelnen Leistungsstufen des Lastprofils wird dann die jährliche Betriebzeit entsprechend jeden Standortes ermittelt. Für die weitere Berechnung wird vereinfachend davon ausgegangen, dass eine Verdampfertemperatur  $T_0$  von 7 °C gefahren wird und eine Heisswassertemperatur  $T_H$  von 95°C für den 1-stufigen ABS sowie 150 °C für den 2-stufigen ABS und die DSKM zur Verfügung steht. Der COP wird entsprechend der Rückkühlttemperatur  $T_{\rm \scriptscriptstyle RKW}\,$  stündlich berechnet und entsprechend der Leistungsstufe zugeordnet, so dass sich für jede Leistungsstufe ein gemittelter jährlicher COP ergibt. Mit Hilfe der Betriebszeiten lässt sich nun ein mittlere jährlicher COP für jede Kältemaschinen und jedem Standort ermitteln. Die Trägheit der Absorber wird mit dem Faktor 0,75 berücksichtigt, der mit den mittleren COP-Werten multipliziert wird. Die Tabelle 6 zeigt die ermittelten Lastprofile und COP-Werte der Kältemaschinen für die fünf Standorte.

| Standort                           | Essen  | Toulouse | Genova | Safi   | St. Katrine |      |
|------------------------------------|--------|----------|--------|--------|-------------|------|
| Breitengrad                        | 51,2   | 43,4     | 44,3   | 32,2   | 28,4        | [°]  |
| max. Feuchtkugeltemp.              | 22     | 24       | 27     | 29     | 21          | [°C] |
| Kühlgrenztemp.                     | 12     | 13       | 13,3   | 13,6   | 15          | [°C] |
| t <sub>Betrieb</sub>               | 840    | 1216     | 1663   | 2053   | 1958        | [h]  |
| t <sub>Betrieb,50%</sub>           | 620    | 770      | 1047   | 1172   | 977         | [h]  |
| t <sub>Betrieb,75%</sub>           | 180    | 330      | 562    | 690    | 657         | [h]  |
| t <sub>Betrieb,100%</sub>          | 40     | 116      | 54     | 191    | 316         | [h]  |
| DSKM COP <sub>m</sub>              | 1,05   | 0,95     | 0,92   | 0,83   | 1,13        | [-]  |
| DSKM COP <sub>m,50%</sub>          | 1,08   | 1        | 0,97   | 0,89   | 1,2         | [-]  |
| DSKM COP <sub>m,75%</sub>          | 0,84   | 0,74     | 0,68   | 0,64   | 0,98        | [-]  |
| DSKM COP <sub>m,100%</sub>         | 0,7    | 0,63     | 0,56   | 0,51   | 0,87        | [-]  |
| ABS 1-stufig COP <sub>m</sub>      | 0,6    | 0,5925   | 0,585  | 0,57   | 0,6         | [-]  |
| ABS 1-stufig COP <sub>m,50%</sub>  | 0,6    | 0,6      | 0,5925 | 0,5925 | 0,6         | [-]  |
| ABS 1-stufig COP <sub>m,75%</sub>  | 0,585  | 0,5775   | 0,555  | 0,525  | 0,6         | [-]  |
| ABS 1-stufig COP <sub>m,100%</sub> | 0,5625 | 0,525    | 0,465  | 0,42   | 0,6         | [-]  |
| ABS 2-stufig COP <sub>m</sub>      | 1,065  | 1,065    | 1,0575 | 1,0575 | 1,0575      | [-]  |
| ABS 2-stufig COP <sub>m,50%</sub>  | 1,065  | 1,065    | 1,065  | 1,065  | 1,0575      | [-]  |
| ABS 2-stufig COP <sub>m,75%</sub>  | 1,065  | 1,065    | 1,0575 | 1,0575 | 1,065       | [-]  |
| ABS 2-stufig COP <sub>m,100%</sub> | 1,0575 | 1,0575   | 1,05   | 1,05   | 1,065       | [-]  |

Tabelle 6: Lastprofile und COP-Werte der einzelnen Standorte

Bei der Ermittlung des jährlichen mittleren COP der Kältemaschinen zeigt sich, dass die DSKM insbesondere an Standorten mit geringen Feuchtkugeltemperaturen hohe mittlere COP-Werte erreicht. Wie zuvor gezeigt, besitzen diese Standorte gleichzeitig einen hohen Direktstrahlungsanteil  $I_{dir}$ , so dass insbesondere die Kombination PRK und DSKM an diesen Standorten viel versprechend erscheint. Dieser Sachverhalt wird in der nachfolgenden Wirtschaftlichkeitsberechnung weiter untersucht. Die Tabelle 7 listet die angenommen wirtschaftlichen Rahmenbedingungen.

Tabelle 7: Wirtschaftliche Rahmenbedingungen

| Zeitraum<br>p          | 15      | 5 [a]<br>6 [%] | q           | 1,06        | [-]         |         |
|------------------------|---------|----------------|-------------|-------------|-------------|---------|
| Standort               | Essen   | Toulouse       | Genova      | Safi        | St. Katrine |         |
| Breitengrad            | 51,2    | 43,4           | 44,3        | 32,2        | 28,4        | [°]     |
| max. Feuchtkugeltemp.  | 22      | 24             | 27          | 29          | 21          | [°C]    |
| Feuchttemp./Lufttemp.  | 0,90625 | 0,891472868    | 0,841772152 | 0,955801105 | 0,620320856 | [-]     |
| t <sub>b,Vollast</sub> | 840     | 1216           | 1663        | 2053        | 1958        | [h/a]   |
| Kstrom                 | 0,12    | 0,12           | 0,12        | 0,1         | 0,1         | [€/kWh] |
| Kwasser                | 2,5     | 2,5            | 2,5         | 1           | 1           | [€/m³]  |

Mit diesen wirtschaftlichen Rahmenbedingungen wird nun ein spezifischer Kältepreis K für die DSKM sowie den 1-stufigen und 2-stufigen ABS ermittelt. Der Wärmepreis  $K_{Wärme}$  wird entsprechend den zuvor ermittelten Werten abhängig von der benötigten Kollektorfläche und Kollektortemperatur  $T_{Kol}$  ermittelt. Die Größe des Kollektorfeldes wird so gewählt, dass bei einer Solareinstrahlung /  $_{solar}$  von 1000 W/m<sup>2</sup> das Kollektorfeld die Antriebsleistung  $\mathscr{G}_{H}$  für den Nennlastbetrieb der Kältemaschine erbringt. Die Berechnung erfolgt für eine Kälteanlage mit einer Kälteleistung  $\mathscr{G}_{0}$  von 100, 200 und 500 kW. Die Tabelle 8, Tabelle 9 und Tabelle 10 zeigen die Berechnung exemplarisch für die Kälteleistung  $\mathscr{G}_{0}$  von 200 kW. Die Berechnungen für die Leistungsbereiche 100 und 500 kW befinden sich im Anhang.

Tabelle 8: Wirtschaftlichkeitsrechnung einer 200 kW 1-stufigen ABS

| Absorber 1-st                   | tufig      |            |            |            |             |                 |
|---------------------------------|------------|------------|------------|------------|-------------|-----------------|
| Standort                        | Essen      | Toulouse   | Genova     | Safi       | St. Katrine |                 |
| dQ <sub>0</sub> /dt             | 200        | 200        | 200        | 200        | 200         | [kW]            |
| dQ <sub>H</sub> /dt             | 286        | 286        | 286        | 286        | 286         | [kW]            |
| dQ <sub>RKW</sub> /dt           | 486        | 486        | 486        | 486        | 486         | [kW]            |
| K <sub>Invest,Einheit</sub>     | 43.709,00  | 43.709,00  | 43.709,00  | 43.709,00  | 43.709,00   | [€]             |
| K <sub>Invest,RKW</sub>         | 22.181,00  | 25.969,57  | 31.652,43  | 35.441,00  | 20.286,71   | [€]             |
| K <sub>Invest,Neben</sub>       | 155.453,00 | 155.453,00 | 155.453,00 | 155.453,00 | 155.453,00  | [€]             |
| K <sub>Invest,ges</sub>         | 221.343,00 | 225.131,57 | 230.814,43 | 234.603,00 | 219.448,71  | [€]             |
| spez. $K_{\text{invest}}$       | 1.106,72   | 1.125,66   | 1.154,07   | 1.173,02   | 1.097,24    | [€/kW]          |
| COPm                            | 0,60       | 0,59       | 0,59       | 0,57       | 0,60        | [-]             |
| Wo                              | 168000     | 243200     | 332600     | 410600     | 391600      | [kWh/a]         |
| W <sub>H</sub>                  | 280000     | 410464     | 568547     | 720351     | 652667      | [kWh/a]         |
| W <sub>RKW</sub>                | 448000     | 653664     | 901147     | 1130951    | 1044267     | [kWh/a]         |
| K <sub>Betrieb,Wärme</sub>      | 51.987,93  | 41.852,42  | 66.304,13  | 45.252,23  | 28.071,83   | [€⁄a]           |
| K <sub>Betrieb,Wasser</sub>     | 1.663,37   | 2.426,97   | 3.345,84   | 1.679,63   | 1.550,89    | [€/a]           |
| K <sub>Betrieb,Strom</sub>      | 2.200,50   | 3.227,25   | 4.391,40   | 4.563,63   | 4.385,44    | [€/a]           |
| K <sub>Betrieb,Wartung</sub>    | 4.426,86   | 4.502,63   | 4.616,29   | 4.692,06   | 4.388,97    | [€/a]           |
| $K_{\text{Betrieb},\text{ges}}$ | 60.278,65  | 52.009,27  | 78.657,66  | 56.187,54  | 38.397,13   | [€/a]           |
| K <sub>Kapital</sub>            | 22.790,09  | 23.180,17  | 23.765,29  | 24.155,37  | 22.595,05   | [€⁄a]           |
| K <sub>ges</sub>                | 83.068,74  | 75.189,44  | 102.422,95 | 80.342,92  | 60.992,18   | [€/a]           |
| spez. K                         | 0,494      | 0,309      | 0,308      | 0,196      | 0,156       | [ <b>€</b> kWh] |

| Absorber 2-s                 | tufig      |            |            |            |             |                 |
|------------------------------|------------|------------|------------|------------|-------------|-----------------|
| Standort                     | Essen      | Toulouse   | Genova     | Safi       | St. Katrine |                 |
| dQ <sub>0</sub> /dt          | 200        | 200        | 200        | 200        | 200         | [kW]            |
| dQ <sub>H</sub> /dt          | 171        | 171        | 171        | 171        | 171         | [kW]            |
| dQ <sub>RKW</sub> /dt        | 371        | 371        | 371        | 371        | 371         | [kW]            |
| K <sub>Invest,Einheit</sub>  | 54.636,00  | 54.636,00  | 54.636,00  | 54.636,00  | 54.636,00   | [€]             |
| K <sub>Invest,RKW</sub>      | 18.747,00  | 21.640,33  | 25.980,33  | 28.873,67  | 17.300,33   | [€]             |
| K <sub>Invest,Neben</sub>    | 171.868,00 | 171.868,00 | 171.868,00 | 171.868,00 | 171.868,00  | [€]             |
| K <sub>Invest,ges</sub>      | 245.251,00 | 248.144,33 | 252.484,33 | 255.377,67 | 243.804,33  | [€]             |
| spez. K <sub>invest</sub>    | 1.226,26   | 1.240,72   | 1.262,42   | 1.276,89   | 1.219,02    | [€/kW]          |
| COPm                         | 1,07       | 1,07       | 1,06       | 1,06       | 1,06        | [-]             |
| Wo                           | 168000     | 243200     | 332600     | 410600     | 391600      | [kWh/a]         |
| W <sub>H</sub>               | 157746     | 228357     | 314515     | 388274     | 370307      | [kWh/a]         |
| W <sub>RKW</sub>             | 325746     | 471557     | 647115     | 798874     | 761907      | [kWh/a]         |
| K <sub>Betrieb,Wärme</sub>   | 49.476,05  | 35.464,27  | 57.480,46  | 34.567,90  | 20.855,25   | [€/a]           |
| K <sub>Betrieb,Wasser</sub>  | 1.209,45   | 1.750,83   | 2.402,66   | 1.186,45   | 1.131,55    | [€/a]           |
| K <sub>Betrieb,Strom</sub>   | 2.200,50   | 3.227,25   | 4.391,40   | 4.563,63   | 4.385,44    | [€⁄a]           |
| K <sub>Betrieb,Wartung</sub> | 4.905,02   | 4.962,89   | 5.049,69   | 5.107,55   | 4.876,09    | [€⁄a]           |
| $K_{Betrieb,ges}$            | 57.791,02  | 45.405,23  | 69.324,20  | 45.425,52  | 31.248,32   | [€/a]           |
| <b>K</b> <sub>Kapital</sub>  | 25.251,72  | 25.549,63  | 25.996,48  | 26.294,39  | 25.102,77   | [€/a]           |
| K <sub>ges</sub>             | 83.042,75  | 70.954,86  | 95.320,69  | 71.719,91  | 56.351,09   | [€⁄a]           |
| spez. K                      | 0,494      | 0,292      | 0,287      | 0,175      | 0,144       | [ <b>€</b> kWh] |

Tabelle 9: Wirtschaftlichkeitsrechnung einer 200 kW 2-stufigen ABS

| Tabelle 10: Wirtschaftlichkeitsrechnung einer 200 kW DSKM |  |
|-----------------------------------------------------------|--|
|                                                           |  |

| DSKM                         |            |            |            |            |             |                 |
|------------------------------|------------|------------|------------|------------|-------------|-----------------|
| Standort                     | Essen      | Toulouse   | Genova     | Safi       | St. Katrine |                 |
| dQ <sub>0</sub> /dt          | 200        | 200        | 200        | 200        | 200         | [kW]            |
| dQ <sub>H</sub> /dt          | 400        | 400        | 400        | 400        | 400         | [kW]            |
| dQ <sub>RKW</sub> /dt        | 600        | 600        | 600        | 600        | 600         | [kW]            |
| K <sub>Invest,Einheit</sub>  | 40.000,00  | 40.000,00  | 40.000,00  | 40.000,00  | 40.000,00   | [€]             |
| K <sub>Invest,RKW</sub>      | 29.164,00  | 33.844,00  | 45.544,00  | 61.924,00  | 59.584,00   | [€]             |
| K <sub>Invest,Neben</sub>    | 172.910,00 | 172.910,00 | 172.910,00 | 172.910,00 | 172.910,00  | [€]             |
| K <sub>Invest,ges</sub>      | 242.074,00 | 246.754,00 | 258.454,00 | 274.834,00 | 272.494,00  | [€]             |
| spez. K <sub>invest</sub>    | 1.210,37   | 1.233,77   | 1.292,27   | 1.374,17   | 1.362,47    | [€/kW]          |
| COPm                         | 1,05       | 0,95       | 0,92       | 0,83       | 1,13        | [-]             |
| Wo                           | 168000     | 243200     | 332600     | 410600     | 391600      | [kWh/a]         |
| W <sub>H</sub>               | 160000     | 256000     | 361522     | 494699     | 346549      | [kWh/a]         |
| W <sub>RKW</sub>             | 328000     | 499200     | 694122     | 905299     | 738149      | [kWh/a]         |
| K <sub>Betrieb,Wärme</sub>   | 45.417,92  | 35.103,39  | 58.655,26  | 38.887,26  | 17.232,55   | [€⁄a]           |
| K <sub>Betrieb,Wasser</sub>  | 1.217,82   | 1.853,47   | 2.577,18   | 1.344,50   | 1.096,26    | [€/a]           |
| K <sub>Betrieb,Strom</sub>   | 1.455,00   | 2.245,50   | 2.997,00   | 3.236,25   | 3.243,13    | [€/a]           |
| K <sub>Betrieb,Wartung</sub> | 4.841,48   | 4.935,08   | 5.169,08   | 5.496,68   | 5.449,88    | [€/a]           |
| $K_{Betrieb,ges}$            | 52.932,22  | 44.137,44  | 69.398,52  | 48.964,70  | 27.021,82   | [€⁄a]           |
| K <sub>Kapital</sub>         | 24.924,61  | 25.406,47  | 26.611,14  | 28.297,67  | 28.056,74   | [€⁄a]           |
| K <sub>ges</sub>             | 77.856,83  | 69.543,91  | 96.009,66  | 77.262,37  | 55.078,55   | [€/a]           |
| spez. K                      | 0,463      | 0,286      | 0,289      | 0,188      | 0,141       | [ <b>€</b> kWh] |

Grundsätzlich lässt sich unter den hier getroffenen Annahmen keine "eindeutige wirtschaftliche Überlegenheit" einer Anlagentechnik darstellen. Alle drei Anlagentechniken besitzen ähnlich hohe spezifische Kältekosten K. Die ABS-Technik schneidet an Standorten mit einer hohen Feuchtkugeltemperatur gegenüber der DSKM-Technik besser ab. An Standorten mit geringer Feuchtkugeltemperatur scheint der Einsatz der DSKM vorteilhafter. Einen gesamten Überblick der spezifischen Kältekosten K für die fünf Standorte und den drei betrachteten Leistungen gibt das Diagramm in Abbildung 54.





Abbildung 54: Wirtschaftlicher Vergleich der Kälteanlagen an unterschiedlichen Standorten mit unterschiedlichen Leistungen

Insbesondere an den Standorten Toulouse und St. Katrine kann die DSKM gut mit der 2-stufigen ABS konkurrieren. An den Standorten Genova und Safi schneidet die ABS besser ab. Das Beispiel einer 2-stufigen ABS für eine Kälteleistung  $\mathcal{Q}_0$  von 100 kW wurde nicht gerechnet.

7.3 Ökologische Vergleich einer Solaren DSKM mit konventionellen Systemen

Abschließend wird ein ökologischer Vergleich zwischen der solaren DSKM und einer solaren einstufigen und zweistufigen ABS durchgeführt. Der hier durchgeführte Vergleich beschränkt sich lediglich auf die Kohlendioxidemissionen, die beim Betrieb der Anlagen zu erwarten sind. Die Tabelle 11 führt die Kennwerte auf, die zur Berechnung der Kohlendioxidemissionen verwendet werden.

| Standort                          | Essen     | Toulouse  | Genova    | Safi       | St. Katrine | [0]              |
|-----------------------------------|-----------|-----------|-----------|------------|-------------|------------------|
| Breitengrad                       | 51,2      | 43,4      | 44,3      | 32,2       | 28,4        |                  |
| mov Fouchtkugoltomo               | 0,30      | 0,40      | 0,44      | 0,57       | 0,09        | [ <sup>-</sup> ] |
| Kühlgrenztemp                     | 12        | 13        | 13.3      | 13.6       | 15          | [°C]             |
| t <sub>Betrieb</sub>              | 840       | 1216      | 1663      | 2053       | 1958        | [h]              |
| DSKM COPm                         | 1.05      | 0.95      | 0.92      | 0.83       | 1.13        | [-]              |
| ABS 1-stufig COPm                 | 0,6       | 0,5925    | 0,585     | 0,57       | 0,6         | [-]              |
| ABS 2-stufig COPm                 | 1,065     | 1,065     | 1,0575    | 1,0575     | 1,0575      | [-]              |
| CO <sub>2</sub> -Äquivalent Strom | 122,43    | 122,43    | 122,43    | 268,38     | 268,38      | [t/TJ]           |
| Absorber 1-stufig 100 kV          | v         |           |           |            |             |                  |
| W <sub>o</sub>                    | 84000,00  | 121600,00 | 166300,00 | 205300,00  | 195800,00   | [kWh/a]          |
| W <sub>Strom</sub>                | 9169      | 13447     | 18298     | 22818      | 21927       | [kWh/a]          |
| Absorber 1-stufig 200 kV          | v         |           |           |            |             |                  |
| W <sub>0</sub>                    | 168000    | 243200    | 332600    | 410600     | 391600      | [kWh/a]          |
| W <sub>Strom</sub>                | 18338     | 26894     | 36595     | 45636      | 43854       | [kWh/a]          |
| Absorber 1-stufig 500 kV          | v         |           |           |            |             |                  |
| Wo                                | 420000    | 608000    | 831500    | 1026500    | 979000      | [kWh/a]          |
| W <sub>Strom</sub>                | 45843,75  | 67234,375 | 91487,5   | 114090,625 | 109635,938  | [kWh/a]          |
| Absorber 2-stufig 200 kV          | V         |           |           |            |             |                  |
| Wo                                | 168000    | 243200    | 332600    | 410600     | 391600      | [kWh/a]          |
| W <sub>Strom</sub>                | 18337,5   | 26893,75  | 36595     | 45636,25   | 43854,375   | [kWh/a]          |
| Absorber 2-stufig 500 kV          | V         |           |           |            |             |                  |
| Wo                                | 420000    | 608000    | 831500    | 1026500    | 979000      | [kWh/a]          |
| W <sub>Strom</sub>                | 45843,75  | 67234,375 | 91487,5   | 114090,625 | 109635,938  | [kWh/a]          |
| DSKM 100 kW                       |           |           |           |            |             |                  |
| Wo                                | 84000     | 121600    | 166300    | 205300     | 195800      | [kWh/a]          |
| W <sub>Strom</sub>                | 6062,5    | 9356,25   | 12487,5   | 16181,25   | 16215,625   | [kWh/a]          |
| DSKM 200 kW                       |           |           |           |            |             |                  |
| Wo                                | 168000    | 243200    | 332600    | 410600     | 391600      | [kWh/a]          |
| W <sub>Strom</sub>                | 12125     | 18712,5   | 24975     | 32362,5    | 32431,25    | [kWh/a]          |
| DSKM 500 kW                       |           |           |           |            |             |                  |
| Wo                                | 420000    | 608000    | 831500    | 1026500    | 979000      | [kWh/a]          |
| W <sub>Strom</sub>                | 30.312,50 | 46.781,25 | 62.437,50 | 80.906,25  | 81.078,13   | [kWh/a]          |

Tabelle 11: Kennwerte zur Berechnung der Kohlendioxidemissionen

Die Kohlendioxid-Äquivalente wurden der GEMIS Datenbank 4.2 /26 entnommen. Aufgrund der Möglichkeit bei der DSKM die Pumpeleistungen im Teillastbereich stärker zu reduzieren als bei der ABS weißt die DSKM gegenüber der ABS geringere Stromverbräuche auf. Das Diagramm in Abbildung 55 vergleicht die Kohlendioxidemissionen der hier betrachteten solaren Kältemaschinen.



Abbildung 55 Kohlendioxidemissionen der verglichenen solaren Kältemaschinen

Aufgrund des geringeren Bedarfs an elektrischer Hilfsenergie verursacht die solare DSKM weniger Kohlendioxidemissionen, als die solaren Absorptionskältemaschinen. Ferner muss an dieser Stelle auch darauf hingewiesen werden, dass die hier untersuchte solare DSKM mit Wasser als einziges Arbeitsmedium arbeitet. Das Diagramm in Abbildung 56 stellt schließlich die Kohlendioxidemissionen einer solaren DSKM den Kohlendioxidemissionen einer elektrischen Kältemaschine gegenüber.



Abbildung 56: Kohlendioxidemissionen der solaren DSKM und einer elektrischen Kältemaschine

Mit der solaren DSKM lassen sich deutlich die Kohlendioxidemissionen gegenüber der elektrischen Kältemaschine senken. Insbesondere an Standorten mit hohem Kältebedarf können erhebliche Emissionseinsparungen erzielt werden.

# 8 Angaben zu internationalen Kontakten, wissenschaftlichen Arbeiten

Im Rahmen des Projektes ergaben sich Kontakte zu der Fa. Paradigma (VRK Hersteller), der Fa. IST (PRK Hersteller) und der Forschungseinrichtung AEE Intec (Arbeitsgemeinschaft Erneuerbare Energie, Institut für Nachhaltige Technologie, Österreich). Fraunhofer UMSICHT und AEE planen derzeit ein gemeinsames Forschungsvorhaben zur Entwicklung einer kleinen solarthermischen DSKM als Standardmodul.

Eine Veröffentlichung der Projektergebnisse ist durch eine Fachveröffentlichung und eines Vortrages auf der Solar Heating and Cooling International Session 61st ATI National Congress gesponsert durch dir IIR in Perugia, Italien 2006, geplant.

Ferner wurde eine Diplomarbeit mit dem Titel "Solare Dampfstrahlkältemaschine – technische Bewertung – Bilanzierung einer Versuchsanlage" /27/ zusammen mit dem Fachbereich Maschinen- und Verfahrenstechnik an der Technischen Fachhochschule Georg Agricola zu Bochum sowie eine Praktikumsarbeit "Solare Dampfstrahlkältemaschine" /28/ angefertigt.

# 9 Fazit

Die solare DSKM ist unter ökonomischen und ökologischen Gesichtspunkten eine interessante Alternative zu anderen Verfahren der solaren Kühlung. Bislang wurde jedoch dieser Technik kaum Beachtung geschenkt, so dass Demonstrationsanlagen bislang nicht realisiert wurden. Eine genauere Betrachtung des Betriebsverhaltens der DSKM zeigt jedoch, dass die DSKM im Teillastbereich und bei guten Rückkühlbedingungen hohe COP Werte erreichen kann, was sich bei einer Jahresbetrachtung durch einen guten mittleren COP bemerkbar macht. Nach Abschluss des Projektes wäre nun der Bau einer ersten Demonstrationsanlage der folgerichtige Schritt diese Technik weiter voranzutreiben und am Markt zu etablieren.

## 10 Literaturverzeichnis

1 Dr. Bartsch, H.-J.: Taschenbuch mathematischer Formeln – Nachschlagewerk zur höheren Mathematik. 16. Auflage ISBN 3-343-00876-1. Fachbuchverlag Leipzig-Köln, 1994

2 Duffie, J., A. und Beckman, W., A.: Solar Engineering of Thermal Processes. A Wiley-Interscience Publication. ISBN 0-471-05066-0. New-York – Chister – Brisbane – Toronto USA/Canada, 1980

3 Dr. Wiegand, J.: Bemessung von Dampfstrahl-Verdichtern und ihr Verhalten bei wechselnden Betriebsbedingungen. Ausgabe B Band 11. VDI-Verlag GmbH. Berlin, 1940

4 Kakabaev, A. and Davletov, A.: A Freon Ejector Solar Cooler. Geliotekhnika, Vol. 2, No. 5, pp. 42-48. AS Turkmen SSR,1966

5 Anderson, H: Assessment of solar powered Vapor Jet Air-Conditioning Systems. Proc. Int. Solar Energy Congress and Exposition (ISES). UCLA, Los Angeles, Ca, pp.408-409. USA, 1975

6 Zhadan, S. Z. and Shchetinina, N. A.: Selection of cycle Design Parameters for Solar Ejector Freon Refrigeration Machine (SEFRM). Geliotekhnika, Vol. 16, No. 1, pp. 44-47, 1977

7 Alkasab, K., A.: Heating and Cooling System utilizing Solar Energy. US-Pat. 4007776, 1977

8 Abdel-Aal, H., K and Al-Zakri, A., S.: Dual-Prurpose Solar-Energy powered Flashing Chambers. Solar Heating Cooling Desalination. Veziroglu. Volume 2. pp. 345 ff Ann Arbor Science, the Butterworth Group. England, 1982

9 Chai, V. W. und Lansing, F. L.: A Thermodynamic analysis of a Solar-Powered Jet Refrigeration System. Jet Propulsing Laboratory Pasadena, California, USA - Solar Energy: International Progress. Pp. 886-897

10 Sokolov, M. u. Hershgal, D.: Solar-Powered Compression-enhanced Ejector Air Conditioner. Solar Energy Vol. 51, No. 6 pp. 183-194, 1993

11 Hofer, T.: Solare Kälteerzeugung mit Dampfstrahltechnik. Diplomarbeit FH-München, WS 97/98

12 Wolpert, J., L. und Riffat, S., B.: Hybrid Solar/Gas Cooling Ejector Unit for a Hospital in Mexico. <u>http://www.kenes.com/ises.abstracts/Htm/0171.htm</u>. Institute of Building Technology. School of the Built Environment. University of Nottingham. Great Britain, 1999

13 Huang, B.J., Petrenko, V.A., Chang, J.M. u. Zhuk, K.B.: A High-Performance Solar Ejector Cooling System. Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan/Odessa State Academy of Refrigeration, Odessa, Ukraine, 2000

14 Petrenko, V. A., Bulavin, I. V. u. Samofatov, I. YA.: Investigation of the Methods increasing the efficiency of solar ejector cooling and refrigeration systems. Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan/Odessa State Academy of Refrigeration, Odessa, Ukraine, 2000

15 Huang, B. J. u Petrenko, V. A.: A combined Ejector Cooling and hot water supply system using solar and waste heat energy. Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan/Odessa State Academy of Refrigeration, Odessa, Ukraine, 2000

16 Noeres, P; Hölder, Daniel; Hennecke, Klaus: Verfahren und Anlage zur solarthermischen Kälteerzeugung. Patent DE-10162934, 2001

17 Lechner, S.: Verfahrenstechnische Untersuchungen zur Auslegung einer mit Parabolrinnenkollektoren betriebenen Dampfstrahlkältemaschine. Diplomarbeit FH-Bochum, 2002

18 Fraunhofer Institut UMSICHT, Deutsches Zentrum für Luft und Raumfahrt: Solar Kälteerzeugung mit Parabolrinnenkollektoren und Dampfstrahlkältemaschinen. Abschlußbericht. Energie, Technologie und Nachhaltigkeit. Förderkennzeichen: 261 206 01. Köln – Oberhausen, 2003

19 Pridasawas, W.: Solar Cooling and Sustainnable Refrigeration. Veröffentlichung Div. of Applied Thermodynamics and Refrigeration. Department of Energy Technology, Royal Institute of Technoloy. Stockholm, Sweden, 2003

20 Rapp, D.: Solar Energy. ISBN 0-13-822213-4. Prentice-Hall, Inc.. Englewood Cliffs. N.J. USA, 1981

21 Dr. Leiner, W. und Dr. Altfeld, K.: Untersuchung von Luftkollektoren und ihren Komponenten auf einem Indoor-Versuchsstand. Forschungsbericht T 86-193 Technologische Forschung und Entwicklung – Nichtnukleare Energietechnik – Bundesministerium für Forschung und Technologie. Institut für Thermo- und Fluiddynamik. Ruhr-Universität Bochum, 1986

22 Auszug aus dem Prüfbericht CPC 40 Allstar. Internes Papier von der Fa. Paradigma Energie- und Umwelttechnik GmbH & Co. KG. Karlsbad, 2005

23 Kalide, W.: Einführung in die Technische Strömungslehre. 7. Auflage. Carl Hanser Verlag München Wien, 1990

24 Bauer, B.: Theoretische und experimentelle Untersuchungen an Strahlapparaten für kompressible Strömungsmittel (Strahlverdichter) VDI-Forschungsheft 514 DI-Verlag GmbH. Düsseldorf, 1966

25 Meteonorm. Global Meteorological Database for Solar Energy and Applied Climatology. Version 4.0 – Edition 2000. Fabrikstrasse 14. 3012 Bern, Schweizt 26 GEMIS Datenbank. <u>http://www.oeko.de</u>. Institut für angewandte Ökologie e.V., Freiburg 2006

27 Chakir, A.: Solare Dampfstrahlkältemaschine – technische Bewertung - Bilanzierung einer Versuchsanlage. Fachbereich Maschinen- und Verfahrenstechnik. Technische Fachhochschule Georg Agricola zu Bochum. Deutschland, 2006

28 Hoffmann, F.: Solare Dampfstrahlkältemaschine. Studiengang der Energie- und Versorgungstechnik. Hochschule für Technik, Wirtschaft und Kultur Leipzig. Deutschland 2006

# 10 Anhang

### Anhangverzeichnis

- 1 Auslegungsdaten Dampftrommel B1
- 2 Auslegungsdaten Strahlverdichter V1
- 3 Auslegungsdaten Kondensator WT1
- 4 Auslegungsdaten Verdampfer B2
- 5 Auslegungsdaten Konvektionslüfter WT2
- 6 Wirtschaftlichkeitsberechnung der Solarthermie
- 7 Wirtschaftlichkeitsberechnung der Kältemaschinen



## Auslegungsdaten Dampftrommel B 1

1

| elchne:<br>cliung<br>Grundo  | t<br>• gebelz<br>nstrich               | :t                       |     |
|------------------------------|----------------------------------------|--------------------------|-----|
| g V 6(<br>Ingeso<br>onsolibl | )° (2*30°)<br>:hwelßt<br>ech und S     | # HV 45°<br>itützrippen  |     |
| -                            |                                        |                          | L   |
| _                            | -                                      |                          | 1   |
|                              |                                        |                          | Т   |
|                              |                                        |                          | L   |
|                              | -                                      |                          | L   |
|                              | 102 00 10 2                            |                          | L   |
| 2                            | 872 60 - 80 6                          | SAN TO A PER SA          | L   |
|                              | #7 SI - 6 I                            | NU VI I RAL SU           | I.  |
| 4                            | -                                      | 2007-28-27-28-28-28-     | L   |
|                              |                                        |                          | L   |
| a nee                        | WITTO Walket                           | -Nott 2009               | T.  |
|                              | A2 30 - A1 3                           | 10 V4 Pitt 51            | L   |
| 177                          | 497 911 - 41 1                         |                          | L   |
| 6 100                        | Ville Ville A                          | Nott 3003                | L   |
| 3530                         | (C 3) (1)                              | 201 V2 Pht 62            | L   |
|                              | APZ 30 - AT 2                          | 30 V4 4 Fkt 51           | L   |
|                              | ANT 50 - AT 1                          |                          | L   |
| 10                           | Volto, Haribia                         | 11 1212                  | L   |
| 1267                         | H72 20 - 61 2                          | 40 Y7 1 Pick 62          | L   |
| -                            | YOUV VENER                             | VALUE SI                 | L   |
|                              |                                        |                          | L   |
| 12                           | 1972 2011 - 1912<br>1911 1911 1917 201 | AND YES PARE NO.         | L   |
| 610                          | A7 31 - AL                             | N V 1 Rd 3               | L   |
| 14                           | 60 200 HP 7/2<br>1427 311 - 61 3       | W Bet 75                 | 1   |
|                              |                                        |                          | L   |
|                              | Yelson / Off                           | a 10-a) (t, f            | 1   |
| е.                           |                                        |                          | 1   |
| 2                            | Druckger-Ltel                          | 1. Hankareittigerführung | 1   |
|                              | (all damage)                           | 1.00./30                 | +   |
| <b>1</b>                     | UPrist water                           | <b>WEATER</b>            | 1   |
|                              | Ernst-L                                | en Krick Gabi            | ıl. |
| 17                           | Frindrich-Fly                          | ort-Stroke 198           | Ί   |
| 20                           | 45470 NAU                              | and an alan Duke         | J   |
| 12                           | 4J473 MUI                              | nem on der Rum           | 1   |
| -                            |                                        | Haletab 125 / 40         | 1   |
| 253                          |                                        | P SHOT Housen            | 1   |
| 0.905                        |                                        | m -                      | 1   |
| 0005                         | Uncontra                               | WD 227000 621199 1       | 1   |
| 2005                         | and the state                          |                          | Н   |
|                              |                                        | 2.6                      | 4   |
|                              | Ensite Re                              |                          |     |
|                              |                                        |                          |     |

< RATEV 2

7 - 11 / 120 101 aft: Vorkummer

uao - 31 Vaster-moth Einba



## Auslegungsdaten Strahlverdichter V 1

#### Kondensator WT 1

| Maßblatt Platt  | enwärmetaus     | cher            | G          | E-A | GEA<br>Ecof | lex Gr    | nbH -    |
|-----------------|-----------------|-----------------|------------|-----|-------------|-----------|----------|
| Kunde:          | Fraunhofer Inst | KUTUMSICHT      |            |     |             |           |          |
| Auftrag-Br.:    | 152.45344.19    | Kundenposition: |            |     |             | Positions | s Nr.: 1 |
| Faiorlk-Nr.:    | 169/12006       |                 |            |     |             |           |          |
| Schaltslan-Nr.: | \$169/15806     | Zeichnungs-Na:  | Z105/15506 |     | •           | <u> </u>  | · .      |
| Typ: VT10 CD    | S-16            |                 |            |     |             |           |          |

Abmessungen der Zeichnung im [m.m]







.. . . . ... . . . . . . . . . . . .

Achtungi Sei 871 konn die Anordnung der SchreubenRicher sbireistend vor: der DN 2531 1° mekr. Altentiged if rubber inemt ere vsed, ber poeffich of the driffing

Lempide con be different from DA 2501 T1

| n:   | 480 m | т         | Б1:          | , 25,00 mm      | в-Ма₿ п | ax:     | 280 mm |   | l Le  | <del>)</del> arģew | ndht: j | 139 | kg     |
|------|-------|-----------|--------------|-----------------|---------|---------|--------|---|-------|--------------------|---------|-----|--------|
| k:   | 440 m | п         | Б <u>г</u> : | 25,00 mar:      | a-Maß a | ktoett. | 69 min |   | : Fi  | üligewi            | oht.    | 143 | kg     |
| 1:   | 455 m | m         |              |                 |         |         |        |   | . : . |                    |         |     |        |
| Pos  | DN    | Тур       |              |                 |         | Medi    | um     |   | Eín   | Aus                | Zus     | atz | m-Maß  |
| 1F   | 5Q    | Vorschw   | eißflen      | set DIN 2633-1. | 4571    | Deiul   | рf     |   | ×     | -                  | -       |     | 153 mm |
| 2F   | 50    | Nippel D  | IN 298       | 9 1.4571        |         | Wass    | ser 👘  |   | -     | x                  | -       |     | 43 mm  |
| 4F   | 50    | Verschva  | elûfian      | sch DIN 2833 1. | 4571    | Dam     | pf     |   | -     | х.                 | -       |     | 73 mm  |
| 2L   | 50    | Nippel Di | IN 299       | 9 1.4571        |         | Wass    | 96     | · | ×     | -                  | -       |     | 43 mm  |
|      |       |           |              |                 |         |         |        |   |       |                    |         |     |        |
| L    | ••••• | · · ••    | ··· · I      |                 |         | ,       |        |   |       |                    |         |     | —      |
|      | a P   | 8         |              | <u> </u>        |         | i       |        |   |       |                    |         |     | -      |
|      | Ē     |           |              |                 |         |         |        | · |       |                    |         |     |        |
| ŀ    | ð., þ | 2         |              |                 |         |         |        |   |       |                    |         |     |        |
|      | 11    |           |              |                 |         | :       |        |   |       |                    |         |     |        |
| VEL  |       |           |              | NIP             |         | :       |        | • |       | •                  |         |     |        |
| DIN  | 2633  |           | `            | DIN2999         |         | :       |        |   |       |                    |         |     |        |
| PN1  | 6     |           |              |                 |         | 1       |        |   |       |                    |         |     |        |
| 1F;4 | F     |           | :            | 2F;2L           |         | 1       |        |   |       |                    |         |     |        |

Technische Ändeningen vortichation, Farhschicht/dicke bei tackierten Gestellen gemäß Din EN ISO 12944-5. Gestellplattenoberfrächengüte gemäß DIN EN 10029. Die konstruktiven Angeben geiten für die von der GEA. EcoRex. GribH/Serstedt hergestellten PWT.

. .

3

.



Sekundär: 2 x 5

| Kunde:<br>Ort:<br>Auftrags-Nr.:<br>Positions-Nr.:<br>Kundenposition:<br>Fabrik-Nr.:  | Fraunhofer Institut UMSI<br>Oberhausen<br>152.45344.19<br>1<br>189/15606               |                                           | 1025 100                                  |                                  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|
| PYVI:                                                                                | 10/07/1000E                                                                            | , 0.0, EFDM, 008-10, 3                    | 200-01/01                                 | <u> </u>                         |
| Datum:                                                                               | 19/04/2003                                                                             |                                           |                                           |                                  |
| A-Max:                                                                               | 69 mm                                                                                  |                                           |                                           |                                  |
| A-Min:                                                                               | 67 mm                                                                                  |                                           |                                           |                                  |
| Auslegungsdruck<br>Auslegungsdruck<br>Auslegungstemp<br>Auslegungstemp<br>Prüfdruck: | : Min (pri/sek):<br>: Max (pri/sek):<br>eratur Min (pri/sek):<br>eratur Max (pri/sek): | -1,00<br>10,00<br>0,00<br>110,00<br>13,00 | -1.00<br>10,00<br>0,00<br>110,00<br>13,00 | barg<br>barg<br>°C<br>°C<br>barg |
| Abteilung:<br>WT-Platten:<br>Dichtung:                                               | 21 VT10 V K, 1.4401, 0,<br>gsklebt                                                     | 60 mm, EPDM                               |                                           |                                  |

0,43 m³/h Wasser von 15 00 °C auf 25.00 °C

Schaltung:Primär:1 x 10Sekundär:2Temperatur-206,45 m³/h Dampf von 33,00 °C auf 33.00 °C

Schaltplan

programm:

.

Plattenwärmetauscher



Auslegungsdaten Verdampfer B 2

4

| aut<br>Inforda                          | ribh                                                               |   |
|-----------------------------------------|--------------------------------------------------------------------|---|
| ( Neubo<br>Arvt 3 -<br>Ult<br>Igerötefi | ∧ 2006 )<br>Alex 9 / Gruppe &<br>L - AD 2000 Regeliserik           |   |
| eretəller<br>eleclerika<br>er von u     | hnende Pröfungen<br>Indahönggar von Se-                            |   |
| EN 473                                  |                                                                    |   |
| electer.                                | Rahemaun                                                           |   |
| / <b>a</b> o                            | =                                                                  |   |
|                                         | 2                                                                  |   |
| endurpe                                 | C                                                                  | ī |
|                                         | Æ                                                                  |   |
| 1475<br>7475                            | rintera)                                                           |   |
|                                         |                                                                    |   |
| et und p<br>wien so                     | naatkert, Grundunattich<br>Ist roh                                 |   |
| ereichne<br>279 -                       |                                                                    |   |
| chnet<br>Ilung<br>runda                 | t<br>gebelzt<br>nstrich                                            |   |
| N 60<br>ngeso<br>nsolbl                 | r (2*30°) # HV 45°<br>:hwelßt<br>ech und Stützrippen               |   |
|                                         |                                                                    |   |
| -                                       |                                                                    |   |
|                                         |                                                                    |   |
|                                         |                                                                    |   |
|                                         |                                                                    |   |
| 2                                       | en #UH                                                             |   |
| 2                                       | intFUIt                                                            |   |
| xn                                      | APZ 301 - A1 2001 VI 4 PKt 51.<br>427 301 - A1 2001 VI 4 PKt 62    |   |
| 683                                     | Voltov Vortest-skott 350/3                                         |   |
| au 🛛                                    | -81- <b>JI 200</b> W 4 Ref 621 7 66                                |   |
| - TH 43                                 | -27- 71 200 W 1 Bat 60 7 66                                        |   |
| DH 289                                  | antifut.                                                           |   |
| 7                                       | AP7 SUL - AT 2001 V1 4 Pict, AP<br>Votex Variest-Next, 2003        |   |
|                                         | APZ 301 - A1 2001 V9 4 PA:5 51<br>207 Still - A1 2001 V9 4 PA:5 51 |   |
| 01                                      | Vint / Vintset Huff 2001                                           |   |
| - 04 330                                | -37- 61 2000 W 4 Bot. 611 / 66                                     |   |
|                                         | m#1H                                                               |   |
| 2                                       | 472 20 - AU 200 VI 4 PA: SL                                        |   |
| indip                                   | 897 20 - 51 201 VI 3 194 51                                        |   |
| is .                                    | 482 S.U - AT 200 VI 3 R81 SI                                       |   |
| د                                       | AV2 341 - A1 2001 VI 1 PA: 75                                      |   |
|                                         | Wester / Ofference                                                 |   |
| MPU                                     | of thom Mel                                                        |   |
|                                         | Intrine SY/CHE2/SR 24/06 / 2009                                    | - |
|                                         | Frast-Lea Knick Gabl                                               | ĥ |
|                                         | Friedrich-Ebert-Stroße IS8<br>45473 Nülhelm on der Ruh             | r |
| <b>35</b> 9                             | Halistab (1)2,5 / 40<br>p= (2)2005 Hausum<br>p= -                  |   |
| 2005                                    | Umperag                                                            | - |
|                                         | Enatz Rr                                                           | - |
|                                         |                                                                    |   |

oder veroi



#### Auslegungsdaten Konvektionslüfter WT 2



Fraunhofer UMSICHT91

# Wirtschaftlichkeitsrechnung der Solarthermie

| Zeitraum                                    | 15 [a]    | q         |           | 1,06 [-]  |                      |
|---------------------------------------------|-----------|-----------|-----------|-----------|----------------------|
| р                                           | 6 [%]     |           |           |           |                      |
| T <sub>Kol</sub>                            | 130 [°C]  |           |           |           |                      |
| Standort                                    | Essen     | Toulouse  | Genova    | Safi      | St. Katrine          |
| Breitengrad                                 | 51,2      | 43,4      | 44,3      | 32,2      | 28,4 [°]             |
| Verh. I <sub>dir</sub> /I <sub>global</sub> | 0,36      | 0,48      | 0,44      | 0,57      | 0,69 [-]             |
| dQ/dt_VRK                                   | 300       | 524       | 486       | 787       | 960 [kWh/m²/a]       |
| dQ/dt_PRK                                   | 172       | 370       | 308       | 626       | 953 [kWh/m²/a]       |
| Q <sub>PRK,100m<sup>2</sup></sub>           | 17200     | 37000     | 30800     | 62600     | 95300 [kWh/a]        |
| Q <sub>PRK,500m<sup>2</sup></sub>           | 86000     | 185000    | 154000    | 313000    | 476500 [kWh/a]       |
| Q <sub>PRK,5000m<sup>2</sup></sub>          | 860000    | 1850000   | 1540000   | 3130000   | 4765000 [kWh/a]      |
| Q <sub>VRK,100m<sup>2</sup></sub>           | 30000     | 52400     | 48600     | 78700     | 96000 [kWh/a]        |
| Q <sub>VRK,500m<sup>2</sup></sub>           | 150000    | 262000    | 243000    | 393500    | 480000 [kWh/a]       |
| Q <sub>VRK,5000m<sup>2</sup></sub>          | 1500000   | 2620000   | 2430000   | 3935000   | 4800000 [kWh/a]      |
| PRK Kinvest,100m <sup>2</sup>               | 55150     | 55150     | 55150     | 55150     | 55150 [€]            |
| PRK K <sub>invest,500m<sup>2</sup></sub>    | 208500    | 208500    | 208500    | 208500    | 208500 [€]           |
| PRK Kinvest,5000m <sup>2</sup>              | 1546875   | 1546875   | 1546875   | 1546875   | 1546875 [€]          |
| VRK K <sub>invest,100m<sup>2</sup></sub>    | 86593,75  | 86593,75  | 86593,75  | 86593,75  | 86593,75 [€]         |
| VRK K <sub>invest,500m<sup>2</sup></sub>    | 342025    | 342025    | 342025    | 342025    | 342025 [€]           |
| VRK Kinvest,5000m <sup>2</sup>              | 3125000   | 3125000   | 3125000   | 3125000   | 3125000 [€]          |
| PRK K <sub>A,100m<sup>2</sup></sub>         | 5678,40   | 5678,40   | 5678,40   | 5678,40   | 5678,40 [€⁄a]        |
| PRK K <sub>A,500m<sup>2</sup></sub>         | 21467,74  | 21467,74  | 21467,74  | 21467,74  | 21467,74 [€⁄a]       |
| PRK K <sub>A,5000m<sup>2</sup></sub>        | 159270,53 | 159270,53 | 159270,53 | 159270,53 | 159270,53 [€/a]      |
| VRK K <sub>A,100m<sup>2</sup></sub>         | 8915,93   | 8915,93   | 8915,93   | 8915,93   | 8915,93 [€⁄a]        |
| VRK K <sub>A.500m<sup>2</sup></sub>         | 35215,81  | 35215,81  | 35215,81  | 35215,81  | 35215,81 [€⁄a]       |
| VRK K <sub>A,5000m<sup>2</sup></sub>        | 321758,64 | 321758,64 | 321758,64 | 321758,64 | 321758,64 [€/a]      |
| PRK K <sub>B,100m<sup>2</sup></sub>         | 312,31    | 312,31    | 312,31    | 312,31    | 312,31 [€⁄a]         |
| PRK K <sub>B,500m<sup>2</sup></sub>         | 1180,73   | 1180,73   | 1180,73   | 1180,73   | 1180,73 [€/a]        |
| PRK K <sub>B,5000m<sup>2</sup></sub>        | 8759,88   | 8759,88   | 8759,88   | 8759,88   | 8759,88 [€⁄a]        |
| VRK K <sub>B,100m<sup>2</sup></sub>         | 7,81      | 7,81      | 7,81      | 7,81      | 7,81 [€/a]           |
| VRK K <sub>B500m<sup>2</sup></sub>          | 29,52     | 29,52     | 29,52     | 29,52     | 29,52 [€/a]          |
| VRK K <sub>B,5000m<sup>2</sup></sub>        | 219,00    | 219,00    | 219,00    | 219,00    | 219,00 [€/a]         |
| PRK K <sub>Wärme,100m<sup>2</sup></sub>     | 0,348     | 0,162     | 0,195     | 0,096     | <b>0,063</b> [€/kWh] |
| PRK K <sub>Wārme,500m<sup>2</sup></sub>     | 0,263     | 0,122     | 0,147     | 0,072     | <b>0,048</b> [€/kWh] |
| PRK K <sub>Wärme,5000m<sup>2</sup></sub>    | 0,195     | 0,091     | 0,109     | 0,054     | <b>0,035</b> [€/kWh] |
| VRK K <sub>Wārme,100m<sup>2</sup></sub>     | 0,297     | 0,170     | 0,184     | 0,113     | 0,093 [€/kWh]        |
| VRK K <sub>Wärme,500m<sup>2</sup></sub>     | 0,235     | 0,135     | 0,145     | 0,090     | 0,073 [€/kWh]        |
| VRK K <sub>Wärme,5000m<sup>2</sup></sub>    | 0,215     | 0,123     | 0,133     | 0,082     | 0,067 [€/kWh]        |

| T <sub>Kol</sub>                            | 100 [°(     | C]          |             |             |                            |
|---------------------------------------------|-------------|-------------|-------------|-------------|----------------------------|
| Standort                                    | Essen       | Toulouse    | Genova      | Safi        | St. Katrine                |
| Breitengrad                                 | 51,2        | 43,4        | 44,3        | 32,2        | 28,4 [°]                   |
| Verh. I <sub>dir</sub> /I <sub>global</sub> | 0,36        | 0,48        | 0,44        | 0,57        | 0,69 [-]                   |
| dQ/dt_VRK                                   | 393         | 648         | 606         | 930         | 1110 [kWh/m²/a]            |
| dQ/dt_PRK                                   | 220         | 448         | 377         | 727         | 1062 [kWh/m²/a]            |
| QPRK,100m <sup>2</sup>                      | 22000       | 44800       | 37700       | 72700       | 106200 [kWh/a]             |
| Q <sub>PRK,500m<sup>2</sup></sub>           | 110000      | 224000      | 188500      | 363500      | 531000 [kWh/a]             |
| QPRK,5000m <sup>2</sup>                     | 1100000     | 2240000     | 1885000     | 3635000     | 5310000 [kWh/a]            |
| Q <sub>VRK,100m<sup>2</sup></sub>           | 39300       | 64800       | 60600       | 93000       | 111000 [kWh/a]             |
| Q <sub>VRK,500m<sup>2</sup></sub>           | 196500      | 324000      | 303000      | 465000      | 555000 [kWh/a]             |
| Q <sub>VRK,5000m<sup>2</sup></sub>          | 1965000     | 3240000     | 3030000     | 4650000     | 5550000 [kWh/a]            |
| PRK Kinvest,100m <sup>2</sup>               | 55150       | 55150       | 55150       | 55150       | 55150 [€]                  |
| PRK Kinvest,500m <sup>2</sup>               | 208500      | 208500      | 208500      | 208500      | 208500 [€]                 |
| PRK Kinvest,5000m <sup>2</sup>              | 1546875     | 1546875     | 1546875     | 1546875     | 1546875 [€]                |
| VRK Kinvest,100m <sup>2</sup>               | 86593,75    | 86593,75    | 86593,75    | 86593,75    | 86593,75 [€]               |
| VRK Kinvest,500m <sup>2</sup>               | 342025      | 342025      | 342025      | 342025      | 342025 [€]                 |
| VRK Kinvest,5000m <sup>2</sup>              | 3125000     | 3125000     | 3125000     | 3125000     | 3125000 [€]                |
| PRK K <sub>A,100m<sup>2</sup></sub>         | 5678,396432 | 5678,396432 | 5678,396432 | 5678,396432 | 5678,396432 [€/a]          |
| PRK K <sub>A,500m<sup>2</sup></sub>         | 21467,73628 | 21467,73628 | 21467,73628 | 21467,73628 | 21467,73628 [€⁄a]          |
| PRK K <sub>A,5000m<sup>2</sup></sub>        | 159270,5255 | 159270,5255 | 159270,5255 | 159270,5255 | 159270,5255 [€⁄a]          |
| VRK K <sub>A,100m<sup>2</sup></sub>         | 8915,931841 | 8915,931841 | 8915,931841 | 8915,931841 | 8915,931841 [€⁄a]          |
| VRK K <sub>A,500m<sup>2</sup></sub>         | 35215,80647 | 35215,80647 | 35215,80647 | 35215,80647 | 35215,80647 [€/a]          |
| VRK K <sub>A,5000m<sup>2</sup></sub>        | 321758,6374 | 321758,6374 | 321758,6374 | 321758,6374 | 321758,6374 [€⁄a]          |
| PRK K <sub>B,100m<sup>2</sup></sub>         | 312,3118038 | 312,3118038 | 312,3118038 | 312,3118038 | 312,3118038 [€⁄a]          |
| PRK K <sub>B,500m<sup>2</sup></sub>         | 1180,725496 | 1180,725496 | 1180,725496 | 1180,725496 | 1180,725496 [€⁄a]          |
| PRK K <sub>B,5000m<sup>2</sup></sub>        | 8759,878902 | 8759,878902 | 8759,878902 | 8759,878902 | 8759,878902 [€⁄a]          |
| VRK K <sub>B,100m<sup>2</sup></sub>         | 7,807795094 | 7,807795094 | 7,807795094 | 7,807795094 | 7,807795094 [€⁄a]          |
| VRK K <sub>B500m<sup>2</sup></sub>          | 29,51813739 | 29,51813739 | 29,51813739 | 29,51813739 | 29,51813739 [€⁄a]          |
| VRK K <sub>B,5000m<sup>2</sup></sub>        | 218,9969726 | 218,9969726 | 218,9969726 | 218,9969726 | 218,9969726 [€⁄a]          |
| PRK K <sub>Wärme,100m<sup>2</sup></sub>     | 0,27230492  | 0,133721166 | 0,158904728 | 0,082403139 | <b>0,056409682</b> [€/kWh] |
| PRK K <sub>Wärme,500m<sup>2</sup></sub>     | 0,205895107 | 0,101109204 | 0,120150991 | 0,062306635 | <b>0,04265247</b> [€/kWh]  |
| PRK K <sub>Wärme,5000m<sup>2</sup></sub>    | 0,152754913 | 0,075013573 | 0,089140798 | 0,046225696 | <b>0,031644144</b> [€/kWh] |
| VRK K <sub>Wärme,100m<sup>2</sup></sub>     | 0,227067166 | 0,137712031 | 0,14725643  | 0,09595419  | 0,080394051 [€/kWh]        |
| VRK K <sub>Wärme,500m<sup>2</sup></sub>     | 0,17936552  | 0,108781866 | 0,116321203 | 0,075796397 | 0,063505089 [€/kWh]        |
| VRK K <sub>Wärme,5000m<sup>2</sup></sub>    | 0,163856302 | 0,099375813 | 0,106263246 | 0,069242502 | 0,058013988 [€/kWh]        |

| T <sub>Kol</sub>                            | 150 [°0     | C]          |             |             |                            |
|---------------------------------------------|-------------|-------------|-------------|-------------|----------------------------|
| Standort                                    | Essen       | Toulouse    | Genova      | Safi        | St. Katrine                |
| Breitengrad                                 | 51,2        | 43,4        | 44,3        | 32,2        | 28,4 [°]                   |
| Verh. I <sub>dir</sub> /I <sub>global</sub> | 0,36        | 0,48        | 0,44        | 0,57        | 0,69 [-]                   |
| dQ/dt_VRK                                   | 242         | 443         | 407         | 687         | 855 [kWh/m²/a]             |
| dQ/dt_PRK                                   | 145         | 317         | 266         | 553         | 874 [kWh/m²/a]             |
| QPRK,100m <sup>2</sup>                      | 14500       | 31700       | 26600       | 55300       | 87400 [kWh/a]              |
| Q <sub>PRK,500m<sup>2</sup></sub>           | 72500       | 158500      | 133000      | 276500      | 437000 [kWh/a]             |
| Q <sub>PRK,5000m<sup>2</sup></sub>          | 725000      | 1585000     | 1330000     | 2765000     | 4370000 [kWh/a]            |
| Q <sub>VRK,100m<sup>2</sup></sub>           | 24200       | 44300       | 40700       | 68700       | 85500 [kWh/a]              |
| Q <sub>VRK,500m<sup>2</sup></sub>           | 121000      | 221500      | 203500      | 343500      | 427500 [kWh/a]             |
| Q <sub>VRK,5000m<sup>2</sup></sub>          | 1210000     | 2215000     | 2035000     | 3435000     | 4275000 [kWh/a]            |
| PRK Kinvest,100m <sup>2</sup>               | 55150       | 55150       | 55150       | 55150       | 55150 [€]                  |
| PRK Kinvest,500m <sup>2</sup>               | 208500      | 208500      | 208500      | 208500      | 208500 [€]                 |
| PRK Kinvest,5000m <sup>2</sup>              | 1546875     | 1546875     | 1546875     | 1546875     | 1546875 [€]                |
| VRK K <sub>invest,100m<sup>2</sup></sub>    | 86593,75    | 86593,75    | 86593,75    | 86593,75    | 86593,75 [€]               |
| VRK Kinvest,500m <sup>2</sup>               | 342025      | 342025      | 342025      | 342025      | 342025 [€]                 |
| VRK Kinvest,5000m <sup>2</sup>              | 3125000     | 3125000     | 3125000     | 3125000     | 3125000 [€]                |
| PRK K <sub>A,100m<sup>2</sup></sub>         | 5678,396432 | 5678,396432 | 5678,396432 | 5678,396432 | 5678,396432 [€/a]          |
| PRK K <sub>A,500m<sup>2</sup></sub>         | 21467,73628 | 21467,73628 | 21467,73628 | 21467,73628 | 21467,73628 [€/a]          |
| PRK K <sub>A,5000m<sup>2</sup></sub>        | 159270,5255 | 159270,5255 | 159270,5255 | 159270,5255 | 159270,5255 [€/a]          |
| VRK K <sub>A,100m<sup>2</sup></sub>         | 8915,931841 | 8915,931841 | 8915,931841 | 8915,931841 | 8915,931841 [€⁄a]          |
| VRK K <sub>A,500m<sup>2</sup></sub>         | 35215,80647 | 35215,80647 | 35215,80647 | 35215,80647 | 35215,80647 [€/a]          |
| VRK K <sub>A,5000m<sup>2</sup></sub>        | 321758,6374 | 321758,6374 | 321758,6374 | 321758,6374 | 321758,6374 [€/a]          |
| PRK K <sub>B,100m<sup>2</sup></sub>         | 312,3118038 | 312,3118038 | 312,3118038 | 312,3118038 | 312,3118038 [€⁄a]          |
| PRK K <sub>B,500m<sup>2</sup></sub>         | 1180,725496 | 1180,725496 | 1180,725496 | 1180,725496 | 1180,725496 [€/a]          |
| PRK K <sub>B,5000m<sup>2</sup></sub>        | 8759,878902 | 8759,878902 | 8759,878902 | 8759,878902 | 8759,878902 [€/a]          |
| VRK K <sub>B,100m<sup>2</sup></sub>         | 7,807795094 | 7,807795094 | 7,807795094 | 7,807795094 | 7,807795094 [€/a]          |
| VRK K <sub>B500m<sup>2</sup></sub>          | 29,51813739 | 29,51813739 | 29,51813739 | 29,51813739 | 29,51813739 [€⁄a]          |
| VRK K <sub>B,5000m<sup>2</sup></sub>        | 218,9969726 | 218,9969726 | 218,9969726 | 218,9969726 | 218,9969726 [€/a]          |
| PRK K <sub>Wärme,100m<sup>2</sup></sub>     | 0,413152292 | 0,188981332 | 0,225214595 | 0,108331071 | <b>0,068543572</b> [€/kWh] |
| PRK K <sub>Wārme,500m<sup>2</sup></sub>     | 0,312392576 | 0,142892503 | 0,170289186 | 0,081911254 | <b>0,051827144</b> [€/kWh] |
| PRK K <sub>Wärme,5000m<sup>2</sup></sub>    | 0,231766075 | 0,106012873 | 0,12633865  | 0,06077049  | <b>0,038450893</b> [€/kWh] |
| VRK K <sub>Wärme,100m<sup>2</sup></sub>     | 0,368749572 | 0,201438818 | 0,219256502 | 0,129894318 | 0,104371224 [€/kWh]        |
| VRK K <sub>Wärme,500m<sup>2</sup></sub>     | 0,291283674 | 0,159121104 | 0,173195698 | 0,102606476 | 0,082445204 [€/kWh]        |
| VRK K <sub>Wärme,5000m<sup>2</sup></sub>    | 0,266097218 | 0,145362363 | 0,158219968 | 0,093734391 | 0,075316406 [€/kWh]        |

# 7 Wirtschaftlichkeitsrechnung der Kältemaschinen

| Zeitraum<br>p                | 15<br>6    | 5 [a]<br>6 [%] | q           | 1,06 [-]    |             |         |
|------------------------------|------------|----------------|-------------|-------------|-------------|---------|
| Ctondort                     | Fasan      | Teuleuse       | Capava      | Cofi        | Ct. Katrina |         |
| Breitengrad                  | 51.2       | 43.4           | 44 3        | 32.2        | 28.4        | [0]     |
| max. Feuchtkugeltemp.        | 22         | 24             | 27          | 29          | 20,4        | [°C]    |
| Feuchttemp./Lufttemp.        | 0,90625    | 0,891472868    | 0,841772152 | 0,955801105 | 0,620320856 | [-]     |
| t <sub>b,Vollast</sub>       | 840        | 1216           | 1663        | 2053        | 1958        | [h/a]   |
| K <sub>Strom</sub>           | 0,12       | 0,12           | 0,12        | 0,1         | 0,1         | [€/kWh] |
| K <sub>Wasser</sub>          | 2,5        | 2,5            | 2,5         | 1           | 1           | [€/m³]  |
| Absorber 1-stufig            |            |                |             |             |             |         |
| dQ <sub>0</sub> /dt          | 100        | 100            | 100         | 100         | 100         | [kW]    |
| dQ <sub>H</sub> /dt          | 143        | 114            | 114         | 114         | 114         | [kW]    |
| dQ <sub>RKW</sub> /dt        | 243        | 243            | 243         | 243         | 243         | [kW]    |
| K <sub>Invest,Einheit</sub>  | 38.245,00  | 38.245,00      | 38.245,00   | 38.245,00   | 38.245,00   | [€]     |
| K <sub>Invest,RKW</sub>      | 14.277,00  | 16.171,29      | 19.012,71   | 20.907,00   | 13.329,86   | [€]     |
| K <sub>Invest,Neben</sub>    | 123.192,00 | 123.192,00     | 123.192,00  | 123.192,00  | 123.192,00  | [€]     |
| K <sub>Invest,ges</sub>      | 175.714,00 | 177.608,29     | 180.449,71  | 182.344,00  | 174.766,86  | [€]     |
| spez. K <sub>invest</sub>    | 1.757,14   | 1.776,08       | 1.804,50    | 1.823,44    | 1.747,67    | [€/kW]  |
| COPm                         | 0,60       | 0,59           | 0,59        | 0,57        | 0,60        | [-]     |
| W <sub>0</sub>               | 84000      | 121600         | 166300      | 205300      | 195800      | [kWh/a] |
| W <sub>H</sub>               | 140000     | 205232         | 284274      | 360175      | 326333      | [kWh/a] |
| W <sub>RKW</sub>             | 224000     | 326832         | 450574      | 565475      | 522133      | [kWh/a] |
| K <sub>Betrieb,Wärme</sub>   | 27.839,36  | 23.156,88      | 36.204,70   | 25.037,99   | 15.532,10   | [€/a]   |
| K <sub>Betrieb,Wasser</sub>  | 831,68     | 1.213,49       | 1.672,92    | 839,82      | 775,45      | [€/a]   |
| K <sub>Betrieb,Strom</sub>   | 1.100,25   | 1.613,63       | 2.195,70    | 2.281,81    | 2.192,72    | [€/a]   |
| K <sub>Betrieb,Wartung</sub> | 3.514,28   | 3.552,17       | 3.608,99    | 3.646,88    | 3.495,34    | [€/a]   |
| K <sub>Betrieb,ges</sub>     | 33.285,58  | 29.536,16      | 43.682,32   | 31.806,50   | 21.995,61   | [€/a]   |
| K <sub>Kapital</sub>         | 18.092,00  | 18.287,04      | 18.579,60   | 18.774,64   | 17.994,48   | [€/a]   |
| K <sub>ges</sub>             | 51.377,58  | 47.823,20      | 62.261,92   | 50.581,14   | 39.990,08   | [€/a]   |
| spez. K                      | 0,612      | 0,393          | 0,374       | 0,246       | 0,204       | [∉kWh]  |

| Absorber 1-s                 | stufig                    |            |            |            |            |                    |
|------------------------------|---------------------------|------------|------------|------------|------------|--------------------|
| Standort                     | Essen                     | Toulouse   | Genova     | Safi       | St. Katrin | е                  |
| dQ <sub>0</sub> /dt          | 200                       | 200        | 200        | 200        | 200        | [kW]               |
| dQ <sub>H</sub> /dt          | 286                       | 286        | 286        | 286        | 286        | [kW]               |
| dQ <sub>RKW</sub> /dt        | 486                       | 486        | 486        | 486        | 486        | [kW]               |
| K <sub>Invest,Einheit</sub>  | 43.709,00                 | 43.709,00  | 43.709,00  | 43.709,00  | 43.709,00  | [€]                |
| K <sub>Invest.RKW</sub>      | 22.181,00                 | 25.969,57  | 31.652,43  | 35.441,00  | 20.286,71  | [€]                |
| K <sub>Invest.Neben</sub>    | 155.453,00                | 155.453,00 | 155.453,00 | 155.453,00 | 155.453,00 | ) [€]              |
| KInvestiges                  | 221.343,00                | 225.131,57 | 230.814,43 | 234.603,00 | 219.448,7  | 1 [€]              |
| spez. Kinvest                | 1.106.72                  | 1.125.66   | 1.154.07   | 1.173.02   | 1.097.24   | [€/kW]             |
| 1                            | ,                         | -,         | - ,-       | - , -      | ,          |                    |
| COPm                         | 0,60                      | 0,59       | 0,59       | 0,57       | 0,60       | [-]                |
| Wo                           | 168000                    | 243200     | 332600     | 410600     | 391600     | [kWh/a]            |
| W <sub>H</sub>               | 280000                    | 410464     | 568547     | 720351     | 652667     | [kWh/a]            |
| W <sub>RKW</sub>             | 448000                    | 653664     | 901147     | 1130951    | 1044267    | / [kWh/a]          |
|                              |                           |            |            |            |            |                    |
| K <sub>Betrieb,Wärme</sub>   | 51.987,93                 | 41.852,42  | 66.304,13  | 45.252,23  | 28.071,83  | [€/a]              |
| K <sub>Betrieb,Wasser</sub>  | 1.663,37                  | 2.426,97   | 3.345,84   | 1.679,63   | 1.550,89   | [€/a]              |
| K <sub>Betrieb,Strom</sub>   | 2.200,50                  | 3.227,25   | 4.391,40   | 4.563,63   | 4.385,44   | [€/a]              |
| K <sub>Betrieb,Wartung</sub> | 4.426,86                  | 4.502,63   | 4.616,29   | 4.692,06   | 4.388,97   | [€/a]              |
| K <sub>Betrieb,ges</sub>     | 60.278,65                 | 52.009,27  | 78.657,66  | 56.187,54  | 38.397,13  | [€/a]              |
| Ku                           | 22 700 00                 | 23 180 17  | 23 765 20  | 24 155 37  | 22 505 05  | [ <del>€</del> /ɔ] |
| Kapital                      | 22.790,09                 | 23.100,17  | 102 422 05 | 24.155,57  | 22.090,00  | [€/a]              |
| spez K                       | 03.008,74<br>0 <b>494</b> | 0 309,44   | 02.422,95  | 00.342,92  | 00.992,10  | [ਦ/a]<br>[∉kWh]    |
| 3pez. 10                     | 0,404                     | 0,000      | 0,500      | 0,130      | 0,150      | [Gruin]            |
| Absorber 1-s                 | tufig                     |            |            |            |            |                    |
| dQ <sub>0</sub> /dt          | 500                       | 500        | 500        | 500        | 500        | [kW]               |
| dQ <sub>H</sub> /dt          | 714                       | 714        | 714        | 714        | 714        | [kW]               |
| dQ <sub>RKW</sub> /dt        | 1214                      | 1214       | 1214       | 1214       | 1214       | [kW]               |
| K <sub>Invest,Einheit</sub>  | 54.636,00                 | 54.636,00  | 54.636,00  | 54.636,00  | 54.636,00  | [€]                |
| K <sub>Invest,RKW</sub>      | 39.000,00                 | 48.471,43  | 62.678,57  | 72.150,00  | 34.264,29  | [€]                |
| K <sub>Invest,Neben</sub>    | 222.500,00                | 222.500,00 | 222.500,00 | 222.500,00 | 222.500,00 | [€]                |
| K <sub>Invest,ges</sub>      | 316.136,00                | 325.607,43 | 339.814,57 | 349.286,00 | 311.400,29 | [€]                |
| spez. K <sub>invest</sub>    | 632,27                    | 651,21     | 679,63     | 698,57     | 622,80     | [€/kW]             |
| COP                          | 0.60                      | 0.59       | 0.59       | 0.57       | 0.60       | [-]                |
| Wo                           | 420000                    | 608000     | 831500     | 1026500    | 979000     | [kWh/a]            |
| Wu                           | 700000                    | 1026160    | 1421368    | 1800877    | 1631667    | [kWh/a]            |
| W <sub>RKW</sub>             | 1120000                   | 1634160    | 2252868    | 2827377    | 2610667    | [kWh/a]            |
| NW                           | 1.20000                   | 1001100    |            | 202.0.1    | 2010001    | [                  |
| K <sub>Betrieb,Wärme</sub>   | 118.664,72                | 91.473,55  | 147.477,21 | 98.904,25  | 61.354,40  | [€⁄a]              |
| K <sub>Betrieb,Wasser</sub>  | 4.158,42                  | 6.067,43   | 8.364,61   | 4.199,08   | 3.877,23   | [€⁄a]              |
| K <sub>Betrieb,Strom</sub>   | 5.501,25                  | 8.068,13   | 10.978,50  | 11.409,06  | 10.963,59  | [€⁄a]              |
| K <sub>Betrieb,Wartung</sub> | 6.322,72                  | 6.512,15   | 6.796,29   | 6.985,72   | 6.228,01   | [€⁄a]              |
| K <sub>Betrieb,ges</sub>     | 134.647,11                | 112.121,25 | 173.616,61 | 121.498,10 | 82.423,23  | [€⁄a]              |
| KKapital                     | 32,550,24                 | 33,525,44  | 34,988,25  | 35,963,45  | 32.062.63  | [€/a]              |
| Kaes                         | 167.197.34                | 145.646.69 | 208.604.86 | 157.461.56 | 114.485.86 | [€/a]              |
| spez. K                      | 0,398                     | 0,240      | 0,251      | 0,153      | 0,117      | [ <b>∉</b> kWh]    |

| Absorber 2-s                        | tufig      |            |            |            |            |                 |
|-------------------------------------|------------|------------|------------|------------|------------|-----------------|
| Standort                            | Essen      | Toulouse   | Genova     | Safi       | St. Katrin | e               |
| dQ <sub>0</sub> /dt                 | 200        | 200        | 200        | 200        | 200        | [kW]            |
| dQ <sub>H</sub> /dt                 | 171        | 171        | 171        | 171        | 171        | [kW]            |
| dQ <sub>RKW</sub> /dt               | 371        | 371        | 371        | 371        | 371        | [kW]            |
| K <sub>Invest,Einheit</sub>         | 54.636,00  | 54.636,00  | 54.636,00  | 54.636,00  | 54.636,00  | [€]             |
| K <sub>Invest,RKW</sub>             | 18.747,00  | 21.640,33  | 25.980,33  | 28.873,67  | 17.300,33  | [€]             |
| K <sub>Invest,Neben</sub>           | 171.868,00 | 171.868,00 | 171.868,00 | 171.868,00 | 171.868,00 | ) [€]           |
| K <sub>Invest,ges</sub>             | 245.251,00 | 248.144,33 | 252.484,33 | 255.377,67 | 243.804,33 | 3 [€]           |
| spez. K <sub>invest</sub>           | 1.226,26   | 1.240,72   | 1.262,42   | 1.276,89   | 1.219,02   | [€/kW]          |
| COPm                                | 1,07       | 1,07       | 1,06       | 1,06       | 1,06       | [-]             |
| Wo                                  | 168000     | 243200     | 332600     | 410600     | 391600     | [kWh/a]         |
| W <sub>H</sub>                      | 157746     | 228357     | 314515     | 388274     | 370307     | [kWh/a]         |
| W <sub>RKW</sub>                    | 325746     | 471557     | 647115     | 798874     | 761907     | [kWh/a]         |
| K <sub>Betrieb,Wärme</sub>          | 49.476,05  | 35.464,27  | 57.480,46  | 34.567,90  | 20.855,25  | [€/a]           |
| $K_{\text{Betrieb}, \text{Wasser}}$ | 1.209,45   | 1.750,83   | 2.402,66   | 1.186,45   | 1.131,55   | [€/a]           |
| K <sub>Betrieb,Strom</sub>          | 2.200,50   | 3.227,25   | 4.391,40   | 4.563,63   | 4.385,44   | [€⁄a]           |
| K <sub>Betrieb,Wartung</sub>        | 4.905,02   | 4.962,89   | 5.049,69   | 5.107,55   | 4.876,09   | [€/a]           |
| $K_{Betrieb,ges}$                   | 57.791,02  | 45.405,23  | 69.324,20  | 45.425,52  | 31.248,32  | [€/a]           |
| K <sub>Kapital</sub>                | 25.251,72  | 25.549,63  | 25.996,48  | 26.294,39  | 25.102,77  | [€/a]           |
| K <sub>ges</sub>                    | 83.042,75  | 70.954,86  | 95.320,69  | 71.719,91  | 56.351,09  | [€/a]           |
| spez. K                             | 0,494      | 0,292      | 0,287      | 0,175      | 0,144      | [ <b>€</b> kWh] |
| Absorber 2-st                       | ufig       |            |            |            |            |                 |
| dQ <sub>0</sub> /dt                 | 500        | 500        | 500        | 500        | 500        | [kW]            |
| dQ <sub>H</sub> /dt                 | 427        | 427        | 427        | 427        | 427        | [kW]            |
| dQ <sub>RKW</sub> /dt               | 927        | 927        | 927        | 927        | 927        | [kW]            |
| K <sub>Invest,Einheit</sub>         | 81.955,00  | 81.955,00  | 81.955,00  | 81.955,00  | 81.955,00  | [€]             |
| K <sub>Invest,RKW</sub>             | 36.810,00  | 44.043,33  | 54.893,33  | 62.126,67  | 33.193,33  | [€]             |
| K <sub>Invest,Neben</sub>           | 279.525,00 | 279.525,00 | 279.525,00 | 279.525,00 | 279.525,00 | [€]             |
| K <sub>Invest,ges</sub>             | 398.290,00 | 405.523,33 | 416.373,33 | 423.606,67 | 394.673,33 | [€]             |
| spez. K <sub>invest</sub>           | 796,58     | 811,05     | 832,75     | 847,21     | 789,35     | [€/kW]          |
| COPm                                | 1,07       | 1,07       | 1,06       | 1,06       | 1,06       | [-]             |
| Wo                                  | 420000     | 608000     | 831500     | 1026500    | 979000     | [kWh/a]         |
| W <sub>H</sub>                      | 394366     | 570892     | 786288     | 970686     | 925768     | [kWh/a]         |
| W <sub>RKW</sub>                    | 814366     | 1178892    | 1617788    | 1997186    | 1904768    | [kWh/a]         |
| K <sub>Betrieb,Wärme</sub>          | 111.075,14 | 77.523,39  | 126.388,88 | 75.563,97  | 45.588,71  | [€/a]           |
| K <sub>Betrieb,Wasser</sub>         | 3.023,64   | 4.377,07   | 6.006,64   | 2.966,12   | 2.828,86   | [€/a]           |
| K <sub>Betrieb,Strom</sub>          | 5.501,25   | 8.068,13   | 10.978,50  | 11.409,06  | 10.963,59  | [€/a]           |
| K <sub>Betrieb,Wartung</sub>        | 7.965,80   | 8.110,47   | 8.327,47   | 8.472,13   | 7.893,47   | [€⁄a]           |
| K <sub>Betrieb,ges</sub>            | 127.565,83 | 98.079,06  | 151.701,48 | 98.411,28  | 67.274,63  | [€/a]           |
| K <sub>Kapital</sub>                | 41.009,04  | 41.753,80  | 42.870,95  | 43.615,71  | 40.636,66  | [€/a]           |
| K <sub>ges</sub>                    | 168.574,87 | 139.832,86 | 194.572,43 | 142.027,00 | 107.911,29 | [€⁄a]           |
| spez. K                             | 0,401      | 0,230      | 0,234      | 0,138      | 0,110      | [∉kWh]          |

| DSKM                         |            |                     |           |                           |            |             |                |
|------------------------------|------------|---------------------|-----------|---------------------------|------------|-------------|----------------|
| Standort                     | Ess        | en                  | Toulouse  | e Genova                  | Safi       | St. Katrine |                |
| dQ <sub>0</sub> /dt          | 10         | 0                   | 100       | 100                       | 100        | 100         | [kW]           |
| dQ⊦/dt                       | 20         | 0                   | 200       | 200                       | 200        | 200         | [kW]           |
| aQ <sub>RKW</sub> /at        | 30         |                     | 300       | 300                       | 300        | 300         | [KVV]          |
| Ninvest,Einheit              | 16.000     | ,00 3<br>200 1      | 9 246 00  | 35.000,00                 | 35.000,00  | 35.000,00   | [€]<br>[€]     |
| Kinvest, RKW                 | 127 51     | 4 00 1 <sup>°</sup> | 27 514 00 | 24.190,00<br>) 127 514 00 | 127 514 00 | 127 514 00  | [€]<br>[€]     |
| Kinvestiges                  | 178.52     | 4,00 1/<br>0.00 1/  | 80.860.00 | ) 186.710.00              | 194,900.00 | 193.730.00  | [⊂]            |
| spez. Kinves                 | it 1.785   | ,20                 | 1.808,60  | 1.867,10                  | 1.949,00   | 1.937,30    | [€/kW]         |
| COPm                         | 1 (        | )5                  | 0.95      | 0.92                      | 0.83       | 1 13        | [-]            |
| W <sub>0</sub>               | 840        | 00                  | 121600    | 166300                    | 205300     | 195800      | [kWh/a]        |
| W <sub>H</sub>               | 800        | 00                  | 128000    | 180761                    | 247349     | 173274      | [kWh/a]        |
| WRKW                         | 1640       | 000                 | 249600    | 347061                    | 452649     | 369074      | [kWh/a]        |
| K <sub>Betrieb,Wärme</sub>   | e 24.634   | l,18 1              | 9.427,64  | 32.318,50                 | 21.521,79  | 9.537,19    | [€/a]          |
| KBetrieb,Wasse               | er 608,9   | <del>)</del> 1      | 926,73    | 1.288,59                  | 672,25     | 548,13      | [€/a]          |
| K <sub>Betrieb,Strom</sub>   | 727,       | 50                  | 1.122,75  | 1.498,50                  | 1.618,13   | 1.621,56    | [€/a]          |
| K <sub>Betrieb,Wartun</sub>  | g 3.570    | ,40                 | 3.617,20  | 3.734,20                  | 3.898,00   | 3.874,60    | [€/a]          |
| K <sub>Betrieb,ges</sub>     | 29.540     | ),99 2              | 25.094,32 | 38.839,80                 | 27.710,16  | 15.581,48   | [€/a]          |
| K <sub>Kapital</sub>         | 18.380     | ),91 1              | 8.621,85  | 19.224,18                 | 20.067,44  | 19.946,98   | [€/a]          |
| K <sub>ges</sub>             | 47.921     | ,91 4               | 3.716,17  | 58.063,97                 | 47.777,60  | 35.528,46   | [€/a]          |
| spez. K                      | 0,5        | 70                  | 0,360     | 0,349                     | 0,233      | 0,181       | [€kWh]         |
| DSKM                         |            |                     |           |                           |            |             |                |
| Standort                     | Essen      | Toulou              | ise       | Genova                    | Safi       | St. Katrine |                |
| dQ <sub>0</sub> /dt          | 200        | 200                 |           | 200                       | 200        | 200         | [kW]           |
| dQ <sub>H</sub> /dt          | 400        | 400                 |           | 400                       | 400        | 400         | [kW]           |
| dQ <sub>RKW</sub> /dt        | 600        | 600                 |           | 600                       | 600        | 600         | [kW]           |
|                              | 40.000.00  | 40.000.0            | 00        | 40.000.00                 | 40.000.00  | 40.000.00   | <br>[€]        |
| Kinvest BKW                  | 29 164 00  | 33 844 (            | 0         | 45 544 00                 | 61 924 00  | 59 584 00   | [€]            |
| K.                           | 172 010 00 | 172 010             | 00        | 172 010 00                | 172 910 00 | 172 910 00  | [e]            |
| Ninvest,Neben                | 172.910,00 | 040 754             | 00        | 772.910,00                | 074 004 00 | 172.910,00  | [5]<br>[6]     |
| ∩ <sub>Invest,ges</sub>      | 242.074,00 | 240.754,            | 00        | 258.454,00                | 274.834,00 | 272.494,00  | [€]            |
| spez. K <sub>invest</sub>    | 1.210,37   | 1.233,7             | 7         | 1.292,27                  | 1.374,17   | 1.362,47    | [€/kW]         |
| COPm                         | 1,05       | 0,95                | 5         | 0,92                      | 0,83       | 1,13        | [-]            |
| Wo                           | 168000     | 24320               | 00        | 332600                    | 410600     | 391600      | [kWh/a]        |
| W <sub>H</sub>               | 160000     | 25600               | 00        | 361522                    | 494699     | 346549      | [kWh/a]        |
| W <sub>RKW</sub>             | 328000     | 49920               | 00        | 694122                    | 905299     | 738149      | [kWh/a]        |
|                              |            |                     |           |                           |            |             |                |
| K <sub>Betrieb,Wärme</sub>   | 45.417,92  | 35.103,3            | 39        | 58.655,26                 | 38.887,26  | 17.232,55   | [€⁄a]          |
| K <sub>Betrieb,Wasser</sub>  | 1.217,82   | 1.853,4             | 7         | 2.577,18                  | 1.344,50   | 1.096,26    | [€/a]          |
| K <sub>Betrieb,Strom</sub>   | 1.455,00   | 2.245,5             | 0         | 2.997,00                  | 3.236,25   | 3.243,13    | [€⁄a]          |
| K <sub>Betrieb,Wartung</sub> | 4.841,48   | 4.935,0             | 8         | 5.169,08                  | 5.496,68   | 5.449,88    | [€⁄a]          |
| K <sub>Betrieb,ges</sub>     | 52.932,22  | 44.137,4            | 44        | 69.398,52                 | 48.964,70  | 27.021,82   | [€/a]          |
| K.                           | 24 024 64  | 25 400              | 47        | 26 611 14                 | 20 207 67  | 20 056 74   | [ <i>E</i> /o] |
| Kapital                      | 24.924,01  | 20.400,4            | +/        | 20.011,14                 | 20.291,01  | 20.000,74   | [€/a]          |
| ĸ <sub>ges</sub>             | 11.856,83  | 69.543,             | 91        | 96.009,66                 | 11.262,37  | 55.078,55   | [€/a]          |
| spez. K                      | 0,463      | 0,28                | Ď         | 0,289                     | 0,188      | 0,141       | [€kWh]         |

| DSKM                         |            |            |            |            |             |                 |
|------------------------------|------------|------------|------------|------------|-------------|-----------------|
| Standort                     | Essen      | Toulouse   | Genova     | Safi       | St. Katrine |                 |
| dQ <sub>0</sub> /dt          | 500        | 500        | 500        | 500        | 500         | [kW]            |
| dQ <sub>H</sub> /dt          | 1000       | 1000       | 1000       | 1000       | 1000        | [kW]            |
| dQ <sub>RKW</sub> /dt        | 1500       | 1500       | 1500       | 1500       | 1500        | [kW]            |
| KInvest, Einheit             | 50.000,00  | 50.000,00  | 50.000,00  | 50.000,00  | 50.000,00   | [€]             |
| K <sub>Invest,RKW</sub>      | 63.750,00  | 75.450,00  | 104.700,00 | 145.650,00 | 139.800,00  | [€]             |
| K <sub>Invest,Neben</sub>    | 284.375,00 | 284.375,00 | 284.375,00 | 284.375,00 | 284.375,00  | [€]             |
| K <sub>Invest,ges</sub>      | 398.125,00 | 409.825,00 | 439.075,00 | 480.025,00 | 474.175,00  | [€]             |
| spez. $K_{\text{invest}}$    | 796,25     | 819,65     | 878,15     | 960,05     | 948,35      | [€/kW]          |
| COPm                         | 1,05       | 0,95       | 0,92       | 0,83       | 1,13        | [-]             |
| Wo                           | 420000     | 608000     | 831500     | 1026500    | 979000      | [kWh/a]         |
| W <sub>H</sub>               | 400000     | 640000     | 903804     | 1236747    | 866372      | [kWh/a]         |
| W <sub>RKW</sub>             | 820000     | 1248000    | 1735304    | 2263247    | 1845372     | [kWh/a]         |
| K <sub>Betrieb,Wärme</sub>   | 101.964,52 | 76.734,54  | 128.972,03 | 85.005,92  | 37.669,63   | [€⁄a]           |
| K <sub>Betrieb,Wasser</sub>  | 3.044,55   | 4.633,66   | 6.442,96   | 3.361,26   | 2.740,65    | [€⁄a]           |
| K <sub>Betrieb,Strom</sub>   | 3.637,50   | 5.613,75   | 7.492,50   | 8.090,63   | 8.107,81    | [€⁄a]           |
| K <sub>Betrieb,Wartung</sub> | 7.962,50   | 8.196,50   | 8.781,50   | 9.600,50   | 9.483,50    | [€⁄a]           |
| K <sub>Betrieb,ges</sub>     | 116.609,07 | 95.178,46  | 151.689,00 | 106.058,31 | 58.001,59   | [€⁄a]           |
| K <sub>Kapital</sub>         | 40.992,05  | 42.196,71  | 45.208,38  | 49.424,70  | 48.822,37   | [€⁄a]           |
| K <sub>ges</sub>             | 157.601,12 | 137.375,17 | 196.897,37 | 155.483,01 | 106.823,96  | [€⁄a]           |
| spez. K                      | 0,375      | 0,226      | 0,237      | 0,151      | 0,109       | [ <b>∜</b> kWh] |
|                              |            |            |            |            |             |                 |